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Abstract

Recent years have witnessed great progress of object de-

tection. However, due to the domain shift problem, apply-

ing the knowledge of an object detector learned from one

specific domain to another one often suffers severe perfor-

mance degradation. Most existing methods adopt feature

alignment either on the backbone network or instance clas-

sifier to increase the transferability of object detector. Dif-

ferently, we propose to perform feature alignment in the

RPN stage such that the foreground and background RPN

proposals in target domain can be effectively distinguished.

Specifically, we first construct one set of learnable RPN pro-

totpyes, and then enforce the RPN features to align with the

prototypes for both source and target domains. It essentially

cooperates the learning of RPN prototypes and features to

align the source and target RPN features. Particularly, we

propose a simple yet effective method suitable for RPN fea-

ture alignment to generate high-quality pseudo label of pro-

posals in target domain, i.e., using the filtered detection re-

sults with IoU. Furthermore, we adopt Grad CAM to find

the discriminative region within a foreground proposal and

use it to increase the discriminability of RPN features for

alignment. We conduct extensive experiments on multiple

cross-domain detection scenarios, and the results show the

effectiveness of our proposed method against previous state-

of-the-art methods.

1. Introduction

Object detection is a fundamental task in computer vi-

sion, which aims to identify and localize objects of inter-

est in an image. In the past decade, a great progress has

been witnessed for object detection due to the advance of

large-scale benchmarks and modern CNN-based detection

frameworks, such as Fast/Faster R-CNN [15, 41]. Cur-

rently, state-of-the-art detectors generally require massive

training samples with annotations of bounding boxes and

semantic labels. Particularly, the detection model learned
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Figure 1. (a) Comparison of detection performance among

”Source only”, ”SWDA” [42], ”Ours”, and ”Oracle”, where the

normal case and adding ground truth boxes are tested. (b) Com-

parison of recall among different methods with the IoU threshold

of 0.5. Here Sim10k [24]→Cityscapes [7] is adopted as the bench-

mark. Best viewed in color.

from the data in a domain (i.e., source domain) would in-

cur severe performance degradation when facing some new

environment (i.e., target domain) where object appearance,

background, or weather condition make a difference [49].

At the same time, accurately annotating all new samples

usually involve heavy labor and high cost. To address this

challenge, unsupervised domain adaptation (UDA) [37] is

developed to adapt the model learned from the annotated

source samples to the target samples, i.e., enabling the

model work well in target domain by incorporating unla-

beled samples.

Evidently, UDA need learn the knowledge useful for tar-

get domain from the data of source domain. A common

practice is to build invariant feature representation across

domains, which essentially enforces to align the feature

distributions of two domains. To this end, the measure

of domain shift is usually minimized, e.g., correlation dis-

tances [32, 39, 34, 62]. Recently, domain adversarial learn-

ing is widely adopted and achieves promising performance

by conducting a min-max game between object detector

and domain discriminator [13, 33, 21, 50]. Along previous

works [6, 42], we particularly focus on the domain adapta-

tion problem of two-stage object detectors in this paper.

Regarding cross-domain object detection, several works

have attempted to incorporate adversarial learning into
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mainstream detection frameworks, e.g., Faster R-CNN.

Typically, a two-stage object detector can be split into three

main modules, i.e., backbone network, region proposal net-

work (RPN), and region proposal classifier (RPC). Due to

locality nature of the object detection task, current meth-

ods usually minimize the domain disparity at multiple lev-

els via adversarial feature adaptation, such as image and in-

stance alignment [6], strong-local and weak-global align-

ment [42], and multi-level feature alignment [19, 58]. Most

of these works conduct feature alignment in either backbone

network or RPC, and hold a common belief that in domain

adversarial learning, the foreground regions should be given

more attentions to increase the transferability of interested

objects and meanwhile alleviate the negative effect of back-

ground noises. Different from previous methods, we focus

on the transerability of RPN across domains in this work.

Actually, RPN plays an important role in domain adap-

tion of object detectors. To intuitively show its effect, here

we particularly conduct an analysis experiment to investi-

gate the upper bound of RPN. To be specific, we add the

ground-truth bounding boxes into the RPN proposals in the

test phase, and then use them to infer the final detection

results as usual. Figure 1(a) give the performance compari-

son of before and after adding ground truth, where different

methods are used, including source only, SWDA [42], our

method, and Oracle. Comparing source only and Oracle,

we can observe that the quality of RPN proposals is espe-

cially important for cross-domain object detection. In ad-

dition, SWDA can reduce the performance gap although it

only performs feature alignment in backbone network. This

is because SWDA actually can produce higher quality pro-

posals with larger RPN recall than source only, as shown

in Figure 1(b). However, only aligning features in back-

bone network is not enough to generate high-quality RPN

proposals since domain adversarial learning on backbone

network ignores to distinguish the discriminability of fore-

ground and background.

In object detection, an RPN proposal commonly con-

tains the foreground and background contents, and their ra-

tio varies a lot for different proposals. Such a characteristic

makes RPN feature alignment very challenging since the

foreground features are inevitably contaminated by various

background noises. Moreover, the interested objects usu-

ally involve many semantic categories, but they would be

unified into foreground in RPN. In RPN feature alignment,

therefore, we need carefully balance different object classes

in order to make the final detection work well.

In this paper, we propose a novel RPN prototype align-

ment method to separately align foreground and back-

ground RPN features. Specifically, we first construct a set

of learnable RPN prototpyes, and then enforce the RPN fea-

tures in both source and target domains to align with the

corresponding prototypes. Through cooperating with RPN

prototype learning, the RPN features in source and target

domains can be effectively aligned. In this paradigm, the

pseudo label of proposals in target domain need be first gen-

erated, and we propose a simple yet effective method suit-

able for RPN feature alignment. To be specific, we first

filter the detection results after RPC to only reserve the

high-confidence ones, where a class-agnostic filter ratio is

adopted to balance different classes. Then we use the fil-

tered detection results to generate the pseudo label of RPN

proposals, in which IoU is used to assign proposal labels

rather than the predicted scores in previous methods. Fur-

thermore, to increase the discriminability of RPN features

for alignment, we propose to use Grad CAM to find the

discriminative regions of a proposal and then adjust RPN

features by spatially weighting. Consequently, foreground

and background RPN features are better aligned, and more

accurate proposals can be obtained.

The main contributions of this work are summarized as

follows:

• We propose a novel RPN prototype alignment method

which can significantly improve the transferability of

RPN and further generate high-quality RPN proposals

for target domain.

• We propose a simple yet effective pseudo label gen-

eration method suitable for feature alignment of RPN

proposals, which can effectively guide the learning of

RPN prototypes and features.

• We propose a discriminability-aware prototype align-

ment module, which can improve the quality of RPN

features for alignment by paying more attention on dis-

criminative regions within a proposal.

• We conduct extensive experiments on multiple bench-

mark scenarios, and the results demonstrate the ef-

fectiveness of our proposed method against previous

state-of-the-art methods.

2. Related Work

Object Detection. Object detection is an essential task

of computer vision, which has been studied for many

years [29]. Most of traditional methods [54, 8, 11] rely on

handcrafted features and sophisticated pipelines. In the era

of deep learning, object detection can be roughly catego-

rized into two classes: one-stage detectors [40, 31, 28, 30]

and two-stage ones [16, 15, 41, 27]. Although one-stage

detectors have high efficiency and have become popular

paradigms, two-stage detectors are still widely adopted for

pursuing much higher performance. In particular, Faster

R-CNN [41] is a classical two-stage object detector and is

widely adopted for domain adaptive object detection due to

its robustness and scalability. Following previous works, we

choose Faster R-CNN as the baseline detector in this paper.
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Unsupervised Domain Adaptation. UDA [2, 1] aims to

generalize the model learned from labeled source domain

to another unlabeled target domain. It has been investigated

for different computer vision tasks [57, 10, 65, 35, 5, 12,

63], e.g., image classification, semantic segmentation, and

object detection. Considering the powerful capacity of deep

learning, many solutions attempt to reduce domain shift by

learning domain-invariant features. Early domain adaptive

models minimized the estimated disparity between different

domains, such as maximum mean discrepancy (MMD) [52,

32, 48]. Recently, domain adversarial learning is adopt to

improve the performance [13, 51, 3, 38]. In this work, we

particularly focus on domain adaptation of object detection.

Cross-domain Object Detection. Traditional studies [55,

53, 36, 60] mainly adapt some specific model (e.g., for

pedestrian or vehicle detection) across domains, while re-

cently domain adaptive object detection has been raised

for unconstrained scenes. Chen et al. [6] first propose

two alignment practices, i.e., image-level and instance-level

alignments by imposing adversarial learning at image and

instance scales. Following this work, many works man-

age to reduce the feature discrepancy in backbone network.

[19, 58] apply this idea to multi-layer feature adaptation.

[42] proposes strong-weak alignment components to incor-

porate strong matching in local features and weak matching

in global features. [69] mines discriminative regions that

contain objects of interest and aligns their features. [4] uses

the output of domain discriminator to get the discriminative

and transferrable regions for local and global alignments.

[22, 26] introduce object centerness and spatial attention

into cross-domain feature adversarial learning to avoid the

influence of background. [59, 66] add an image-level multi-

label classifier upon backbone network to align crucial re-

gions and preserve the discriminability of features.

Apart from aligning backbone features, some other

works consider to align RPC features. [61, 67] propose to

align the prototypes of RPC. To be specific, [61] proposes to

first perform a graph-based information propagation to ob-

tain more precise instance-level features, then construct pro-

totypes within a mini-batch for source and target domains,

and finally conduct contrastive learning among these proto-

types. Although GPA uses RPN prototype alignment, they

attach an extra network after backbone to perform backbone

feature alignment, which serves as regularization and does

not affect the training of RPN. Our method is directly to

align the RPN features for producing more accurate pro-

posals. [67] constructs the global prototypes for source and

target domains, and then updates the prototypes using mini-

batch samples and meanwhile minimizes the distance be-

tween the source and target prototypes.

Different from previous methods that align the fea-

tures in backbone network and RPC, we propose to align

RPN features to produce high-quality proposals. A related

work is CoT [64] which proposes to perform collabora-

tive training between RPN and RPC. Specifically, the high-

confidence outputs are leveraged as mutual guidance to train

each other, and as in MCD [43] the low-confidence ones

are used for discrepancy calculation between RPN and RPC

and minimax optimization. Although CoT considers the

RPN, it is essentially different from our proposed method.

First, they have different learning modes for RPN. CoT

adopts the predicted probabilities of PRC to cooperate the

learning of RPN with self-training. Our method adopts the

learnable prototypes to align the intermediate RPN features.

Second, they adopt different techniques to transfer knowl-

edge from RPC to RPN. CoT uses the online RPC proba-

bilities as soft pseudo labels to weight RPN self-training.

We use the filtered detection results of RPC to generate the

pseudo label, which is periodically updated, and then used

to select the RPN proposals by IoU threshold. In addition,

we introduce the Grad CAM from RPC to more accurately

extract RPN features for foreground proposals.

3. Method

In this work, we focus on the unsupervised domain adap-

tation problem in object detection. Formally, we are given a

source domain Ds = {(xs
i ,y

s
i )}

ns

i=1
of ns labeled samples

and a target domain Dt = {xt
j}

nt

j=1
of nt unlabeled sam-

ples, which are from the joint distributions P (xs,ys) and

Q(xt,yt) with P 6= Q, respectively. Then our work aims

to learn an object detector that can reduce the shifts in the

joint distribution across domains and further generalize well

to the target domain. In what follows, we will first review

the widely adopted feature alignment in backbone network,

which servers as our baseline model. Then we deeply ex-

plore the proposed RPN prototype alignment method, and

elaborate on how it can improve the transferability of object

detection network.

3.1. Baseline Model

Following previous works [42, 19], we use Faster R-

CNN with the VGG16 [46] backbone as our basic object

detector. In particular, we take the mainstream backbone

feature alignment method as our baseline, which actually

conducts domain adversarial learning for middle-layer and

high-layer features. Here the adversarial loss acts as a min-

max game [17], and the training procedure contains two op-

posite optimization objectives with the loss function

LADV =
∑

l

min
θGl

max
θDl

Exs∼DS
logDl(Gl(xs))

+ Ext∼DT
log(1−Dl(Gl(xt))),

(1)

where l ∈ {3, 4, 5} represents the l-th convolutional block

of VGG16, G and D denote the backbone network and do-

main discriminator, respectively. θGl
and θDl

correspond to
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Figure 2. The framework of our proposed method, where Faster R-CNN is adopted as the basic detector. Considering RPN characteristics,

we particularly propose pseudo label generation to get proposals for alignment in target domain, and discriminability-aware RPN prototype

alignment to improve the feature alignment of foreground proposals. Here the opposing dotted arrow represents the gradient flow of

contrastive align loss. Best viewed in color.

the parameters of Gl and Dl. In practice, G and D are con-

nected by the Gradient Reverse Layer (GRL) [13], which

reverses the gradients that flow through G.

For this baseline method, the optimization objective in-

tegrates two major losses, i.e., detection loss and domain

adversarial loss. The former is applied to the labeled data

in the source domain, and the latter is applied to both the

source and target domains. As for the detection loss, each

stage of Faster R-CNN contains a classification loss and a

localization loss, and the total detection loss is defined by

Ldet = LRPN
cls + LRPN

loc + LRPC
cls + LRPC

loc . (2)

Then the overall objective can be presented as follows:

L = Ldet + λ1LADV , (3)

where λ1 is the trade-off parameter.

Inspired by previous methods [47, 56], we further adopt

AdaIN [23] to align the low-level features (e.g. features af-

ter conv1 and conv2). Specifically, we adjusts the mean and

variance of source features by those of target features during

training, and directly use target features for testing.

3.2. RPN Prototype Alignment

To better understand the proposed RPN prototype align-

ment, we first review the training and test procedures of

Faster R-CNN, whose structure is shown in the middle part

of Figure 2. Here we split the RPN into three modules,

i.e., RPNconv,RPNcls,RPNreg , each of which consists of

a convolutional layer. In the training phase, the backbone

network G takes an image as input and produces the corre-

sponding global feature fg ∈ R
C×H×W . Then RPN takes

fg into RPNconv to produce the global RPN features frpn.

The feature frpn is taken by RPNcls and RPNreg to perform

the classification and box regression, where the pre-defined

anchors are used. To assign each anchor box a label, two

IoU threshoulds are usually adopted, i.e., the foreground

threshold (e.g. 0.7) and background threshold (e.g. 0.3). Fi-

nally, the top-N (e.g. N = 2000) boxes after NMS with

high foreground probabilities are sent to RPC as the train-

ing samples of different objects. In the test phase, RPN

provides the top-M (e.g. M = 300) foreground boxes af-

ter NMS to feed RPC, and the final results are produced by

RPC from these boxes.

According to the structure of Faster R-CNN and its train-

ing procedure, an intuitive idea to implement domain adap-

tation in the RPN stage is to generate the pseudo labels (e.g.,

probability) of all RPN proposals in the target domain and

then apply them to the training procedure. In such a way,

however, the number of foreground proposals are more than

enough, and at the same time the obtained locations are im-

precise. Consequently, the training of RPN may be misled.

In this paper, we propose an RPN prototype based fea-

ture alignment method. The core idea is to first explicitly

construct two learnable prototypes pi ∈ R
C , i ∈ {0, 1},

and then enforce the RPN features in both source and tar-

get domains to align with the corresponding prototypes. To

be specific, the foreground RPN features are enforced to
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align with p1, and the background RPN features are with

p0. With the prototype intermediary, the RPN features in

the source and target domains can be aligned automatically,

and the learned RPNconv would achieve better transferabil-

ity across domains. Further, high-quality proposals can be

produced for the target domain.

Figure 2 illustrates the framework of our proposed do-

main adaptation method, where the top part shows the pro-

totype based feature alignment, i.e., RPN prototype align-

ment, and the bottom part shows the proposal feature gener-

ation for alignment. In general, we use the detection results

of RPC to construct the pseudo labels of objects for the tar-

get domain (the ground truth is directly used for the source

domain). Then we use them to generate the foreground

and background proposals, in which the spatial information

(i.e., IoU) is particularly adopted to assign labels rather than

the predicted probability by RPC. Finally, the RPN proposal

features pass through RPNconv to get the RPN alignment

features, which are used to align with the prototypes.

RPN Feature Generation for Alignment. As shown in

Figure 2, in order to get the RPN feature for alignment in

the top part, we need first generate proposal feature in the

bottom part. The proposal feature generation involves two

main procedures, i.e., pseudo label generation for target do-

main objects, and proposal label assignment for both do-

mains. Here we elaborate on their details.

As for the pseudo label generation, previous work [67,

61] often uses soft probabilities (or one-hot format) pro-

duced by RPC to label the proposals, where the spatial in-

formation is ignored. Differently, we propose to use the

box information of different classes of detection results af-

ter NMS as the pseudo labels of foreground objects. Specif-

ically, we first set a probability threshold (i.e., 0.05) to filter

the low-confidence boxes. Then we adopt a class-agnostic

ratio ρ to only keep the top high-confidence boxes for each

class separately. Through this way, different classes of fore-

ground objects can be more balanced to be reserved. This

is especially important for the low-confidence classes with

scarce training samples to perform domain adaptation since

they cannot be readily aligned in practice. In the training

phase, we generate the above pseudo labels every T (e.g.,

T = 3000) iterations, which are used to guide the learning

of next T iterations.

Given the ground truth (or pseudo label), we first use

them to label the proposals, then we select a portion from

all proposals, and finally the selected proposals would be

passed through RPNconv to generate the RPN features for

alignment. Specifically, we determine if the top-N propos-

als belong to the foreground or background by their IoU

with ground truth (or pseudo label), where the threshold

strategy is used. Then we take all foreground proposals

and randomly selected background proposals of the same

amount to construct the training samples for RPN feature

alignment. Formally, given the global backbone feature fg

and an RPN proposal box Bi, the proposal feature f i
bk and

RPN feature for alignment f i
rpn is generated as follows

f i
bk = RoIAlign(fg, Bi), (4)

f i
rpn =

1

HW

∑

h,w

(RPNconv(f
i
bk))(h,w), (5)

where RoIAlign proposed in [18] is used to generate the

proposal feature from the global feature, f i
bk ∈ R

C×H×W

is the proposal feature corresponding to Bi, and f i
rpn ∈ R

C

is its RPN feature for alignment.

Contrastive Alignment Loss. In our framework, the

RPN features for alignment are expected to align with

the prototypes for both source and target domains, where

the foreground and background are processed separately.

Specifically, for an RPN feature f i
rpn and its label yi ∈

{0, 1} (0 for background and 1 for foreground), we enforce

f i
rpn close to pyi

and at the same time far away from an-

other prototype p1−yi
. To this end, we choose the con-

trastive loss to train the network, in which the cosine dis-

tance is adopted to measure the similarity between the RPN

alignment features and prototypes. Then the loss can be

presented as follows:

Li
pos = 1− cos(f i

rpn,pyi
),

Li
neg = max(0, cos(f i

rpn,p1−yi
)−m), (6)

LAlign =
N∑

i=1

1

N
(Li

pos + Li
neg),

where cos(x1, x2) =
xT

1
·x2

‖x1‖‖x2‖
is the cosine similarity,

N is the number of selected proposals, and m is the margin

which is set to 0 in our experiments.

Combined with the baseline model, the overall optimiza-

tion objective becomes

L = Ldet + λ1LADV + λ2LAlign, (7)

where λ1 and λ2 are the control parameters.

3.3. Discriminability­aware Alignment

In the above process, all spatial locations within an RPN

proposal are treated equally. But the foreground proposals

often contain some background pixels, which would bring

interference into the RPN alignment features. To further in-

crease the discriminability of foreground RPN features, we

propose a discriminability-aware alignment method, which

allows alignment to mainly focus on the discriminative ob-

ject regions. Specifically, we use the Grad CAM [45] on

RPC to find the discriminative regions with respect to the

ground truth (or pseudo label) class, and then use the map
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Baseline Our method (b)(a)

Figure 3. (a) TSNE of RPN features produced by different meth-

ods. The feature points are obtained by spherical k-means. Ex-

periments are conducted on SIM10k → Cityscapes scenario. (b)

Visual comparison between Grad CAM and foreground attention.

to weight the alignment features. That is, the foreground

RPN alignment feature is generated by

f i
bk = RoIAlign(fg, Bi),

P (h,w) = (1 + cami(h,w)), (8)

f i
rpn =

1

HW

∑

h,w

P (h,w)(RPNconv(f
i
bk))(h,w),

where cami is the attention map for the proposal Bi pro-

duced by the original CAM.

To intuitively show the effect of our method, we first vi-

sualize the features and prototypes as shown in Figure 3 (a).

We can see that the prototypes can represent the features

well, and the foreground and background are better sepa-

rated. We further visualize the CAM attention and fore-

ground attention in Figure 3 (b). Here the foreground at-

tention is generated by calculating the normalized cosine

similarity between the RPN features and prototypes. It can

be seen that the CAM attention can focus on the discrimi-

native part of objects (e.g., the body of a person), and the

foreground attention can almost cover the whole object.

4. Experiments

4.1. Datasets and Scenarios

Following [67], we evaluate different methods under the

three adaptation scenarios.

Normal-to-Foggy. Cityscapes [7] is a street scene dataset

for driving, whose images are collected in the clear weather.

It consists of 2, 975 images for training and 500 images for

validation. The Foggy Cityscapes [44] dataset is synthe-

sized from Cityscapes for the foggy weather. In the train-

ing phase, we use the training set of Cityscapes and Foggy

Cityscapes as the source and target domains, respectively.

The results on the validation set of Foggy Cityscapes are

reported.

Synthetic-to-Real. Sim10k [24] is a collection of synthe-

sized images, which consists of 10, 000 images and corre-

sponding bounding box annotations. To adapt the synthetic

scenes to the real ones, we utilize the entire SIM10k dataset

as the source domain and the training set of Cityscapes as

the target domain. Since only Car is annotated in both do-

mains, we report the performance of Car on the validation

set of Cityscapes.

Cross-Camera. KITTI [14] is a similar scene dataset to

Cityscapes except that KITTI has different camera setup.

It consists of 7, 481 labeled images for training. To sim-

ulate the cross-camera adaptation, we use the training set

of Cityscapes as the source domain and the training set of

KITTI as the target domain. Here we follow [6, 58] to

classify {Car, Van} as Car, {Pedestrian, Person sitting}
as Person, Tram as Train, Cyclist as Rider for matching

Cityscapes and KITTI. The results in the training set of

KITTI are reported, as in [6, 58].

4.2. Implementation Details

Here we adopt the Faster R-CNN with VGG16 [46] as

the backbone that is pre-trained on ImageNet [9]. We re-

size the shorter sides of all images to 600 pixels. The batch

size is set to 2, i.e., one image per domain. The detector is

trained with SGD for 50k iterations with the learning rate

of 10−3, and it is then dropped to 10−4 for another 30k it-

erations. The prototypes are also trained with SGD but the

learning rate is 10 times of that of the detector. The domain

discriminators are trained by the Adam optimizer [25] with

the learning rate of 10−4. The factor λ1 = 1.0 and λ2 = 0.1
are set. The class-agnostic ratio ρ is set to 0.6 for all scenar-

ios. During training, we add the RPN alignment loss from

the iteration of 25k and the update interval of pseudo label

is set to 3k iterations. We report mAP with an IoU threshold

of 0.5 for evaluation.

4.3. Comparison with State­of­the­Art

Here we compare our proposed method with recently

published state-of-the-art methods. In particular, ”Source

Only” denotes the model that is directly trained using la-

beled source data without involving the target data. ”Base-

line” represents the model that only performs feature align-

ment in backbone network except for Normal-to-Foggy sce-

nario, in which we also adopt pixel-level style transforma-

tion from the source domain to target domain with Cycle-

GAN [68]. ”RPA” represents the model using the basic RPN

feature alignment in Sec. 3.2, and ”Final” represents our fi-

nal model combined with discriminability-aware alignment

in Sec. 3.3. In addition, we provide the ”Oracle” results, in

which the model is trained using the labeled data in target

domain as in supervised learning.

Normal-to-Foggy. Table 1 gives the results of different

methods for this scenario, and we have the following ob-

servations. First, compared with the baseline, our RPA ap-

proach can boost the performance by 1.5%, and further in-

crease by 0.5% when combined with discriminability-aware

alignment, which show the effectiveness of our proposed
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Table 1. Detection performance (%) on Normal-to-Foggy cross-domain adaptation task, Cityscapes → Foggy Cityscapes.

Method Bus Bicycle Car Motor Person Rider Train Truck mAP

DAF (CVPR’18) [6] 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6

SCDA (CVPR’19) [69] 39.0 33.6 48.5 28.0 33.5 38.0 23.3 26.5 33.8

SWDA (CVPR’19) [42] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3

CR (CVPR’20)[59] 45.1 34.6 49.2 30.3 32.9 43.8 36.4 27.2 37.4

C2F (CVPR’20) [67] 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6

HTCN (CVPR’20) [4] 47.4 37.1 47.9 32.3 33.2 47.5 40.9 31.6 39.8

CoT (ECCV’20)[64] 45.6 36.8 50.1 30.1 32.7 44.4 25.4 21.7 35.9

CDN (ECCV’20) [47] 42.5 36.5 50.9 30.8 35.8 45.7 29.8 30.1 36.6

DMLP (ECCV’20) [66] 44.1 36.6 43.9 37.4 32.0 42.1 43.4 31.3 38.8

Tri-way (ECCV’20) [20] 43.3 38.8 50.0 33.4 34.6 47.0 38.7 23.7 38.7

SAPNet (ECCV’20) [26] 46.8 40.7 59.8 30.4 40.8 46.7 37.5 24.3 40.9

Source Only 25.0 26.8 30.6 15.5 24.1 29.4 4.6 10.6 20.8

Baseline 44.0 34.9 49.0 31.0 32.7 44.0 33.8 26.5 37.0

Ours (RPA) 44.8 36.3 50.1 29.9 33.4 44.3 39.1 29.9 38.5

Ours (Final) 43.6 36.8 50.5 29.7 33.3 45.6 42.0 30.4 39.0

HTCN + our proposals 45.5 36.8 49.6 35.7 33.6 43.8 46.0 32.9 40.5

Oracle 47.7 37.1 52.3 35.6 33.8 45.0 46.7 34.6 41.6

Table 2. Detection performance (%) on Synthetic-to-Real cross-

domain adaptation task, SIM10k → Cityscapes.

Methods car AP

DAF (CVPR’18) [6] 39.0

SWDA (CVPR’19) [42] 42.3

SCDA (CVPR’19) [69] 43.0

HTCN (CVPR’20) [4] 42.5

C2F (ECCV’20) [67] 43.8

CoT (ECCV’20) [64] 44.5

Source-only 34.6

Baseline 42.3

Ours (RPA) 45.3

Ours (Final) 45.7

Oracle 60.0

Table 3. Detection performance (%) on Cross Camera cross-

domain adaptation task, Cityscapes → KITTI.

Method Person Rider Car Truck Train mAP

DAF (CVPR’18) [6] 40.9 16.1 70.3 23.6 21.2 34.4

MDA (ICCV’19) [58] 53.3 24.5 72.2 28.7 25.3 40.7

C2F (CVPR’20) [67] 50.4 29.7 73.6 29.7 21.6 41.0

Source-only 49.9 17.2 73.7 16.4 13.0 34.0

Baseline 56.0 27.3 75.1 25.8 23.6 41.6

Ours (RPA) 56.5 27.3 75.0 41.1 21.0 44.2

Ours (Final) 56.2 30.62 75.1 39.4 23.0 44.8

Oracle 72.4 86.0 89.2 90.6 89.8 85.6

methods. Second, our method greatly outperforms the

CoT [64] which also performs the RPN learning across do-

mains (39.0% vs. 35.9%). Third, our method can bring sig-

nificant improvement for the classes with relatively scarce

instances, e.g., Train, Truck, and Bus. Finally, to further

investigate the effect of our proposed method, we feed

our produced RPN proposals (box information) into the

HTCN [4] model to perform inference. It can be seen that

the mAP of HTCN is boosted from 39.8% to 40.5%, which

shows the quality of our produced proposals.

Synthetic-to-Real. Table 2 reports the results on the car

category. It can be seen that both the RPA and final versions

of our method outperform the existing methods. Compared

with the similar method CoT [64], our method has an mAP

gain of 1.2%.

Cross-Camera. Table 3 gives the results on the five cate-

gories. We can see that that our final model outperforms the

existing works a lot, which verifies the effectiveness of our

model to alleviate the domain shift caused by cross-camera.

4.4. Analysis and Discussion

In this section, we conduct several experiments to an-

alyze our model from the design of RPA, parameter sen-

sitivity, and visualization. For the sake of simplicity, we

use C, F, S, and K to denote Cityscapes, Foggy Cityscapes,

Sim10k, and KITTI, respectively.

Design Choice of RPA. We particularly consider the de-

signs of pseudo label generation and pseudo label utilization

in our RPA framework. For pseudo label generation, we can

also use the online soft (or hard) probabilities generated by

PRC to label each proposal, instead of our assignment by

IoU. For pseudo label usage, we can also apply pseudo la-

bels to directly guide the RPN training loss, instead of our

RPA. Here the ”cls loss” means the pseudo labels are used

only for RPN classification and ”cls+box loss” means the
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Figure 4. Visualization of detection results on the Synthetic-to-Real scenario for different methods. Here the foreground attention is

additionally visualized which represents the normalized cosine similarity between the global RPN features and RPN prototypes.

Table 4. Design choices of pseudo label generation and usage.

# Choices Methods C→F S→C C→K

1 Baseline 37.0 42.3 41.6

2
Label generation

hard label 37.5 42.8 42.8

3 soft label 37.8 42.8 42.9

4
Label usage

cls loss 37.3 42.5 41.9

5 cls+box loss 34.9 39.2 38.5

6 Ours 39.0 45.7 44.8

pseudo labels are used for both RPN classification and box

regression. Table 4 gives the results on different scenarios.

From the results of pseudo label generation, it can be

seen that both soft and hard pseudo labels from RPC can

achieve better performance than the baseline, but they are

inferior to our proposed method with a large margin. In

practice, we observe that the soft (or hard) label method

would generate much more foreground samples than ours,

which will introduce more inaccurate proposals. From the

results of pseudo label usage, it can be seen that directly

applying the pseudo labels to the training of RPN classifi-

cation can boost the performance compared with the base-

line. But additionally applying the pseudo labels to RPN

box regression would lead to the performance degradation.

Evidently, the pseudo labels are not accurate enough to di-

rectly guide the training of RPN.

Parameter sensitivity. Here we investigate the influence

of class-agnostic ratio ρ used in pseudo label generation,

which essentially controls the ratio of samples reserved for

each class. Table 5 gives the results about sensitivity of ρ on

different scenarios. It can be seen that our method is robust

for a wide range of ρ, and ρ = 0.6 is particularly chosen for

all cross-domain experiments.

Table 5. Performance for different class-agnostic ratio ρ.

0.3 0.4 0.5 0.6 0.7 0.8

C→F 37.8 38.2 38.7 39.0 38.9 38.5

S→C 44.7 45.2 45.6 45.7 45.3 44.9

C→K 43.9 44.0 44.4 44.8 44.7 44.5

Visualization. Here we visualize some detection results

of different methods in Figure 4, along with our foreground

attentions representing the normalized cosine similarity be-

tween the global RPN features and RPN prototypes. It can

be seen that our method can generate more accurate and

clean detection results than the baseline, and the learned

prototypes can precisely locate the foreground objects.

5. Conclusion

In this paper, we present a novel RPN prototype align-

ment method for cross-domain object detection, which en-

forces the RPN features in both domains to align with the

learnable prototypes of foreground and background, respec-

tively. In particular, we propose a simple yet effective

pseudo label generation method to guide the learning of

RPN features in target domain. Furthermore, to increase the

discriminability of foreground RPN features, we propose to

generate the attention maps from RPC to spatially modulate

the RPN features. Comprehensive experiments on different

scenarios validate the effectiveness of our proposed method.
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