
PhySG: Inverse Rendering with Spherical Gaussians for

Physics-based Material Editing and Relighting

Kai Zhang∗ Fujun Luan∗ Qianqian Wang Kavita Bala Noah Snavely

Cornell University

Abstract

We present PhySG, an end-to-end inverse rendering

pipeline that includes a fully differentiable renderer, and

can reconstruct geometry, materials, and illumination from

scratch from a set of images. Our framework represents

specular BRDFs and environmental illumination using mix-

tures of spherical Gaussians, and represents geometry as

a signed distance function parameterized as a Multi-Layer

Perceptron. The use of spherical Gaussians allows us to

efficiently solve for approximate light transport, and our

method works on scenes with challenging non-Lambertian

reflectance captured under natural, static illumination. We

demonstrate, with both synthetic and real data, that our re-

constructions not only enable rendering of novel viewpoints,

but also physics-based appearance editing of materials and

illumination.

1. Introduction

Vision as inverse graphics has long been an intriguing

concept. Solving inverse rendering problems, i.e., recov-

ering shape, material and lighting from images, has thus

been a long-standing goal. Recently, neural rendering meth-

ods [46, 54, 29, 31, 25, 55, 21, 32, 28, 44, 43, 35, 4, 47],

have drawn significant attention due to their remarkable suc-

cess in a range of problems, including shape reconstruction,

novel view synthesis, non-physically-based relighting, and

surface reflectance map estimation. These neural rendering

methods adopt scene representations that are either physical,

neural, or a mixture of both, along with a neural-network-

based renderer. Methods that reconstruct textures or radiance

fields [25, 54, 31] work well for the task of interpolating

novel views, but do not factorize appearance into lighting

and materials, precluding physically-based appearance ma-

nipulation like material editing or relighting.

*Authors contributed equally to this work.
†Project page: https://kai-46.github.io/PhySG-

website/.

Figure 1: PhySG performs physics-based inverse rendering by

taking as input multi-view images of a static glossy object under

static natural illumination and jointly optimizes for geometry (rep-

resented by an SDF), material BRDF and environment maps (both

represented by a mixture of spherical Gaussians), which can then

be used for novel view synthesis, relighting and material editing.

Prior multi-view inverse rendering methods assume

RGBD input [35, 4] or varying illumination across input

images achieved either by co-locating an active flashlight

with moving cameras [7, 8, 40, 30] or capturing objects on

a turntable with a fixed camera [51, 10]. Learning-based

single-view methods that recover shape, illumination, and

material properties have also been proposed [20, 5].

In this work, we tackle the multi-view inverse render-

ing problem under the challenging setting of normal RGB

input images sharing the same static illumination, with-

out assuming scanned geometry. To this end, we propose

PhySG, an end-to-end physically-based differentiable ren-

dering pipeline to jointly estimate lighting, material, geom-

etry and surface normals from posed multi-view images of

specular objects. In our pipeline, we represent shape using

signed distance functions (SDFs), building on their success-

ful use in recent work [54, 15, 34, 24, 58]. Additionally,

a key component of our framework is our use of spheri-

cal Gaussians to approximate lighting and specular BRDFs

allowing for efficient approximate evaluation of light trans-

port [53]. From 2D images alone, our method jointly re-

constructs shape, illumination, and materials and allows for

5453

subsequent physics-based appearance manipulations such as

material editing and relighting.

In summary, our contributions are as follows:

• PhySG, an end-to-end inverse rendering approach to

this problem of jointly estimating lighting, material

properties, and geometry from multi-view images of

glossy objects under static illumination. Our pipeline

utilizes spherical Gaussians to approximately and effi-

ciently evaluate the rendering equation in closed form.

• Compared to prior neural rendering approaches, we

show that PhySG not only generalizes to novel view-

points, but also enables physically-intuitive material

editing and relighting.

2. Background

Our approach lies at the intersection of multiple fields.

We briefly review the related prior works below.

Neural rendering. The success of neural rendering [46,

29, 54, 31, 44, 43, 47] has generated significant excitement.

In particular, NeRF [29] enables photo-realistic novel view

synthesis by representing scenes as radiance fields via multi-

layer-perceptrons (MLPs) and fitting these to a collection

of input views. While NeRF represents scenes as volumet-

ric opacity fields, other recent methods like DVR [31] and

IDR [54] are surface-based. In these three works, appearance

is represented by a single MLP that takes a 3D point (and a

view direction), and outputs a color. Hence, their appearance

model is essentially a surface light field [50] that treats ob-

jects as light sources. Such an approach works well for novel

view synthesis, but does not disentangle material and light-

ing, and hence is not suitable for physics-based relighting

and material editing. Other approaches learn an appearance

space [28, 21, 25] from Internet photos of landmarks cap-

tured under diverse lighting, but are not physics-based and

cannot generalize to arbitrary new lighting.

In contrast to such prior work that represents appearance

as a single neural network, we model appearance via the

physical rendering equation. Our approach can solve chal-

lenging inverse rendering problems involving specular or

glossy objects under static lighting, and enable physically

meaningful editing of lighting and materials.

Material and environment estimation. To estimate mate-

rial properties, most prior works require scenes to be cap-

tured under varying illumination [6, 7, 8, 40, 30, 51, 10, 13].

They either place the object of interest on a mechanical

turntable and capture it with a fixed camera [51, 10], or move

a camera with co-located flashlight to capture a static ob-

ject from multiple viewpoints [6, 7, 8, 40, 30]. The varying

illumination yields rich cues for inferring material proper-

ties and geometry [3]. For environment estimation from

multi-view images, prior works [35, 23] factorize scene ap-

pearance into diffuse image and surface reflectance map

Figure 2: Overview of our PhySG inverse rendering pipeline. To

render the color for a camera ray r = o+ td, we first use sphere

tracing to find the ray’s intersection x with the geometry in the

form of a signed distance function (SDF) represented as an MLP

S(x;Θ). The surface normal n = ∇xS at location x is then

computed as the SDF gradient. We also represent the spatially-

varying diffuse albedo a(x;Φ) with an MLP. Given the surface

normal, albedo, and viewing direction at x, we render a color

using the spherical Gaussian (SG) renderer, where we represent

both the environment map and a specular BRDF using SGs. The

rendered image can then be compared to the ground-truth via image

reconstruction loss to jointly optimize the unknowns: geometry and

surface normal, spatially-varying diffuse albedo, specular BRDF

and environment map.

given high-quality geometry from RGBD sensors. The sur-

face reflectance map entangles the material and lighting,

because it represents the distant environmental illumination

convolved with an object’s specular BRDF, hence preventing

relighting. In contrast to a global environment map, Azi-

novic et al. [4] model lighting as surface emissions, and

use a Monte Carlo differentiable renderer to jointly estimate

material properties and surface emissions from multi-view

images conditioned on scanned geometry and object seg-

mentation masks. Other work seeks to predict illumination,

materials and shape from a single image via learning-based

priors [5, 20, 39]. Ramamoorthi and Hanrahan [38] esti-

mates BRDF and lighting via deconvolution given known

geometry. In our work, we aim to jointly estimate the ma-

terial and environment, together with geometry and surface

normals, solely from multi-view 2D images under the chal-

lenging setting of unknown static natural illumination.

Joint shape and appearance refinement. Given the initial

geometry and appearance from RGBD sensors, Maier et

al. [24] and Zollhofer et al. [58] jointly refine geometry and

appearance by assuming Lambertian BRDF and incorporat-

ing shading cues. They pre-compute a lighting model based

on spherical harmonics [37], then fix it while optimizing the

shape and diffuse albedo. They adopt voxelized SDFs as

their geometric representation. Assuming known illumina-

tion, Oxholm and Nishino [33] also exploit reflectance cues

5454

to refine geometry computed via visual hulls. In contrast

to these prior works, our method does not require scanned

geometry or a known environment map. Instead, we estimate

material and lighting parameters, as well as geometry and

surface normals in an end-to-end fashion.

The rendering equation. Kajiya et al. [16] proposed the

rendering equation based on the physical law of energy con-

servation. For a surface point x with surface normal n,

suppose Li(ωi;x) is the incident light intensity at location

x along the direction ωi, and BRDF fr(ωo,ωi;x) is the

reflectance coefficient of the material at location x for inci-

dent light direction ωi and viewing direction ωo, then the

observed light intensity Lo(ωo;x) is an integral over the

hemisphere Ω = {ωi : ωi · n > 0} *:

Lo(ωo;x) =

∫

Ω

Li(ωi) fr(ωo,ωi;x) (ωi · n)dωi. (1)

The BRDF fr(ωo,ωi;x) is a function of viewing direction

ωo, and models view-dependent effects such as specularity.

3. Method

In this section, we describe our PhySG pipeline and its

three major components: (1) geometry modeling, (2) appear-

ance modeling, and (3) forward rendering. These compo-

nents are designed to be differentiable, so that the whole

pipeline can be optimized end-to-end from multiple images

captured under static illumination.

Geometry modeling. Motivated by the success of signed

distance functions (SDFs) for representing shape [54, 15,

34, 24, 58], we adopt SDFs as our geometric representation.

SDFs support ray casting via sphere tracing, are differen-

tiable, and automatically satisfy the constraint between shape

and surface normal—the surface normal is exactly the gradi-

ent of the SDF. We represent SDFs with MLPs (rather than

voxel grids) for their memory efficiency and infinite resolu-

tion [34]. Concretely, let S(x;Θ) be our SDF,† where x is

a 3D point and Θ are the MLP weights. Our MLP consists

of 8 nonlinear layers of width 512, with a skip connection at

4th layer. To allow the MLP to model high-frequency geo-

metric detail, we use positional encoding with 6 frequency

components to encode the location of a 3D point [45, 29].‡

An alternate to SDFs is to use occupancy fields [27, 31],

but ray tracing through occupancy fields is much slower, re-

quiring root-finding to locate the surface. While occupancy

fields require over 100 MLP evaluations per cast ray [31],

for SDFs, the MLP only needs to be evaluated ∼10 times

via sphere tracing.

*Viewing direction ωo, lighting direction ωi and surface normal n are

all assumed to point away from the scene.
†We assume SDF>0 is an object’s exterior, while SDF<0 is its interior.
‡Using L frequency components, positional encoding maps vector p to

(

p, sin(20p), cos(20p), . . . , sin(2L−1
p), cos(2L−1

p)
)

.

To render the pixel color for a camera ray, we first find the

ray’s point of intersection with the SDF by starting from the

ray’s intersection with the object bounding box and march-

ing along the ray via sphere tracing as in [54], where the

size of each step is the signed distance at the current loca-

tion. The intersection point’s location x and surface normal

n = ∇xS are then used by our appearance component to

render the pixel’s color. Hence, to optimize the geometry,

gradients must back-propagate through both x and n to the

SDF parameters Θ. Back-propagating through the surface

normal n is straightforward via auto-differentiation [36]. To

back-propagate through the surface location x, we use the

implicit differentiation method presented in [31, 54]. Note

however that the sphere tracing algorithm itself need not be

differentiable, hence it is very memory-efficient.

Appearance modeling. To model a single-material spec-

ular object in a way consistent with the rendering equa-

tion (see Eq. 1), we use two optimizable components: (1)

an environment map, and (2) BRDF consisting of spatially

varying diffuse albedo and a shared monochrome isotropic

specular component. Note however that we do not model

self-occlusion or indirect illumination. The hemispherical

integral in the rendering equation generally does not have

a closed-form expression, necessitating expensive Monte-

Carlo methods for numeric evaluation. However, in our

setting of glossy material and distant direct illumination,

we can utilize spherical Gaussians (SGs) [53] to efficiently

approximate the rendering equation in closed form.

An n-dimensional spherical Gaussian (SG) is a spherical

function that takes the form [48]:

G(ν; ξ, λ,µ) = µ eλ(ν·ξ−1), (2)

where ν ∈ S
2 is the function input, ξ ∈ S

2 is the lobe axis,

λ ∈ R+ is the lobe sharpness, and µ ∈ R
n
+ is the lobe

amplitude. Our environment map Li(ωi;x) = L(ωi)
§ is

then represented with a mixture of M = 128 SGs:

Li(ωi) =
M
∑

k=1

G(ωi; ξk, λk,µk). (3)

We represent the spatially-varying diffuse albedo with an

MLP mapping a surface point x to a color vector a, i.e.,

a(x;Φ). Positional encoding is also applied to fit high-

frequency texture details [45, 25]. Specifically, we use an

MLP with 4 nonlinear layers of width 512, and encode

location x with 10 frequencies. As for the shared specu-

lar component, we use the same simplified Disney BRDF

model [9, 17] as in prior work [8, 22]:

fs(ωo,ωi) = M(ωo,ωi)D(h), (4)

§We drop the location x due to the distant illumination assumption.

5455

where h = (ωo + ωi)/‖ωo + ωi‖2, M accounts for the

Fresnel and shadowing effects, and D is the normalized

distribution function. We include details of M and D in the

supplemental material. We represent D with a single SG:

D(h) = G(h; ξ, λ,µ). (5)

Our isotropic specular BRDF assumption results in ξ align-

ing with surface normal, i.e., ξ = n, while the monochrome

assumption makes the three numbers in µ identical.

To evaluate the rendering equation at a point x with sur-

face normal n viewed along direction ωo, D must be spheri-

cally warped, while M must be approximated by a constant

at this specific location x [48]:

Dx(h) = G(h;n,
λ

4h · ωo

,µ), (6)

Mx(ωo,ωi) ≈ M(ωo, 2(ωo · n)n− ωo). (7)

Hence for the point x, we have:

fs(ωo,ωi;x) = G(h;n,
λ

4h · ωo

,Mxµ). (8)

Now that both Li(ωi) and fr(ωo,ωi;x)=
a

π
+fs(ωo,ωi;x)

in the rendering equation are represented with SGs, we fur-

ther approximate the remaining term ωi · n with a SG [26]:

ωi · n ≈ G(ωi; 0.0315,n, 32.7080)− 31.7003. (9)

Finally, we integrate the multiplication of these SGs in

closed-form [26] to compute the observed color Lo(ωo;x).
To summarize, the optimizable parameters in our appear-

ance component are
{

ξk, λk,µk

}M

k=1
, {λ,µ}, and Φ, which

are parameters of the environment map, specular BRDF, and

spatially-varying diffuse albedo, respectively.

Forward rendering. Given our geometric and appearance

components, we perform forward rendering of a ray’s color

as follows: (1) use sphere tracing to find the intersection

point x between the ray r = o+ td and the surface S(x;Θ);
(2) compute the surface normal n = ∇xS at x via auto-

matic differentiation [36]; (3) compute the diffuse albedo

a(x;Φ) at x; (4) use the surface normal n, environment

map
{

ξk, λk,µk

}M

k=1
, diffuse albedo a, specular BRDF

{λ,µ}, and viewing direction d, to compute the color for

ray r by evaluating the rendering equation in closed form

with our SG approximation. This procedure is illustrated in

Fig. 2.

We now show that our pipeline is fully differentiable, in

that its output (the rendered color) is differentiable w.r.t. all

the optimizable parameters. First, the rendered color is differ-

entiable w.r.t. the variables n,
{

ξk, λk,µk

}M

k=1
,a, {λ,µ} in

step (4), because the SG renderer is simply the closed-form

integration of spherical Gaussians. Since the diffuse albedo

a = a(x;Φ) is an MLP in step (3), the rendered color is

differentiable w.r.t. x and Φ by the chain rule. For our ge-

ometric model, we have shown that there exist gradients of

both the surface location x and surface normal n w.r.t. the

SDF parameters Θ. Thus by the chain rule, the rendered

color is differentiable w.r.t. Θ as well.

Loss functions. To optimize parameters given a set of

images, we render images from the same viewpoints as

the input images, and compute an ℓ1 image reconstruction

loss. We also enforce non-negative minimum SDF values

along non-object pixel rays indicated by object segmenta-

tion masks, and regularize the SDF’s gradient to have unit

norm [12]. Concretely, at each training iteration, we first ran-

domly sample a batch of pixels consisting of: object pixels

r
obj
i

with ground-truth color
{

c
gt
i

}Nobj

i=1
, and non-object pix-

els
{

r
nobj
i

}Nnobj

i=1
. Then we render colors c

obj
i

for r
obj
i

, while

finding the minimal SDF value Snobj
i

along camera rays

r
nobj
i

by taking the minimal SDF value among 100 points

uniformly lying on the ray segment inside object bounding

box. We also randomly sample
{

xi

}Nx

i=1
inside the object

bounding box. Our full loss is:

ℓ =
1

Nobj

Nobj
∑

i=1

∥

∥c
obj
i

− c
gt
i

∥

∥

1

+ β1
1

Nnobj

Nnobj
∑

i=1

ln(1 + e−αS
nobj

i)

α

+ β2
1

Nx

Nx
∑

i=1

∥

∥‖∇xi
S‖2 − 1

∥

∥

2

2
, (10)

where
ln(1+e

−αS
nobj
i)

α
, α>0 is a smooth approximation of a

horizontally flipped ReLU max{−Snobj
i

, 0} (larger α yields

tighter approximation); and β1 and β2 are weights balancing

different loss terms. We set β1=100, β2=0.1, Nobj+Nnobj=
2048, Nx=1024 in our experiments; α gradually grows from

50 to 1600 as suggested in [54]. Finally, rather than sampling

Nobj + Nnobj independent pixels, we sample
Nobj+Nnobj

4
patches of size 2 × 2, and add an additional loss term to

penalize the variance of surface normals inside patches con-

sisting only of object pixels. We set the weight for this

smoothness loss to 10. We train on a single 12GB NVIDIA

GPU for 250k iterations.

Initialization. The SDF weights Θ are initialized using the

method of [12] such that the initial shape is roughly a sphere.

The diffuse albedo a(x;Φ) is initialized such that predicted

albedo is ∼0.5 at all locations inside the object bounding

box. For the specular BRDF, the initial lobe sharpness λ is

randomly drawn from [95, 125], while the initial specular

albedo µ is randomly drawn from [0.18, 0.26]. For the envi-

ronment map, the lobes are initialized to distribute uniformly

5456

on the unit sphere using a spherical Fibonacci lattice [18],

with monochrome colors; we also scale the randomly ini-

tialized lobes’ amplitude so that the initial rendered pixel

intensity output by our pipeline is ∼0.5. In addition, since

different captures can vary significantly in exposure, we

scale all input images of an object with the same constant

such that the median intensity of all scaled images is 0.5.

We empirically find that if the initial environment map is

too bright or too dark, the diffuse albedo MLP sometimes

gets stuck, predicting all zeros or ones during training. Our

proposed initialization addresses this issue.

4. Experiments

We perform experiments on both synthetic and real-world

data to validate our PhySG pipeline.

4.1. Synthetic data

To create synthetic data, we use objects from [10, 57];

for each object, we render 200 images with colored environ-

mental lighting using the Mitsuba renderer [14], 100 each

for training and testing. To test the extrapolation capability

of different algorithms, the test images are distributed inside

a 70-degree cone around the object’s north pole, while the

training images cover the rest of the upper hemisphere (see

Fig. 3). We use the Ward BRDF model [49] included in

Mitsuba, and set the specular albedo to (0.3, 0.3, 0.3) and

roughness values along the tangent and bitangent directions

to 0.05. Ground truth surface normal maps and diffuse albe-

dos are also rendered to quantitatively evaluate our inverse

rendering results. To evaluate the relighting performance of

our pipeline, we also render the same object with two other

environment maps in Mitsuba to serve as ground truth.

We report image quality metrics: LPIPS [56], SSIM, and

PSNR on held-out test viewpoints. As there is an inher-

ent scale ambiguity in inverse rendering problems, before

computing the metrics, we align our predicted image Î to

ground-truth I via channel-wise scale factors. Specifically,

let Îr, Ir denote the red channel of Î , I , respectively. Then

the scale factor sr for the red channel is estimated via:

sr = Median(Ir
/

Îr). (11)

The green and blue channels are scaled similarly.

As shown by the quantitative evaluation in Tab. 1 and

qualitative evaluation in Fig. 7, our synthesized novel test

views, estimated diffuse albedo and surface normal, as well

as material editing and relighting results closely match the

ground truth on synthetic data, despite the test viewpoints

representing a difficult view extrapolation scenario. Note

especially that our method correctly extrapolates the chal-

lenging specular highlight in Fig. 7.

↓LPIPS ↑SSIM ↑PSNR

Diffuse albedo 0.0339 0.989 33.43

Novel view 0.0170 0.990 35.93

Relighting 0.0227 0.988 33.25

Surface normal error (◦) 2.528

Table 1: Quantitative evaluation of our inverse rendering results

on the synthetic dataset. We compare predictions of our pipeline

against the ground-truth rendered with Mitsuba. Since there is a

scale ambiguity in inverse rendering problems, we align our predic-

tions to ground-truth before evaluating the metrics (see Eq. 11 for

details). We also report the average angular error of our estimated

surface normals.

↓Surface Normal Error (◦) ↓Chamfer L1

Ours 2.528 0.00142

NeRF 36.05 0.01650

IDR 2.207 0.00136

DVR 38.90 0.13800

Table 2: Evaluation of recovered geometry on synthetic data. We

report avg. surface normal error on test views and L1 Chamfer

(point-to-mesh) distance between estimated and GT meshes (nor-

malized to have a unit bounding box).

Figure 3: Camera setup for synthetic duck (left) [10] and real SLF

fish (right) [50]. Blue for training, red for testing. Note that testing

viewpoints deviate significantly from training ones. Latitudes of

testing cameras are above 55 degrees, while training cameras are

below this latitude threshold.

4.2. Real­world data

We test our method on multiple real-world captures

from datasets including SLF [50], DeepVoxels [43], Bag

of Chips [35] and DTU [2]. The objects in these captures are

glossy and the illumination is static across different views.

SLF dataset. We use the glossy fish from [50]. This dataset

is captured with a gantry in a lab-controlled environment.

The cameras are distributed on a hemisphere around the cen-

ter object. We discard images in which the center object has

noticeable shadows cast by the gantry or is partly occluded

by the platform. Then we split the data according to the cam-

eras’ latitudes, with test cameras’ latitudes above 55 degrees,

5457

Synthetic Kitty Synthetic Bear Synthetic Duck Synthetic Mouse SLF fish [50] Chips Corncho1 [35]

train/test (HxW) 100/100 (512x512) 100/100 (512x512) 100/100 (512x512) 100/100 (512x512) 419/106 (480x640) 1661/345 (480x640)

↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR ↓LPIPS ↑SSIM ↑PSNR

Ours 0.0189 0.989 36.45 0.0200 0.987 33.76 0.0081 0.994 38.70 0.0209 0.987 34.81 0.0142 0.969 30.27 0.0477 0.969 27.44

NeRF [29] 0.0534 0.971 30.75 0.0493 0.964 28.17 0.0338 0.976 29.72 0.0772 0.948 26.30 0.0255 0.966 28.90 0.0478 0.969 27.64

IDR [54] 0.0202 0.987 35.21 0.0169 0.986 33.88 0.0121 0.991 36.24 0.0259 0.983 32.67 0.0129 0.977 31.48 0.0414 0.975 27.92

DVR [31] 0.132 0.926 24.69 0.124 0.911 19.24 0.100 0.944 25.78 0.165 0.903 22.37 0.0494 0.952 22.90 0.255 0.848 16.06

Table 3: We compare the novel test view quality of our method with that of NeRF [29], IDR [54] and DVR [31]. For synthetic data, HDR

images are tonemapped with Iout = I
1/2.2
in and clipped to [0, 1] before computing the metrics. Note that the baseline methods model

appearance as surface light field [50], hence they can not do editing/relighting like ours. On real-world data, our metric numbers are slightly

worse than IDR — this is likely caused by the bias in our physics-based appearance modeling that does not align perfectly with real material

properties, while surface light field modeling has little bias but precludes material editing and relighting.

GT Ours NeRF IDR DVR

Figure 4: On synthetic and real data, we qualitatively compare our novel view extrapolation quality with most related neural rendering

techniques: NeRF [29], IDR [54] and DVR [31]. Our method extrapolates the specularity more reasonably than the baseline methods thanks

to our physics-based modeling of the approximate light transport.

as shown in Fig. 3. We render object segmentation masks

from the provided laser-scanned meshes.

DeepVoxels. We use the glossy globe and coffee ob-

jects from DeepVoxels [43]. These are real-world hand-

held captures. The camera parameters are recovered with

COLMAP [41, 42]. We use background removal tools [1] to

automatically generate the object segmentation masks. We

leave ∼25% images for testing.

Bag of Chips. We use the glossy cans and corncho1 data

from this dataset [34]. We render object segmentation masks

from the provided mesh scanned by RGBD sensors. We

leave ∼25% images for testing.

DTU dataset. We use the shiny scan114 buddha object from

this dataset [2]. We discard images in which the camera

casts noticeable shadows on the object. The object segmen-

tation masks are automatically generated using background

removal tools [1]. We leave ∼25% images for testing.

Our inverse rendering results are qualitatively shown in

Fig. 5. Video demos are shown in our supplemental ma-

terial. We can see that our pipeline generates photo-realistic

novel views, plausible material editing and relighting results.

4.3. Comparison with baselines

We could not identify prior work tackling exactly the

same problem as us: simultaneously reconstructing light-

ing, material, and geometry from scratch from 2D images

captured under static illumination. Hence, we compare our

PhySG to the most related neural rendering approaches, in-

cluding NeRF [25], IDR [54] and DVR [31], in terms of

novel view extrapolation quality.

Like PhySG, these approaches can also be trained end-to-

end from 2D image supervision only, but they differ from

our method in the way that appearance is modelled. Loosely

speaking, they all model appearance as an MLP-represented

surface light field. In particular, NeRF maps location x and

viewing direction d to a color; IDR maps x, d, and surface

normal n to a color, and DVR only takes location x. Tab. 3

and Fig. 4 compares different methods on synthetic and real

data. NeRF does poorly in view extrapolation because its

volumetric representation does not concentrate colors around

surfaces as well as surface-based approaches. Although

DVR uses a surface-based shape model, its model does not

support view-dependent effects, and so it fails to model this

kind of glossy data. Compared with DVR, IDR models

view-dependence and does a good job in view extrapolation.

5458

Ground-truth Ours Diffuse image Edit 1 Relight 1 Relight 2 Esti. Normal

Figure 5: With our pipeline, we can edit the materials and lighting of the real-world captures. For several input captures, we show from left

to right: a real photo in the test set, our synthesized image, estimated diffuse image, editing results by painting diffuse albedo, relighting

results under two novel environmental illuminations, and estimated surface normal.

Figure 6: Ground truth and our reconstructed environment maps for the synthetic Kitty data with varying Ward BRDF roughness R. For each

roughness setting, an example training image rendered by Mitsuba [14] is also shown. For rough surfaces (R=0.25), PhySG still recovers an

environment map that resembles the ground truth, though blurrier. Nonetheless, this is sufficient to reconstruct the material accurately.

However, it still has trouble synthesizing specular highlights,

due to the lack of a physical model of appearance. In contrast,

our method models such highlights well. As for geometry,

our estimated geometry is nearly as good as IDR’s (and

much better than other baselines) shown in Tab. 2, while we

also allow for relighting and material editing.

We also tried redner [19], a Monte Carlo differentiable

renderer representing shapes as meshes. We let redner jointly

optimize lighting, texture, BRDF and geometry with an

image reconstruction loss. We initialized the mesh a sphere

at the beginning of training, and found that redner got stuck

in the initial mesh and failed to converge.

4.4. Robustness to material roughness

Our method relies on specular highlights to estimate the

lighting and material properties. As a result, if the material

of interest is purely Lambertian, we face a lighting-texture

ambiguity and cannot recover lighting without additional

5459

G
T

O
U

R
S

G
T

O
U

R
S

G
T

O
U

R
S

Novel-view Diffuse albedo Edit 1 Edit 2 Relight 1 Relight 2 Surface normal

Figure 7: Results of our pipeline on synthetic data. For a novel test view, we compare our predicted image, estimated diffuse albedo, specular

BRDF editing results and relighting results to ground truth images rendered by Mitsuba [14]. Note that there is a scale ambiguity in inverse

rendering problems; hence we align our estimated diffuse albedo to the ground truth for visualization here (see Eq. 11 for details of the

alignment we apply). More examples are available in the supplemental material.

priors. We empirically test the robustness of our pipeline to

material roughness on synthetic data. As shown in Fig. 6,

even from very weak specular highlights, our method can

reconstruct a reasonable-looking environment map.

5. Conclusion

We proposed PhySG, an end-the-end inverse rendering

pipeline that uses physics-based differentiable rendering.

PhySG uses signed distance functions (SDFs) and spherical

Gaussians (SG) to represent geometry and appearance, re-

spectively. We show that PhySG can jointly recover environ-

ment maps, material BRDFs and geometry from multi-view

inputs captured under static illumination, enabling physics-

based material editing and relighting.

Limitations. Our method has a few limitations that can be

the subject of future work. First, indirect illumination is not

modelled by our SG approximation of the rendering equa-

tion, which limits our method to object-level data. To lift

this restriction and extend to scene-level data, differentiable

path tracing combined with deferred neural textures [11, 47]

can be explored, where only rough geometry is required for

guidance. Second, we assume constant and monochrome

specular BRDFs (with spatially-varying diffuse components).

This assumption is due to the scale ambiguity between il-

lumination and reflectance. Similar to intrinsic image de-

composition, learning-based priors could help alleviate such

ambiguities. Last, our work can also be extended to handle

anisotropic or data-driven BRDFs, e.g., by fitting a mixture

of anisotropic SGs [52].

Acknowledgements. This work was supported in part by the

National Science Foundation (IIS-2008313, CHS-1900783,

CHS-1930755).

5460

References

[1] Remove image background. https://www.remove.

bg/. Accessed: 2020-10-15.

[2] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for

multiple-view stereopsis. Int. J. Comput. Vis., pages 1–16,

2016.

[3] Jens Ackermann and Michael Goesele. A survey of photomet-

ric stereo techniques. Foundations and Trends® in Computer

Graphics and Vision, 9(3-4):149–254, 2015.

[4] Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias

Nießner. Inverse path tracing for joint material and lighting

estimation. In IEEE Conf. Comput. Vis. Pattern Recog., pages

2447–2456, 2019.

[5] Jonathan T Barron and Jitendra Malik. Shape, illumination,

and reflectance from shading. IEEE Trans. Pattern Anal.

Mach. Intell., 37(8):1670–1687, 2014.

[6] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,

Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,

David Kriegman, and Ravi Ramamoorthi. Neural re-

flectance fields for appearance acquisition. arXiv preprint

arXiv:2008.03824, 2020.

[7] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yan-

nick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-

thi. Deep reflectance volumes: Relightable reconstruc-

tions from multi-view photometric images. arXiv preprint

arXiv:2007.09892, 2020.

[8] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman,

and Ravi Ramamoorthi. Deep 3d capture: Geometry and

reflectance from sparse multi-view images. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 5960–5969, 2020.

[9] Brent Burley and Walt Disney Animation Studios. Physically-

based shading at disney. In SIGGRAPH, volume 2012, pages

1–7. vol. 2012, 2012.

[10] Yue Dong, Guojun Chen, Pieter Peers, Jiawan Zhang, and

Xin Tong. Appearance-from-motion: Recovering spatially

varying surface reflectance under unknown lighting. ACM

Trans. Graph., 33(6):1–12, 2014.

[11] Duan Gao, Guojun Chen, Yue Dong, Pieter Peers, Kun Xu,

and Xin Tong. Deferred neural lighting: free-viewpoint re-

lighting from unstructured photographs. ACM Transactions

on Graphics (TOG), 39(6):1–15, 2020.

[12] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and

Yaron Lipman. Implicit geometric regularization for learning

shapes. arXiv preprint arXiv:2002.10099, 2020.

[13] Tom Haber, Christian Fuchs, Philippe Bekaer, Hans-Peter

Seidel, Michael Goesele, and Hendrik PA Lensch. Relighting

objects from image collections. In IEEE Conf. Comput. Vis.

Pattern Recog., pages 627–634. IEEE, 2009.

[14] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-

renderer.org.

[15] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

Sdfdiff: Differentiable rendering of signed distance fields for

3d shape optimization. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 1251–1261, 2020.

[16] James T Kajiya. The rendering equation. In Proceedings

of the 13th annual conference on Computer graphics and

interactive techniques, pages 143–150, 1986.

[17] Brian Karis and Epic Games. Real shading in unreal engine

4.

[18] Benjamin Keinert, Matthias Innmann, Michael Sänger, and

Marc Stamminger. Spherical fibonacci mapping. ACM Trans.

Graph., 34(6):1–7, 2015.

[19] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-

nen. Differentiable monte carlo ray tracing through edge

sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),

37(6):222:1–222:11, 2018.

[20] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan

Sunkavalli, and Manmohan Chandraker. Inverse rendering for

complex indoor scenes: Shape, spatially-varying lighting and

svbrdf from a single image. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2475–2484, 2020.

[21] Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely.

Crowdsampling the plenoptic function. In Eur. Conf. Comput.

Vis., 2020.

[22] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan

Sunkavalli, and Manmohan Chandraker. Learning to recon-

struct shape and spatially-varying reflectance from a single

image. ACM Trans. Graph., 37(6):1–11, 2018.

[23] Stephen Lombardi and Ko Nishino. Radiometric scene de-

composition: Scene reflectance, illumination, and geometry

from rgb-d images. In 3DV, pages 305–313. IEEE, 2016.

[24] Robert Maier, Kihwan Kim, Daniel Cremers, Jan Kautz, and

Matthias Nießner. Intrinsic3D: High-quality 3D reconstruc-

tion by joint appearance and geometry optimization with

spatially-varying lighting. In Int. Conf. Comput. Vis., 2017.

[25] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. arXiv preprint arXiv:2008.02268,

2020.

[26] Julian Meder and Beat Brüderlin. Hemispherical gaussians for

accurate light integration. In Leszek J. Chmielewski, Ryszard

Kozera, Arkadiusz Orłowski, Konrad Wojciechowski, Al-

fred M. Bruckstein, and Nicolai Petkov, editors, Computer

Vision and Graphics, pages 3–15, Cham, 2018. Springer In-

ternational Publishing.

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 4460–4470, 2019.

[28] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues

Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-

Brualla. Neural rerendering in the wild. In IEEE Conf. Com-

put. Vis. Pattern Recog., pages 6878–6887, 2019.

[29] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view synthe-

sis. In Eur. Conf. Comput. Vis., 2020.

[30] Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H Kim.

Practical svbrdf acquisition of 3d objects with unstructured

flash photography. ACM Trans. Graph., 37(6):1–12, 2018.

5461

[31] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 3504–3515,

2020.

[32] Michael Oechsle, Michael Niemeyer, Lars Mescheder, Thilo

Strauss, and Andreas Geiger. Learning implicit surface light

fields. arXiv preprint arXiv:2003.12406, 2020.

[33] Geoffrey Oxholm and Ko Nishino. Multiview shape and

reflectance from natural illumination. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 2155–2162, 2014.

[34] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-

combe, and Steven Lovegrove. Deepsdf: Learning continuous

signed distance functions for shape representation. In IEEE

Conf. Comput. Vis. Pattern Recog., June 2019.

[35] Jeong Joon Park, Aleksander Holynski, and Steve Seitz. See-

ing the world in a bag of chips. IEEE Conf. Comput. Vis.

Pattern Recog., 2020.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu

Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.

Fox, and R. Garnett, editors, Adv. Neural Inform. Process.

Syst., pages 8024–8035. 2019.

[37] Ravi Ramamoorthi and Pat Hanrahan. An efficient representa-

tion for irradiance environment maps. In SIGGRAPH, pages

497–500, 2001.

[38] Ravi Ramamoorthi and Pat Hanrahan. A signal-

processing framework for reflection. ACM Trans. Graph.,

23(4):1004–1042, Oct. 2004.

[39] Fabiano Romeiro and Todd Zickler. Blind reflectometry. In

Kostas Daniilidis, Petros Maragos, and Nikos Paragios, ed-

itors, Computer Vision – ECCV 2010, pages 45–58, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg.

[40] Carolin Schmitt, Simon Donne, Gernot Riegler, Vladlen

Koltun, and Andreas Geiger. On joint estimation of pose,

geometry and svbrdf from a handheld scanner. In IEEE Conf.

Comput. Vis. Pattern Recog., June 2020.

[41] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In IEEE Conf. Comput. Vis.

Pattern Recog., 2016.

[42] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,

and Jan-Michael Frahm. Pixelwise view selection for unstruc-

tured multi-view stereo. In Eur. Conf. Comput. Vis., 2016.

[43] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3d feature embeddings. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 2437–2446, 2019.

[44] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.

Scene representation networks: Continuous 3d-structure-

aware neural scene representations. In Adv. Neural Inform.

Process. Syst., pages 1119–1130, 2019.

[45] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. arXiv preprint arXiv:2006.10739, 2020.

[46] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitz-

mann, Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. State of the art on neural rendering. arXiv preprint

arXiv:2004.03805, 2020.

[47] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural textures.

ACM Trans. Graph., 38(4):1–12, 2019.

[48] Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and

Baining Guo. All-frequency rendering of dynamic, spatially-

varying reflectance. In SIGGRAPH Asia, pages 1–10. 2009.

[49] Gregory J Ward. Measuring and modeling anisotropic reflec-

tion. In SIGGRAPH, pages 265–272, 1992.

[50] Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Cur-

less, Tom Duchamp, David H Salesin, and Werner Stuetzle.

Surface light fields for 3d photography. In Proceedings of the

27th annual conference on Computer graphics and interactive

techniques, pages 287–296, 2000.

[51] Rui Xia, Yue Dong, Pieter Peers, and Xin Tong. Recover-

ing shape and spatially-varying surface reflectance under un-

known illumination. ACM Trans. Graph., 35(6):1–12, 2016.

[52] Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-

Dong Wu, and Shi-Min Hu. Anisotropic spherical gaussians.

ACM Transactions on Graphics (TOG), 32(6):1–11, 2013.

[53] Ling-Qi Yan, Yahan Zhou, Kun Xu, and Rui Wang. Accurate

translucent material rendering under spherical gaussian lights.

Computer Graphics Forum, 31(7):2267–2276, 2012.

[54] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Ronen Basri, and Yaron Lipman. Multiview neural

surface reconstruction with implicit lighting and material. In

Adv. Neural Inform. Process. Syst., 2020.

[55] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv:2010.07492, 2020.

[56] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In IEEE Conf. Comput. Vis.

Pattern Recog., 2018.

[57] Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong

Yu, John Snyder, and Xin Tong. Sparse-as-possible svbrdf

acquisition. ACM Trans. Graph., 35, November 2016.

[58] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei

Wu, Marc Stamminger, Christian Theobalt, and Matthias

Nießner. Shading-based refinement on volumetric signed

distance functions. ACM Trans. Graph., 34(4):1–14, 2015.

5462

