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Abstract

Few-shot learning is a challenging task, which aims to

learn a classifier for novel classes with few examples. Pre-

training based meta-learning methods effectively tackle the

problem by pre-training a feature extractor and then fine-

tuning it through the nearest centroid based meta-learning.

However, results show that the fine-tuning step makes very

marginal improvements. In this paper, 1) we figure out

the key reason, i.e., in the pre-trained feature space, the

base classes already form compact clusters while novel

classes spread as groups with large variances, which im-

plies that fine-tuning the feature extractor is less meaning-

ful; 2) instead of fine-tuning the feature extractor, we focus

on estimating more representative prototypes during meta-

learning. Consequently, we propose a novel prototype com-

pletion based meta-learning framework. This framework

first introduces primitive knowledge (i.e., class-level part or

attribute annotations) and extracts representative attribute

features as priors. Then, we design a prototype completion

network to learn to complete prototypes with these priors.

To avoid the prototype completion error caused by primitive

knowledge noises or class differences, we further develop

a Gaussian based prototype fusion strategy that combines

the mean-based and completed prototypes by exploiting the

unlabeled samples. Extensive experiments show that our

method: (i) can obtain more accurate prototypes; (ii) out-

performs state-of-the-art techniques by 2% ∼ 9% in terms

of classification accuracy. Our code is available online 1.

1. Introduction

Humans can adapt to a novel task from only a few ob-

servations, because our brains have the excellent capability

of learning to learn. In contrast, modern artificial intelli-

gence (AI) systems generally require a large amount of an-

notated samples to make the adaptations. However, prepar-
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1https://github.com/zhangbq-research/Prototype_
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(a) Base Classes (σ2
= 0.086)

Complete Incomplete 

(b) Novel Classes (σ2
= 0.099)

Figure 1. The distribution of base and novel class samples in the

pre-trained feature space. “σ2” denotes the averaged variance.

ing sufficient annotated samples is often laborious, expen-

sive, or even unrealistic in some applications, for example,

cold-start recommendation [25] and drug discovery [1]. To

equip the AI systems with such human-like ability, few-shot

learning (FSL) becomes an important and widely studied

problem. Different from conventional machine learning,

FSL aims to learn a classifier from a set of base classes

with abundant labeled samples, then adapt to a set of novel

classes with few labeled data [28].

Existing studies on FSL roughly fall into four categories,

namely the metric-based methods [4], optimization-based

methods [8], graph-based methods [21], and semantics-

based methods [29]. Though their methodologies are to-

tally different, almost all methods address the FSL prob-

lem by a two-phase meta-learning framework, i.e., meta-

training and meta-test phases. Recently, Chen et al. [6] find

that introducing an extra pre-training phase can significantly

boost the performance. In this method, a feature extractor

first is pre-trained by learning a classifier on the entire base

classes. Then, the metric-based meta-learning is adopted to

fine-tune it. In the meta-test phase, the mean-based proto-

types are constructed to classify novel classes via a nearest

neighbor classifier with cosine distance.

Though the pre-training based meta-learning method

achieves promising improvements, Chen et al. find that the

fine-tuning step indeed makes very marginal contributions

[6]. However, the reason is not revealed in [6]. To figure out
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the reason, we visualize the distribution of base and novel

class samples of the miniImagenet in the pre-trained feature

space in Figure 1. We find that the base class samples form

compact clusters while the novel class samples spread as

groups with large variances. It means that 1) fine-tuning the

feature extractor to gather the base class samples into more

compact clusters is less meaningful, because this enlarges

the probability to overfit the base tasks; 2) the given few

labeled samples may be far away from its ground-truth cen-

ters in the case of large variances for novel classes, which

poses a great challenge for estimating representative proto-

types. Hence, in this paper, instead of fine-tuning the fea-

ture extractor, we focus on how to estimate representative

prototypes from the few labeled samples, especially when

these samples are far away from its ground-truth centers.

Recently, Xue et al. [30] also attempt to address a similar

problem by learning a mapping function from noisy sam-

ples to their ground-truth centers. However, learning to re-

cover representative prototypes from noisy samples without

any priors is very difficult. Moreover, the method does not

leverage the pre-training strategy. Thus, the performance

improvement of the method is limited. In this paper, we

find that the samples deviated from its ground-truth cen-

ters are often incomplete, i.e., missing some representative

attribute features. As shown in Figure 1(b), the meerkat

sample nearby the class center contains all the representa-

tive features, e.g., the head, body, legs and tail, while the

ones far away may miss some representative features. This

means that the prototypes estimated by the samples deviated

from its centers may be incomplete.

Based on this fact, we propose a novel prototype com-

pletion based meta-learning framework. Our framework

works in a pre-training manner and introduces some prim-

itive knowledge, e.g., whether a class object should have

ears, legs or eyes, as priors to achieve the prototype com-

pletion. Specifically, we first extract the visual features for

each part/attribute, by aggregating the pre-trained feature

representations of all the base class samples that have the

corresponding attribute in our primitive knowledge. Sec-

ond, we mimic the setting of few-shot classification task and

construct a set of prototype completion tasks. A Prototype

Completion Network (ProtoComNet) is then designed to

learn to complete representative prototypes with the prim-

itive knowledge and visual attribute features. To avoid the

prototype completion error caused by primitive knowledge

noises or base-novel class differences, we further design a

Gaussian-based prototype fusion strategy, which effectively

combines the mean-based and completed prototypes by ex-

ploiting the unlabeled data. Finally, the few-shot classifica-

tion is achieved via a nearest neighbor classifier. Our main

contributions of this paper can be summarized as follows:

• We reveal the reason why the feature extractor fine-

tuning step contributes marginally to the pre-training

based meta-learning methods, and point out that repre-

sentative prototype estimation is a more critical issue.

• We propose a novel prototype completion based meta-

learning framework, which can effectively learn to re-

cover representative prototypes by leveraging primi-

tive knowledge and unlabeled data.

• We have conducted comprehensive experiments on

three real-world data sets. The experimental results

demonstrate that the proposed method outperforms the

state-of-the-art techniques by 2% ∼ 9% in terms of

classification accuracy.

2. Related Work

2.1. Few­Shot Learning

Meta-learning is an effective manner to solve the FSL

problem. Existing approaches are mainly grouped into four

categories. 1) Metric-based approaches. The type of

methods aim to learn a good metric space, where novel class

samples can be nicely categorized via a nearest neighbor

classifier with Euclidean [23] or cosine distance [5]. For ex-

ample, Zhang et al. [32] attempted to learn the metric space

by distribution based classification rules instead of point es-

timation. 2) Optimization-based approaches. The meth-

ods follow the idea of modeling an optimization process

over few labeled samples under the meta-learning frame-

work, aiming to adapt to novel tasks by a few optimiza-

tion steps, such as [8, 11]. 3) Graph-based approaches.

The methods learn how to construct a good graph struc-

ture and propagate the labels from base classes and then

apply the meta-knowledge on novel classes [16, 20, 21]. 4)

Semantics-based approaches. This line of methods em-

ploy the textual semantic knowledge to enhance the perfor-

mance of meta-learning on FSL problems [7, 12]. For ex-

ample, in [17, 22, 29], they explored the class correlations,

respectively, from the perspectives of the class name, de-

scription, and knowledge graph as textual semantic knowl-

edge, aiming to enhance the FSL classifier by the con-

vex combination of visual and semantic modalities. Dif-

ferent from these works, we introduce fine-grained visual

attributes to enable a meta-learner to learn to complete pro-

totypes, instead of to combine two modalities.

Recently, some studies turn to pre-training techniques

for the FSL problem and achieve promising performance.

Chen et al. [5] first proposed and investigated the pre-

training techniques in FSL, by considering linear-based

and cosine distance-based classifiers, respectively. Liu et

al. [15] developed a label propagation and feature shifting

strategy to diminish the intra-class and cross-class bias of

prototypes in the pre-trained feature space. In [6], a novel

metric-based meta-learning method was developed by in-

corporating a pre-training phrase. These methods, albeit
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Figure 2. The prototype completion based meta-learning framework.

delivering promising performance, do not fully explore the

power of pre-training, as results show that the major im-

provements are made by the pre-training, while the meta-

learning phase contributes very marginally. According to

our analysis, this is because novel classes group loosely in

the pre-trained feature space. In such case, estimating a

more accurate prototype is more important than fine-tuning

the projection spaces. Hence, in this paper, we propose a

prototype completion framework to address the issue.

2.2. Zero­Shot Learning

Zero-shot learning (ZSL) is also closely related to FSL,

which aims to address the novel class categorizations with-

out any labeled samples. The key idea is to learn a mapping

function between the semantic and visual space on the base

classes, then apply the mapping to categorize novel classes.

The semantic spaces in ZSL are typically attribute-based

[27], text description-based [19], and word vector-based [9].

For example, in [27], the semantic attributes were employed

and a structure constraint on visual centers was incorpo-

rated for the mapping function learning. Our method dif-

fers from those models in two key points: (i) our method is

for the FSL problem, where few labeled samples should be

effectively utilized; (ii) relying on semantic attributes, we

propose a novel prototype completion based meta-learning

framework, instead of directly learning the map function.

2.3. Visual Attributes

Visual attributes refer to the visual feature of object

components [2], which have been successfully utilized in

various domains, such as action recognition [31], zero-

shot learning [27], person Re-ID [14], and image caption

[3]. Recently, several FSL techniques relying on visual at-

tributes have been proposed. In [24], an attribute decou-

pling regularizer was developed based on visual attributes

to obtain good representations for images. Hu et al. [10]

proposed a compositional feature aggregation module to ex-

plore both spatial and semantic visual attributes for FSL.

Zou et al. [33] explored compositional few-shot recognition

by learning a feature representation composed of important

visual attributes. All the methods utilize visual attributes

for better representations. Different from these studies, we

leverage them to learn a prototype completion strategy. As

a result, more accurate prototypes can be obtained for FSL.

3. Methodology

3.1. Problem Definition

For N -way K-shot problems, we are given two set: a

training set S = {(xi, yi)}N×K
i=0 with a few of labeled sam-

ples (called the support set) and a test set Q = {(xi, yi)}Mi=0

consisting of unlabeled samples (called the query set). Here

xi denotes the image sampled from the set of novel classes

Cnovel, yi ∈ Cnovel is the label of xi, N indicates the num-

ber of classes in S , K denotes the number of images of

each class in S , and M denotes the number of images in Q.

Meanwhile, we also have an auxiliary data set with abun-

dant labeled images Dbase = {(xi, yi)}Bi=0, where B is the

number of images in Dbase, the image xi is sampled from

the set of base classes Cbase, and the sets of class Cbase and

Cnovel are disjoint, i.e. yi ∈ Cbase and Cbase ∩ Cnovel = ∅.

Our goal is to learn a good classifier for the query set Q on

the support set S and the auxiliary dataset Dbase.

3.2. Overall Framework

As shown in Figure 2, the proposed framework consists

of four phases, including pre-training, learning to complete

prototypes, meta-training and meta-test.

Pre-Training. In the phase, we build and train a convolu-

tion neural network (CNN) classifier with the base classes

samples. Then, the last softmax layer is removed and the

classifier turns into a feature extractor fθf () with parame-

ters θf . This offers a good embedding representation.

Learning to Complete Prototypes. We propose a Pro-

totype Completion Network (ProtoComNet) as a meta-

learner. It accounts for complementing the missing at-
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tributes for incomplete prototypes. The main details of the

ProtoComNet will be elaborated in Section 3.3. Here we

first give an overview of its workflow depicted in Figure 2,

which includes three steps:

Step 1. We construct primitive knowledge for all the

classes. The knowledge is what kinds of attribute feature

the class should have, e.g., the kangaroo has long face and

white belly, and zebra has long face and four feet. We note

that such kinds of knowledge is very cheap to obtain, e.g.,

from WordNet. Let A = {ai}Fi=0 denotes the set of class

parts/attributes where F is the number of attributes, and R

denotes the association matrix between the attributes and

the classes, where Rkai
= 1 if the attribute ai is associ-

ated with the class k; otherwise Rkai
= 0. Meanwhile, the

semantic embeddings of all classes and attributes are calcu-

lated by Glove [18] in an average manner of word embed-

dings, denoted by H = {hk}|Cbase|+|Cnovel|−1
k=0 ∪ {hai

}Fi=0.

Step 2. Based on the pre-trained feature extractor fθf ()
and primitive knowledge, we extract two types of informa-

tion, namely base class prototypes and part/attribute fea-

tures. Specifically, the base class prototypes prealk can be

calculated by averaging the extracted features of all sam-

ples in the base class k, that is,

prealk =
1

|Dk
base|

∑

(x,y)∈Dk
base

fθf (x), (1)

where Dk
base denotes the set of samples from the base class

k. As for the feature zai
of part/attribute ai, our intuition is

that it can be transfered from base classes to novel classes.

For example, even if human haven’t seen “zebra”, they can

also imagine its visual features of “long face” once they

learn “long face” from “kangaroo” and “horse”. To ob-

tain the part/attribute feature zai
, we denote all base class

samples that have the corresponding part/attribute ai in the

primitive knowledge as a set Dai

base. Then, we calculate its

mean µai
and diagonal covariance diag(σ2

ai
) as:

µai
=

1

|Dai

base|
∑

(x,y)∈D
ai
base

fθ(x), (2)

σai
=

√

√

√

√

1

|Dai

base|
∑

(x,y)∈D
ai
base

(fθ(x) − µai
)2. (3)

Here, the mean uai
and the diagonal covariance diag(σ2

ai
)

characterize the part/attribute feature distribution of at-

tribute ai, i.e., zai
∼ N(µai

, diag(σ2
ai
)), which will be

used in Section 3.3.

Step 3. Upon the results of the previous steps, we mimic

the setting of K-shot tasks and construct a set of prototype

completion tasks to train our meta-learner fθc() (i.e., Proto-

ComNet) in an episodic manner [26]. Specifically, in each

episode, we randomly select one class k from base classes

Cbase and K images for the class k from Dbase as sup-

port set S. Then, we average the features of all samples

in S as the incomplete prototypes pk. Here, we consider it

as incomplete because some representative features may be

missing. Even though in some cases this may not be true,

regarding them as incomplete ones does no harms to our

meta-learner. Finally, we take the incomplete prototypes

pk, the primitive knowledge (the class-attribute association

matrix R and word embeddings H), and the parts/attribute

feature Z = {zai
}Fi=0 as inputs, and treat the base class pro-

totypes prealk as targets, to train our meta-learner by using

the Mean-Square Error (MSE) loss. That is,

min
θc

E(pk, p
real
k

)∈T
MSE(fθc(pk, R,H,Z), prealk ), (4)

where θc denotes the parameters of our meta-learner and T

denotes the set of prototype completion tasks.

Meta-Training. To jointly fine-tune the feature extractor

fθf () and the meta-learner fθc(), we construct a number

of N -way K-shot tasks from Dbase following the episodic

training manner [26]. Specifically, in each episode, we sam-

ple N classes from the base classes Cbase, K images in each

class as the support set S , and M images as the query set

Q. Then, fθf () and fθc() can be further fine-tuned by max-

imizing the likelihood estimation on query set Q. That is,

max
θ

E(S,Q)∈T′

∑

(x,y)∈Q

log(P (y|x,S, R,H,Z, θ)),
(5)

where θ = {θf , θc} and T
′ denotes the set of N -way K-

shot tasks. Specifically, for each episode, we first estimate

its class prototype pk by averaging the features of the la-

beled samples. That is,

pk =
1

|Sk|
∑

x∈Sk

fθf (x), (6)

where Sk is the support set extracted for the class k. Then,

the ProtoComNet is applied to complete pk, and we have:

p̂k = fθc(pk, R,H,Z). (7)

Moreover, to obtain more reliable prototypes, we further ex-

plore unlabeled samples and combine pk and p̂k by intro-

ducing a Gaussian-based prototype fusion strategy (which

will be introduced in Section 3.4). As a result, the fused

prototype p̂′k is obtained. Finally, the probability of each

sample x ∈ Q to be class k is estimated based on the prox-

imity between its feature fθf (x) and p̂′k. That is,

P (y = k|x,S, R,H,Z, θ) =
e
d(fθf (x), p̂′

k) · γ

∑

c e
d(fθf (x), p̂′

c) · γ
, (8)

where d() denotes the cosine similarity of two vectors and

γ is a learnable scale parameter.

Meta-Test. Following Eqs. (6) ∼ (8), we directly perform

few-shot classification for novel classes.
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Figure 3. Illustration of the encoder-aggregator-decoder networks.

3.3. Prototypes Completion Network

In this subsection, we introduce how the ProtoCom-

Net fθc() is designed. Our notion is treating the primitive

knowledge (R and H), part/attribute features Z and the in-

complete prototype pk as inputs and the completed proto-

type p̂k as output, and then building an encoder-aggregator-

decoder network, as shown in Figure 3. The encoder aims to

form a low-dimensional representation of estimated proto-

types and part/attributes. Then, the aggregator accounts for

evaluating the importance of different parts/attributes and

combining them with a weighted sum. Finally, the decoder

is in charge of the prediction of complete prototypes p̂k.

Next, we detail the three components, respectively.

The Encoder. In the training part, the encoding process in-

volves a sampling of a class attribute feature zai
from its

feature distribution N(µai
, diag(σ2

ai
)), followed by an en-

coder gθe() that encodes the attribute feature zai
and the

estimated prototypes pk to a latent code z′ai
and z′k, respec-

tively. The overall encoding process is defined in Eq. (9):

zai
∼ N(µai

, diag(σ2
ai
)), z′ai

= gθe(zai
),

zk = pk, z
′
k = gθe(zk),

(9)

where θe denotes the parameters of the encoder. Note that

we use the mean µai
to replace zai

in the meta-test phase.
The Aggregator. Intuitively, different parts/attributes make
varying contributions to distinct classes, for example, the
“nose” is more representive for elephants than tigers to
complete their prototypes. Hence, differentiating their con-
tributions in the completion is important. To this end, we
employ an attention-based aggregator gθa(). Here, we cal-
culate the attention weights αkai

by using the semantic em-
beddings hk and hai

of the class k and the attribute ai, and
the incomplete prototype pk. Then, we apply them to com-
bine the latent codes z′k and z′ai

, and obtain the aggregated
result gk as follows:

αkai
= Rkai

gθa(pk||hk||hai), gk =
∑

ai

αkai
z
′
ai

+ z
′
k, (10)

where θa is the parameters of the aggregator and || is a con-

catenation operation.
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Figure 4. Test accuracy of pk and p̂k on 5-way K-shot tasks of

miniImagenet (a) and Illustration of prototype fusion strategy (b).

The Decoder. Finally, we use the aggregated result gk to

decode the complete prototypes p̂k for each class k by the

decoder module gθd(). That is, p̂k = gθd(gk), where θd
denotes the parameters of the decoder.

3.4. Prototype Fusion Strategy

Till now, we have two prototype estimations, i.e., the

mean-based prototype pk and the completed prototype p̂k.

Next, we will discuss why and how to fuse these two esti-

mations from the perspective of Bayesian estimation.

Why do we fuse prototypes? Actually, both the estimates

pk and p̂k have their own biases. The former is mainly

due to the scarcity or incompleteness of labeled samples

in novel classes, which produces biased means; while the

latter is brought by the primitive knowledge noises and the

base-novel class differences. The fact implies that the two

estimates can remedy each other. When the labeled samples

are very scarce and incomplete, the completed prototype p̂k
is more reliable because the completion is learned from a

great number of base class tasks. As more and more la-

beled samples become available, the mean-based prototype

is more representative because the ProtoComNet may result

in prototype completion error problem under the effects of

primitive knowledge noises or class differences. Figure 4(a)

shows an example to demonstrate this. We observe that the

completed prototypes are more accurate on 1/2-shot tasks

while the mean-based ones are better on 3/4/5-shot tasks.

Thus, a prototype fusion strategy is desired to combine their

advantages and form more representative prototypes.

How to fuse prototypes? We apply the Bayesian esti-

mation to fuse the two kinds of prototypes. Specifically,

we assume that the estimated prototypes follow the Mul-

tivariate Gaussian Distribution (MGD), as the samples in

the pre-trained space are continuous and clustered together

(shown in Figure 1). Based on this assumption, pk can be

regarded as a sample from the MGD with mean µk and di-

agonal covariance diag(σ2
k), i.e., N(µk, diag(σ

2
k)). Like-

wise, p̂k is a sample from N(µ̂k, diag(σ̂
2
k)) with mean µ̂k

and diagonal covariance diag(σ̂2
k). As shown in Figure

4(b), from the view of Bayesian estimation, we regard the

distribution N(µ̂k, diag(σ̂
2
k)) as a prior, and treat the dis-

tribution N(µk, diag(σ
2
k)) as the conditional likelihood of

observed few labeled samples. Then, the Beyesian esti-

mation of fused prototype can be expressed as their prod-
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uct, i.e., a posterior MGD N(µ̂′
k, diag(σ

′
k
2
)) with mean

µ̂′
k =

σ2

k⊙µ̂k+σ̂2

k⊙µk

σ̂2

k
+σ2

k

and diagonal covariance diag(σ′
k
2
) =

diag(
σ2

k⊙σ̂2

k

σ̂2

k
+σ2

k

), where ⊙ is element-wise product (Please re-

fer to the supplementary materials for its derivations). Fi-

nally, we take the mean µ′
k as the fused prototype p̂′k to

solve the few-shot tasks. We can see that µ̂′
k is determined

by four unknown variables µk, σk, µ′
k, and σ′

k. Next, we

disscuss how to estimate them.

Inspired by transductive FSL [15], we propose to esti-

mate the four variables by leveraging the unlabeled samples.

First, we calculate the probability of each sample x ∈ S∪Q
belonging to class k by regarding pk and p̂k as the proto-

type, respectively. For example, when we take pk as the

prototype, the probability of each unlabeled sample x ∈ Q
can be computed as:

P (y = k|x) = e
d(fθf (x), pk) · λ

∑

c e
d(fθf (x), pc) · λ

, (11)

where d() indicates the cosine similarity of two vectors and
λ is a hyper-parameter. Following [5], λ = 10 is used. As
for each labeled sample x ∈ S , the probability turns into a

one-hot vector by its labels. P̂ (y = k|x) can be computed
in a similar manner by using prototypes p̂k. Second, we
take P (y = k|x) as sample weights and estimate the mean
µk and the diagonal covariance diag(σ2

k) of each prototype
distribution in a weighted average manner. That is,

µk =
1

∑

x∈S∪Q

P (k|x)

∑

x∈S∪Q

P (k|x)fθf (x), (12)

σk =

√

√

√

√

1
∑

x∈S∪Q

P (k|x)

∑

x∈S∪Q

P (k|x)(fθf (x)− µk)2. (13)

Then, the mean µ̂k and the diagonal covariance diag(σ̂2
k)

can be calculated in a similar manner by regarding P̂ (y =
k|x) as sample weights. In this paper, we term the over-

all Bayesian estimation procedure as Gaussian-based proto-

type fusion strategy (GaussFusion).

4. Performance Evaluation

4.1. Datasets and Settings

miniImagenet. The data set is a subset of ImageNet, which

includes 100 classes and each class consists of 600 images.

Following [30], we split the data set into 64 classes for train-

ing, 16 classes for validation, and 20 classes for test, respec-

tively. The class parts/attributes are extracted from Word-

Net by using the relation of “part holonyms()”. Note that

we remove unseen parts/attributes of novel classes.

tieredImagenet. The data set is another subset of Ima-

geNet, which includes 608 classes and each class contains

about 1200 images. It is first partitioned into 34 high-level

classes, and then split into 20 classes for training, 6 classes

for validation, and 8 classes for test, respectively. Similarly,

the class parts/attributes are also extracted from WordNet.

CUB-200-2011. The data set is a fine-grained classifica-

tion data set, which includes 200 classes and contains about

11,788 images. Following [33], we split the data set into

100 classes for training, 50 classes for validation, and 50

classes for test, respectively. The class parts/attributes are

obtained by manual annotations.

4.2. Implementation Details

Architecture. We conduct the experiments using ResNet12

as feature extractor. In ProtoComNet, we use a single-layer

perception with 256 units for the encoder, a two-layer MLP

with a 300-dimensional hidden layer for the aggregator, and

a two-layer MLP with 512-dimensional hidden layers for

the decoder. Here, ReLU is used as activation function.

Training Details. We pre-train the feature extractor with

100 epochs on base classes via an SGD with momentum of

0.9 and weight decay of 0.0005. Then, we train the Proto-

ComNet with 100 epochs in an episodic manner. Finally,

we fine-tune all modules with 40 epochs.

Evaluation. We conduct few-shot classification on 600 ran-

domly sampled episodes from the test set and report the

mean accuracy together with the 95% confidence interval.

In each episode, we randomly sample 15 query images per

class for evaluation in 5-way 1-shot/5-shot tasks.

4.3. Discussion of Results

For a comparison, some state-of-the-art approaches are

also applied to the few-shot classification and few-shot fine-

grained classification tasks as baselines. These methods

are roughly from four types, i.e., metric-based, semantics-

based, attribute-based, and pre-training based approaches.

In few-shot classification. Table 1 shows the results of

our method and the baseline methods on miniImagenet and

tieredImagenet. It can be found that our method outper-

forms the state-of-the-art methods, by around 2% ∼ 9%.

Compared with the metric-based approaches, our method

better exploits the power of pre-training by learning to com-

plete prototypes. The results show our method is more ef-

fective, with an improvement of 4% ∼ 16%. It worth not-

ing that our method also beats RestoreNet and SRestoreNet,

which also adopt the strategy of prototype learning. This

demonstrates our designed prototype completion is more

effective. As for the semantics and attribute-based ap-

proaches, they also leverage the external knowledge. How-

ever, our method utilizes the knowledge to learn to com-

plete prototypes, instead of to combine modality or to learn

the feature extractor. The result validates the superiority of

our manner to incorporate the external knowledge. Note

that our method achieves competitive performance with the

MultiSem method on 5-shot tasks on miniImagenet. We
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Table 1. Performance on miniImagenet and tieredImagenet. The best results are shown in bold. Transductive methods are marked with *.

Method Type Backbone
miniImagenet tieredImagenet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

CTM [13] Metric ResNet18 62.05 ± 0.55% 78.63 ± 0.06% 64.78 ± 0.11% 81.05 ± 0.52%

VFSL [32] Metric ResNet12 61.21± 0.26% 77.69± 0.17% −±−% −±−%
RestoreNet [30] Metric ResNet18 59.28± 0.20% −±−% −±−% −±−%
SRestoreNet∗ [30] Metric ResNet18 61.14± 0.22% −±−% −±−% −±−%
TriNet [7] Semantics ResNet18 58.12± 1.37% 76.92± 0.69% −±−% −±−%
AM3-PNet [29] Semantics ResNet12 65.21± 0.30% 75.20± 0.27% 67.23± 0.34% 78.95± 0.22%
AM3-TRAML [12] Semantics ResNet12 67.10 ± 0.52 % 79.54 ± 0.60% −±−% −±−%
MultiSem [22] Semantics Dense-121 67.3% 82.1% −±−% −±−%
FSLKT [17] Semantics ConvNet128 64.42± 0.72% 74.16± 0.56% −±−% −±−%
CPDE [33] Attribute ResNet12 63.21 ± 0.78% 79.68 ± 0.82% −±−% −±−%
CFA [10] Attribute ResNet18 58.50± 0.80% 76.60± 0.60% −±−% −±−%
BD-CSPN∗ [15] Pre-training ResNet12 65.94% 79.23% 76.17% 85.70%
MetaBaseline [6] Pre-training ResNet12 63.17± 0.23% 79.26 ± 0.17% 68.62± 0.27% 83.29± 0.18%
Our Method∗ Pre-training ResNet12 73.13 ± 0.85% 82.06 ± 0.54% 81.04 ± 0.89% 87.42 ± 0.57%

Table 2. Performance on CUB-200-2011. The best results are

shown in bold. Transductive methods are marked with *.

Method
CUB-200-2011

5-way 1-shot 5-way 5-shot

RestoreNet [30] 74.32± 0.91% −±−%
SRestoreNet∗ [30] 76.85± 0.95% −±−%
TriNet [7] 69.61± 0.46% 84.10± 0.35%
MultiSem [22] 76.1% 82.9%
CPDE [33] 80.11 ± 0.34 % 89.28 ± 0.33%
CFA [10] 73.90± 0.80% 86.80± 0.50%
BD-CSPN∗ [15] 84.90% 90.22%
Our Method∗ 93.20 ± 0.45% 94.90 ± 0.31%

would like to emphasize that this is because MultiSem

leverages a more complex backbone, namely the Dense-121

with 121 layers, instead of ResetNet12 in our model. Fi-

nally, from the results of the pre-training based apporaches,

we have the following observations. (i) Our method out-

performs BD-CSPN, by around 2% ∼ 8%. The DB-SCPN

method also introduces unlabeled samples, but they only

focus on pre-training and ignore the advantange of meta-

learning. Different from it, we introduce a meta-learner,

learning to complete prototypes, to explore the power of

pre-training further. (ii) Our method exceeds the MetaBase-

line method by a large margin, around 10%∼13% (1-shot)

and 2% ∼ 4% (5-shot). This verifies our motivation that

estimating more accurate prototypes is more effective than

fine-tuning feature extractor during meta-learning. Besides,

the improvement of performance on 1-shot tasks is more ob-

vious than on 5-shot tasks. This is reasonable because the

problem of inaccurate estimation of prototypes on 1-shot is

more remarkable than 5-shot tasks.

In few-shot fine-grained classification. Table 2 summa-

rizes the results on CUB-200-2011, which lead to simi-

lar observations as those in Table 1. We observe that our

method (i) also achieves superior performance over state-

of-the-art methods with an improvement of 5% ∼ 9%; (ii)

obtains almost consistent performance on 1-shot and 5-shot

Top-5 nearest samples Top-5 farthest samples

Figure 5. Top-5 nearest and farthest samples from centers.

Table 3. The cosine similarity between the estimated and real pro-

totypes. d(x, y) denotes the cosine simiarity of vectors x and y.

Methods d(pk, p
real
k ) d(p̂k, p

real
k ) d(p̂′k, p

real
k )

SRestoreNet 0.55 0.78 0.79

FSLKT 0.55 - 0.68

BD-CSPN 0.55 - 0.67

Our Method 0.55 0.71 0.90

tasks, while the improvements on 1-shot task over baselines

are more significant than on 5-shot. This further verifies the

effectiveness of our method, especially for 1-shot tasks.

4.4. Statistical Analysis

Is our idea reasonable on realistic data? We randomly se-

lect five classes from the novel classes of miniImageNet and

retrieve top-5 nearest and farthest samples from its ground-

truth class center in the feature space. As shown in Figure 5,

the nearest images are more complete; however, the farthest

samples are missing partial parts/attributes due to its incom-

pleteness, noise background, or obscured details.

Does our method obtain more accurate prototypes? We

calculate the average cosine similarity between the esti-

mated prototypes and the real prototypes on 1000 episodes

(5-way 1-shot) of miniImagenet. Three results including the

mean-based (pk), the restored/completed (p̂k) and the fused

prototype (p̂′k) are reported. For a fair comparison, we re-
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port the results of SRestoreNet, FSLKT, and BD-CSPN as

the baselines. As shown in Table 3, the results show that our

method obtains more accurate prototypes than these base-

lines. Note that the prototype p̂k from SRestoreNet is better

than our method. This is reasonable because they leverage

unlabeled samples before restoring prototypes. However,

we exploit them after completing prototypes.

Is our method effective for the samples far away from

its class center? On the novel classes of miniImageNet,

we calculate the cosine similarity between each noise im-

age and its class center and sort them in descending order

(i.e., the larger the sample number is, the farther away it is

from the class center). Then, we take the noise images as in-

puts to predict the prototypes by using our method and Re-

storeNet, respectively. The cosine similarity between pre-

dicted prototypes and real class centers is shown in Figure 6.

Note that (i) we smoothen the curve through moving aver-

age with 50 samples; (ii) we show the average results for

all novel classes. We observe our method achieves more ac-

curate prototypes than RestoreNet and the improvement be-

comes larger as the samples are farther away from its center.

4.5. Ablation Study

We conduct an ablation study on miniImagenet, to assess

the effects of the two specially-designed components, i.e.,

learning to complete prototypes and Gaussian-based proto-

type fusion strategy. Specifically, (i) we remove all compo-

nents, i.e., classifying each sample by the mean-based pro-

totypes; (ii) we add the ProtoComNet on (i) and classify

each sample by the completed prototypes; (iii) we average

the mean-based and completed prototypes to obtain the fi-

nal prototypes, which is the fusion strategy in [30]; (iv) we

replace the prototype fusion strategy of (iii) by our Gauss-

Fusion. The results are shown in Table 4.

Learning to Complete Prototypes. From the results of the

first and second row in Table 4, we observe that 1) the latter

exceeds the former in 1-shot tasks, by around 4%, which

means that learning to complete prototypes is effective; 2)

the latter obtains poor performance in 5-shot tasks. As

our analysis in Section 3.4, the phenomenon results from

the bias of ProtoComNet, namely the primitive knowledge

noises or base-novel class differences.

Gaussian-based Prototype Fusion Strategy. According

to the result in the last three rows of Table 4, we find that

1) the problem of ProtoComNet with poor performance on

5-shot tasks is effectively solved after we add mean-based

prototype fusion strategy; 2) the performance of the Pro-

toComNet can be further improved when it is combined

with GaussFusion, by around 3% on classification accu-

racy. The result suggests that the GaussFusion is more ef-

fective than the mean-based fusion strategy. The key reason

is GaussFussion effectively estimates prototype distribution

by exploiting the unlabelled samples. To further vertify that
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Figure 6. Performance analysis of ProtoComNet.

Table 4. Ablation study on miniImagenet. LCP: Learning to com-

plete prototypes. GF, MF: Gaussian, mean-based prototype fusion.

LCP GF MF 5-way 1-shot 5-way 5-shot

(i) 61.22 ± 0.84% 78.72 ± 0.60%
(ii)

√
65.62 ± 0.79% 75.32 ± 0.61%

(iii)
√ √

70.14 ± 0.81% 79.70 ± 0.60%
(iv)

√ √
73.13 ± 0.85% 82.06 ± 0.54%

Table 5. The performance analysis of primitive knowledge with

different noise level γ on 5-way 1-shot tasks of miniImagenet.

Methods γ = 0.0 γ = 0.1 γ = 0.2 γ = 0.3

w/o GaussFusion 65.62 % 59.28 % 55.39 % 51.97 %
w/ GaussFusion 73.13 % 71.80 % 70.77 % 69.97 %

GaussFusion is able to alleviate the prototype completion

error problem, we analyze the impacts of primitive knowl-

edge with different noise levels γ on classification perfor-

mance in Table 5. Here, we introduce noises by randomly

adding or removing class parts/attributes with probability γ.

It can be observed that our method is more robust to primi-

tive knowledge noises when GaussFusion is applied.

5. Conclusions

For few-shot learning, a simple pre-training on base

classes can obtain a good feature extractor, where the novel

class samples can be well clustered together. The key chal-

lenge is how to obtain more representative prototypes be-

cause the novel class samples spread as groups with large

variances. To solve the issue, we propose a prototype com-

pletion network to complete prototypes via primitive knowl-

edge, and a Gaussian-based prototype fusion strategy to

alleviate the prototype completion error problem. Experi-

ments show that our method obtains superior performance

on three data sets. In the future, we are interested in explor-

ing more efficient attribute modeling strategy such as incor-

porating unseen parts/attributes into our framework, so that

more accurate prototypes can be delivered for novel classes.
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Yaowei Wang, and José M. F. Moura. Compositional few-

shot recognition with primitive discovery and enhancing. In

MM, pages 156–164, 2020. 3, 6, 7

3762


