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Abstract

Sufficient real information in generator is a critical point

for the generation ability of GAN. However, GAN and its

variants suffer from lack of this point, resulting in brit-

tle training processes. In this paper, we propose a novel

variant of GAN, Posterior Promoted GAN (P2GAN), which

promotes generator with the real information in the poste-

rior distribution produced by discriminator. In our frame-

work, different from other variants of GAN, the discrimi-

nator maps images to a multivariate Gaussian distribution

and extracts real information. The generator employs the

real information by AdaIN and a latent code regularizer.

Besides, reparameterization trick and pretraining is applied

to guarantee a stable training process in practice. The con-

vergence of P2GAN is theoretically proved. Experimental

results on typical high-dimensional multi-modal datasets

demonstrate that P2GAN has achieved comparable results

with the state-of-the-art variants of GAN on unsupervised

image synthesis.

1. Introduction

Generative Adversarial Network (GAN) [13] has been

widely developed since it was proposed, and its variants

have made remarkable progresses in the field of image

synthesis. Sufficient real information in generator is the

key point for such models. The only real information

contributing to generator in original GAN is the gradient

transferred from discriminator, which is indirect and je-

june for generator, leading to brittle training. Some su-

pervised variants of GAN [32, 34, 8, 26, 12] use the at-

tributes like labels in a direct and strong way with some con-

straints on the attributes, which supplies sufficient real in-

formation to generator. For unsupervised variants of GAN,

there are two major ways to improve the real information

∗Corresponding author.

in generator. One approach is to provide more refined

gradient from discriminator by introducing new loss func-

tions [15, 3, 31, 11, 46, 41]. But the information from gra-

dient is still indirect and frangible, which cannot supply a

continuous support for generator. The other approach is

to enrich the real information by adding priors into input

noise [4, 6, 10, 40, 47, 25, 44, 9, 28]. Nevertheless, the real

information in prior is only added into input noise, which

may be decayed by stacking convolutional layers gradually.

To tackle the above lack of real information issue, in

this paper, we propose a novel framework of GAN called

Posterior Promoted GAN (P2GAN). Firstly, unlike tradi-

tional discriminator that cannot provide sufficient real in-

formation, P2GAN learns abundant real information in the

posterior distribution by discriminator, and applies the in-

formation to generator in a more straight and robust way.

In specific, our discriminator maps images to a multivari-

ate Gaussian distribution, and matches this distribution with

two different given prior distributions for distinguishing.

The discriminator structure is inspired by the encoder of

Variational Autoencoder (VAE) [23]. Secondly, unlike pre-

vious works [4, 6, 10, 40, 47, 25, 44, 9, 28] which apply

a prior distribution to the input noise, our generator is pro-

moted by introducing the external real information into each

convolutional layer via Adaptive Instance Normalization

(AdaIN) [18] and a latent code regularizer. Directly affect-

ing the features in convolutional layers by AdaIN is more

powerful than only changing the prior of the input noise.

Thirdly, we change the losses of Least Squares Generative

Adversarial Network (LSGAN) [31] to a distribution ver-

sion, and provide theoretical guarantees for its convergence.

Besides, we employ reparameterization trick for reasonably

calculating the losses at the implementation level and a pre-

training step for initialization.

Our contributions are summarized as follows. First, we

propose a novel GAN framework called P2GAN. The dis-

criminator outputs a posterior distribution for distinguish-
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ing real and fake, and extracts plentiful real information in

the meantime. The generator utilizes the real information

via AdaIN layers to promote its generation ability. Second,

we modify the losses of LSGAN to a distribution version,

and theoretically prove its convergence via the Pearson X
divergence. Third, we propose a new latent code regular-

izer as a robust constraint of generator, which can prevent

the abundant real information in the posterior distribution

from fading away during training. Fourth, we introduce two

methods to guarantee model stability in practice: the repa-

rameterization trick training and the pretraining step. Our

model produces a state-of-the-art performance on multiple

image datasets in a fully unsupervised way.

2. Related Works

Generative Adversarial Network (GAN) uses the gener-

ator G and the discriminator D for adversarial learning. G

inputs random noise ǫ and produces generated images. D

receives the real or the generated images, and tries to clas-

sify between them.

In order to improve GAN, some works introduce new

loss functions for obtaining refined gradient from discrim-

inator, e.g., WGAN [3] and WGAN-GP [15] use Wasser-

stein distance as adversarial losses to avoid gradient van-

ishing and brittle training. To precisely estimate the real-

ness of an input sample, RealnessGAN [46] expands the

scalar realness score of the original GAN into a distribu-

tional one. Some works increase real information by chang-

ing the prior of the input noise. InfoGAN [6] decomposes

the input noise into an incompressible part and a structured

semantic feature part artificially. [40] and [10] extend Info-

GAN by proposing a reverse reconstructor network which

maps the images to a random Gaussian latent code as input

noise. [47] and [4] introduce a mixture of Gaussian distri-

butions for sampling input noise. [25] proposes a family of

distributions−Tensor Ring Induced Prior (TRIP)−as a prior

for generative models. Some works enable precise control

about the properties of the synthetic images via incorporat-

ing 3D prior knowledge into generator [39, 9]. Clustering

on feature space to generate a self-conditioned label is an-

other way to get prior [38, 30, 28]. [44] encodes a speech

to get a speech latent embedding as an extra input noise,

generating images from speech. Some image editing works

use pre-trained GAN models as prior without retraining or

modification [1, 14, 2].

Different from these variants, in this work, we modify

the discriminator to map images into a multivariate Gaus-

sian distribution, which can supply stronger real informa-

tion via adversarial learning. Then the real information is

applied in every convolutional layer of generator through

AdaIN in a more robust and straightforward way, which can

greatly promote the ability of generator.

3. Preliminary Works

3.1. LSGAN

Unlike the original GAN [13], LSGAN [31] adopts the

least square as loss functions. It punishes those samples that

are far from the decision boundary, which can perform a

more stable learning process. Since P2GAN uses the losses

of LSGAN as basis, we introduce its objective functions

first:

min
D

VLSGAN (D) =
1

2
E
x∼pdata(x)[(D(x)− b)2]+

1

2
E
x∼pg(x)[(D(x)− a)2]

min
G

VLSGAN (G) =
1

2
E
x∼pg(x)[(D(x)− c)2] , (1)

where pdata(x) is the distribution of real images, and pg(x)
is the distribution of generated images. a and b are the labels

for fake and real data respectively while c denotes the value

that G wants D to believe for fake data.

3.2. AdaIN

AdaIN [18] is proposed for style transfer, which can fuse

external style image information into normalization. Given

the i-th convolutional feature mi, AdaIN normalizes mi by

Instance Normalization (IN) [42], and then scales and bi-

ases it using the corresponding mean and variance supplied

by IN on the style feature si. The operation is defined as:

AdaIN(mi, si) = σIN (si)
mi − µIN (mi)

σIN (mi)
+ µIN (si) ,

(2)

In this work, we use the AdaIN layers to apply the real

information to generator. Similar explorations are con-

firmed to be useful in style transfer [22] and image syn-

thesis [20, 36, 7].

3.3. Reparameterization Trick

Reparameterization trick is used in VAE [23] for apply-

ing gradient descent in variational inference. Once we get

the factors of a multivariate Gaussian distribution, the sam-

ples of the distribution can be generated by reparameteriza-

tion trick. In detail, we first sample a random noise ǫ from a

standard Gaussian N (0, I), then the samples from the spe-

cific multivariate Gaussian distribution can be:

z = ǫ⊙ σ + µ , (3)

where µ and σ are the Gaussian factors.

4. The Proposed Method

We first define a distribution discrepancy, then describe

the discriminator and the generator. Finally we give the the-

oretical convergence analysis and show the training meth-

ods. The entire network architecture is shown in Figure 1.
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Figure 1: The network architecture. The discriminator takes images as input and outputs the factors µ, σ of a multivariate

Gaussian distribution. The generator produces images from random noise ǫ and posterior latent code z with the help of

posterior modules and AdaIN in training process. “×3” means that the same structure repeats three times.

Notation Explanation

x real or generated images

z posterior latent code

ǫ random noise

Pi the i-th posterior module

pdata(x) distribution of real images

pg(x) distribution of generated images

D(x) posterior distribution on z

Pa, Pb, Pc prior distribution on z

µIN , σIN mean and variance produced by IN

µBN , σBN mean and variance produced by BN

Table 1: Notations

4.1. Distribution Discrepancy

Hypothesis: Suppose a1 and a2 are sampled from two

different one-dimensional Gaussian distributions P1 =
N (µ1, σ

2
1) and P2 = N (µ2, σ

2
2) by reparameterization

trick: a1 = ǫσ1 + µ1, a2 = ǫσ2 + µ2. The least square

distance between a1 and a2 is:

Dis =
1

2
Ea1∼P1, a2∼P2

[(a1 − a2)
2] , (4)

Then for ∀ǫ ∼ N (0, 1), if Dis is approximately 0, we

can reach a conclusion that two Gaussian distributions P1

and P2 are basically equal. We define the discrepancy be-

tween two Gaussian distributions under the hypothesis as:

Dis =
1

2
(P1 − P2)

2 , (5)

Proof : Based on reparameterization trick, we can get:

a∆ = a1 − a2 = ǫ(σ1 − σ2) + (µ1 − µ2) (6)

For ∀ǫ ∼ N (0, 1), we have a∆ ∼ N (µ∆, σ
2
∆) and µ∆ =

µ1 − µ2, σ∆ = σ1 − σ2. Then the Dis can be rewritten as:

2Dis = E[a2∆]

= E[(a∆ − µ∆ + µ∆)
2]

= E[(a∆ − µ∆)
2] + 2E[(a∆ − µ∆)µ∆] + E[µ2

∆]

= σ2
∆ + 2µ∆(E[a∆]− µ∆) + µ2

∆

= σ2
∆ + µ2

∆ (7)

If 2Dis = σ2
∆ + µ2

∆ = (σ1 − σ2)
2 + (µ1 − µ2)

2 = 0,

there must be σ1 = σ2, µ1 = µ2, which means that two

Gaussian distributions P1 and P2 are equal. The proof also

holds for multivariate Gaussian distributions based on the

assumption that each dimension is mutually independent.

4.2. Posterior Distribution Discriminator

The discriminator outputs a posterior distribution on la-

tent code z instead of a probability scalar. Structurally, our
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discriminator has two fully-connected layers without acti-

vation functions for outputing two factors of a multivariate

Gaussian posterior, i.e., mean µ ∈ R
b×d and standard de-

viation σ ∈ R
b×d, where b is the batch size, and d is the

number of Gaussian dimension. Note that each dimension

is mutually independent by reparameterization trick [23].

Spectral Normalization (SN) [33] is applied in every layer

in discriminator for stabilizing training. Given a batch of

images x ∈ R
b×h×w×c, the discriminator outputs µ and σ

simultaneously, which represents the posterior distribution

over latent code z ∈ R
b×d. The posterior can be expressed

as D(x) = N (z;µ, σ2
I), where x can be sampled from real

image distribution pdata(x) or generated image distribution

pg(x). In order to construct the adversarial losses, we intro-

duce two priors Pa = N (µa, σ
2
aI) and Pb = N (µb, σ

2
b I)

of the latent code z, which are multivariate Gaussian distri-

butions given by users. The similar approach can be found

in VAE, where the prior is a standard Gaussian distribution.

Some main notations used in this paper are listed in Table 1.

In this work, we generalize the losses of LSGAN to a

distribution version by modifying the labels to the priors

representing two virtual ground-truth distributions. Using

the definition of distribution discrepancy in Section 4.1, the

loss of our discriminator can be described as below:

LD =
1

2
E
x∼pdata(x)[(D(x)− Pb)

2]+ (8)

1

2
E
x∼pg(x)[(D(x)− Pa)

2] ,

where the first term shortens the distance between the pos-

terior D(x) given real images and the virtual ground-truth

prior Pb of real images. The second term shortens the dis-

tance between the posterior given generated images and an-

other prior Pa.

By minimizing LD, the posterior given generated or real

images is drawn to match different priors, which can dis-

tinguish real and fake. Then the real information in dis-

criminator D(x), x ∼ pdata(x) will be used to promote the

generation process.

4.3. Posterior Promoted Generator

The generator inputs a random noise ǫ sampled from a

standard Gaussian along with a latent code z from the poste-

rior given real images and outputs the generated images. We

intend to reenforce the generator with AdaIN coordinating

with some posterior modules, which allows the posterior

D(x), x ∼ pdata(x) from discriminator to strengthen the

generation procedure. Meanwhile a latent code regularizer

will be introduced for preventing the real information from

vanishing during training.

We present the adversarial loss Ladv for generator at

first. It draws the posterior given generated images to prior

Pc = Pa+Pb

2 = N (µa+µb

2 , (σa+σb

2 )2I) for the purpose of

cheating the discriminator and engendering a rival relation-

ship between generator and discriminator:

Ladv =
1

2
E
x∼pg(x)[(D(x)− Pc)

2]. (9)

Now we describe how to use the posterior given real im-

ages and introduce the latent code regularizer. Traditionally

the generator receives a random noise ǫ ∈ R
b×n sampled

from a standard Gaussian for producing images, where n is

the dimension of the random noise. We depart from this de-

sign by involving a posterior latent code branch z ∼ D(x)
given x ∼ pdata(x), where the posterior is from discrimi-

nator. Then the posterior modules receive the latent code z

as input, together with AdaIN to embed the real information

contained in posterior in each layer of the generator. So we

denote pg(x) = G(ǫ, z).
The posterior modules are mutually independent fully-

connected layers without any activation functions as shown

in Figure 1. They are used for mapping z to the features

in different dimensions corresponding to different convolu-

tional channels. In addition to applying the real information

in every layer, posterior modules also provide a chance to

adjust the information according to the demand of different

convolutional layers:

s
p
i = Pi(z) , (10)

where z is sampled from D(x) given x ∼ pdata(x) and

Pi(z) is the i-th posterior module.

Our approach uses the posterior features s
p
i as the exter-

nal information in AdaIN and replaces IN with Batch Nor-

malization (BN) [19] for normalizing mi. The AdaIN lay-

ers used in our generator is as follows:

AdaIN(mi, s
p
i ) = σIN (spi )

mi − µBN (mi)

σBN (mi)
+ µIN (spi ).

(11)

We first normalize mi by BN, making it have zero mean

and unit variance, then bias and scale it with the mean and

the variance of s
p
i which have the real information. The

reason we change IN to BN for normalizing mi is that BN

shows a better performance in our experiments. And recent

research shows combining BN and IN improves the perfor-

mance in various scenarios [35]. By involving the poste-

rior latent code z and AdaIN to generator, we make a “style

transfer” on generated images with the real images as “style

reference”. As a result, AdaIN fuses the real information to

each layer by changing the statistics of the features.

In order to preserve the real information during training,

we propose a latent code regularizer Lz , which minimizes

the distance between the posterior given generated and real

images:

Lz = E
xg∼pg(x),xr∼pdata(x)[|D(xg)−D(xr)|] , (12)
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where the subscripts g and r are used for distinguishing

between images sampled from different distributions pg(x)
and pdata(x). | ∗ | means absolute value.

Intuitively, we use the latent code of posterior D(xr) to

generate xg , then the posterior D(xg) produced by the dis-

criminator should approach to the posterior D(xr) which

the latent code belongs to. In other words, we reconstruct

the latent code of posterior D(xr). What’s more, Lz can

provide the generator with more gradient information when

the quality of the generated images is poor at the early stage

of training, which avoids stopping updating generator be-

cause of a good discriminator.

The total loss of generator is composed of Ladv and Lz:

LG = Ladv + λLz , (13)

where λ is the weight to balance the two given parts.

4.4. Theoretical Analysis

In this section, we start to discuss the relation between

P2GAN and f-divergence. Given the fixed G , we can derive

the optimal discriminator based on LSGAN [31]:

D∗(x) =
Pbpdata(x) + Papg(x)

pdata(x) + pg(x)
, (14)

Note that when D is optimal, the latent code regularizer

Lz is zero. In order to analyze the optimal value for G , we

rewrite the loss LG as below:

C(G) =
1

2
E
x∼pdata(x)[(D(x)− Pc)

2]+

1

2
E
x∼pg(x)[(D(x)− Pc)

2] , (15)

where the first term does not have the parameters of G , so

the optimal value keeps the same.

We remove the x in distributions for simplicity in the

following equations. With the optimal D , the loss for G

can be reformulated as:

2C(G) =Ex∼pdata
[(D∗ − Pc)

2] + Ex∼pg
[(D∗ − Pc)

2]

=Ex∼pdata
[(
Pbpdata + Papg

pdata + pg
− Pc)

2]+

Ex∼pg
[(
Pbpdata + Papg

pdata + pg
− Pc)

2]

=

∫
[(Pb − Pc)pdata + (Pa − Pc)pg]

2

pdata + pg
dx

=

∫
[(Pb − Pa)pg − (Pb − Pc)(pdata + pg)]

2

pdata + pg
dx ,

(16)

where Pc =
Pa+Pb

2 = N (µa+µb

2 , (σa+σb

2 )2I), then we can

get:

2C(G) =

∫
(
Pb − Pa

2
)2
[2pg − (pdata + pg)]

2

pdata + pg
dx , (17)

where the term Pb−Pa

2 is with respect to the variable z, so

we can put it out of the integration of x. The term can be

regarded as a constant value. The equation can be:

2C(G) =
(Pb − Pa)

2

4

∫
[2pg − (pdata + pg)]

2

pdata + pg
dx

=
(Pb − Pa)

2

4
X 2

Pearson((pdata + pg)||2pg). (18)

If Pa 6= Pb, minimizing 2C(G) means minimizing

the Pearson X divergence between pdata(x) + pg(x) and

2pg(x). The optimal 2C(G) is achieved if and only if

pdata(x) + pg(x) = 2pg(x), so pdata(x) = pg(x) for any

valid x. And the optimal posterior from D is:

D∗(x) =
Pbpdata(x) + Papg(x)

pdata(x) + pg(x)
=

Pb + Pa

2
. (19)

In other words, we get:

D∗(x) = N (
µa + µb

2
, (
σa + σb

2
)2I). (20)

4.5. Training

We sample z from each posterior and prior by reparam-

eterization trick with the distribution factors, and employ z

to loss functions for training. By applying sampling train-

ing in limited times, we can finally achieve the convergence

stage, which can be confirmed in Section 5.5. Sampling

can also add more randomicity and prevent overfitting [46].

Each time we select nb samples, where nb is the batch size.

Pretraining step is utilized to initialize the parameters

of the model and help discriminator extract initial real infor-

mation in posterior D(x) given x ∼ pdata(x). Specifically,

we pretrain the whole model without the posterior modules

in generator but reserve the loss Lz . The reason is two-fold.

First, we do not have mature real information to strengthen

generator through the posterior modules in pretraining pe-

riod. Second, Lz can still help provide a better gradient for

generator without the posterior modules.

Factors µ and σ used in generator are important for

better performance in testing. In order to generate high-

quality images, we provide two methods for choosing the

posterior factors used in generator in testing period. One

method is to use the Exponential Moving Average (EMA)

with smooth factor 0.9 to generate images. The other

method is to use the factors of the theoretical convergence

distribution given by Equation 19. These two methods show

similar performance in experiments, so we just present the

results of using the theoretical convergence distribution.

5. Experiments

5.1. Datasets

CIFAR10 [24] consists of 60,000 images of 32× 32× 3
in 10 classes, with 6,000 images per class.
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Method

FID↓

CIFAR10
CelebA

64×64

BEGAN [5] 71.4 38.1

WGAN [3] 51.3±1.5 37.1±1.9

MD-GAN [11] 36.8 24.5

LSGAN [31] 27.6 51.7

SN-GAN [33] 21.7±0.2 21.7±1.5

WGAN-GP [15] 19.0±0.8 18.0±0.7

Liu et al. [28] 18.7±1.2 -

CTGAN [43] 17.6±0.7 15.8±0.6

SWGAN [45] 17.0±1.0 13.2±0.7

WGAN-GP-TRIP [25] 16.7 -

COCO-GAN [27] - 4.0

P2GAN 15.5 3.9

Table 2: FID for CIFAR10 and CelebA.

Method FID↓

RealnessGAN (Ob1) 36.7

RealnessGAN (Ob2) 34.6

RealnessGAN (Ob3) 36.2

P2GAN 29.7

Table 3: Comparison with RealnessGAN for CIFAR10.

Method

FID↓

CelebA

32×32

CelebA

64×64

StyleGAN 15.9 13.9

P2GAN 15.3 13.4

Table 4: Comparison with StyleGAN for CelebA.

CelebA [29] consists of 202,599 celebrity images with

large variations in 40 facial attributes. We crop the images

and retain the main regions of faces in 64×64×3 resolution.

We utilize all the images in each dataset for training, and

the model is optimized in a totally unsupervised way.

5.2. Implementation Details

We train models using Adam with β1 = 0.0, β2 =
0.999, batch size b = 32, weight λ = 10.0 and chan-

nel size c = 64. The latent code size d is 5 and noise

size n is 64 for CIFAR10. For CelebA, d is 20 and n is

128. The learning rate is 0.0002 with a delay rate 0.9 for

every 50 epochs for CIFAR10 and CelebA. We set Pa =
N (−4.0, 1.02I) and Pb = N (4.0, 3.02I) for CIFAR10,

while Pa = N (−5.0, 1.02I) and Pb = N (5.0, 3.02I) for

CelebA. The pretraining epochs for CIFAR10 and CelebA

are 10 and 2 respectively. In our ablation studies, the num-

ber of training epochs is 20 as our goal is not to get the best

Figure 2: Generated images for CIFAR10 in an unsuper-

vised way.

Figure 3: Generated images for CelebA in an unsupervised

way.

results but to check the effectiveness of each method.

5.3. Quality Analysis

Frechet Inception Distance (FID) [17] is used to eval-

uate the sample quality for both datasets. FID computes the

Wasserstein-2 distance between the generated images and

the real images, which is a more principled and comprehen-

sive metric. Lower FID indicates better image quality. In

all experiments, 50,000 images are randomly sampled for

computing FID. We report the best results for quality anal-

ysis. The implementation of FID in this work is based on

the original code provided at https://github.com/

bioinf-jku/TTUR.

A ResNet [16] structure is applied to get a better score

for comparing with several state-of-the-art baselines. Un-

less illustrating particularly, we use this ResNet struc-

ture to train our model. Figure 1 shows the structure of

this network. We present the FID for CIFAR10 and CelebA

in Table 2, where P2GAN is the best among all the base-

lines. The samples of generated images are provided in
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Method

FID↓

CIFAR10
CelebA

64×64

P2GAN (w/o P, Z, M, L) 45.6 15.2

P2GAN (w/o P, Z, M) 41.9 12.5

P2GAN (w/o P, Z) 38.0 11.7

P2GAN (w/o P) 35.8 10.5

P2GAN 31.1 9.4

Table 5: Ablation results on FID with different settings.

Figure 4: Generated images by different models.

(a) CIFAR10 (b) CelebA

Figure 5: FID on different ablation settings.

Figure 2 and 3. For qualitative comparison, we show the

visual results in Figure 4.

A basic DCGAN [37] structure is utilized for showing

the advantage of P2GAN compared with the most recent

baseline RealnessGAN. We apply the same DCGAN net-

work settings to our model as RealnessGAN for fairness.

The results are listed in Table 3.

A StyleGAN [21] structure is adjusted to fit the loss of

P2GAN and use “real information” to strengthen generator.

Due to the limited computing resources, we only conduct

experiments on CelebA under 32 and 64 resolutions. The

results in Table 4 show that P2GAN improves upon Style-

GAN. Note that we shorten the training time and set “to-

tal kimg=7k” in StyleGAN and P2GAN, just for showing

the effectiveness of P2GAN, not for getting the best scores.

5.4. Ablation Analysis

Several ablation experiments about the pretraining step

(P), the posterior latent code (Z), the posterior modules (M)

and the latent code regularizer (L) are carried out. Table 5

shows the results of four ablation settings of our model. We

first train the model without all the parts, which gives the

worst performance (w/o P, Z, M, L). Then we add the latent

Pa Pb

FID↓

CIFAR10
CelebA

64× 64

N (0.1, 0.52I) N (0.3, 0.72I) 35.0 11.2

N (−5.0, 2.02I) N (1.0, 1.02I) 32.3 9.7

N (−5.0, 1.02I) N (5.0, 3.02I) 31.5 9.4

N (−20.0, 1.02I) N (20.0, 3.02I) 67.5 37.6

Table 6: Ablation results for different priors.

Method

FID↓

CIFAR10
CelebA

64×64

P2GAN (IN) 34.8 12.2

P2GAN (EMA) 31.4 9.8

P2GAN 31.1 9.4

Table 7: Ablation results for IN and EMA.

code regularizer Lz for providing more gradient informa-

tion (w/o P, Z, M). Next the posterior modules are brought

into training, but we replace the posterior latent code z with

a random noise from N (0, I) for reflecting the validity of

real information better (w/o P, Z). Then we use z as input

to the posterior modules (w/o P). Finally we add the pre-

training step to train P2GAN completely, which provides

the best score. Figure 5 shows the FID of different ablation

settings in different epochs.

Multiple settings for priors Pa and Pb are used to check

the influence of the priors. We give the results of four

groups of prior settings in Table 6, and the distribution dis-

crepancy of the two priors increases in turn. It can be ob-

served that the more dissimilar the priors, the better the re-

sults, which is similar to RealnessGAN [46]. But the results

may be bad if the dissimilarity is beyond the network capac-

ity.

Using EMA for applying factors in testing time shows

a similar performance compared with the theoretical con-

vergence distribution. Using IN to normalize mi in

AdaIN presents an unsatisfactory FID score compared with

using BN. The results are shown in Table 7.

5.5. Convergence Analysis

The theoretical convergence analysis mentioned in

Section 4.4 can be validated by checking a global measure

of convergence:

Mc =
1

2
E
x∼pdata(x)[(D(x)−D∗(x))2]+ (21)

1

2
E
x∼pg(x)[(D(x)−D∗(x))2] ,
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Figure 6: The global measure of convergence. We show the value of Mc and FID during the whole training for CelebA. The

baby blue curve is the original Mc, while the deep blue is the curve achieved by exponential moving average. The images are

generated by the same input, indicating that the image quality of the samples improves stably along with the training process.

(a) CIFAR10 (b) CelebA

Figure 7: Mc on different ablation settings.

where D∗(x) =
Pb + Pa

2
given by Equation 19. We

show the values of Mc during training in Figure 6 and

Mc with different ablation settings in Figure 7. The com-

plete training method provides the most smooth curve and

keeps decreasing, which validates the convergence analysis

of P2GAN.

5.6. Interpolation Analysis

Image interpolation is conducted to estimate the man-

ifold continuity. We sample two random noises ǫa, ǫb and

two posterior latent codes za, zb, then they are interpolated

to get several noises {ǫi}
l
i=1 and codes {zi}

l
i=1 used for

generating and the images are shown in Figure 8. The inter-

polation images are natural and high-caliber without otiose

texture, which implies that our model has learned disentan-

gling features. The experiments verify that P2GAN gen-

erates images through the learned features instead of just

memorizing the datasets.

Figure 8: Interpolation of generated images.

6. Conclusion

We propose a novel GAN variant called P2GAN, which

modifies the discriminator to produce rich real information

by mapping images to a multivariate Gaussian distribution,

and enhances the generator through AdaIN and the real in-

formation. We modify the losses of LSGAN to a distribu-

tion version and prove the convergence theoretically. The

convergence analysis in experiments indicates the validity

of our training methods, while the interpolation results in-

dicate that we have learned a robust and sufficient latent

manifold structure. The proposed P2GAN has achieved

comparable results with the state-of-the-art models on high-

dimensional multi-modal datasets.
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