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Abstract

Recent progress on visual question answering has ex-

plored the merits of grid features for vision language tasks.

Meanwhile, transformer-based models have shown remark-

able performance in various sequence prediction prob-

lems. However, the spatial information loss of grid fea-

tures caused by flattening operation, as well as the defect

of the transformer model in distinguishing visual words and

non visual words, are still left unexplored. In this paper,

we first propose Grid-Augmented (GA) module, in which

relative geometry features between grids are incorporated

to enhance visual representations. Then, we build a BERT-

based language model to extract language context and pro-

pose Adaptive-Attention (AA) module on top of a trans-

former decoder to adaptively measure the contribution of

visual and language cues before making decisions for word

prediction. To prove the generality of our proposals, we

apply the two modules to the vanilla transformer model to

build our Relationship-Sensitive Transformer (RSTNet) for

image captioning task. The proposed model is tested on

the MSCOCO benchmark, where it achieves new state-of-

art results on both the Karpathy test split and the online

test server. Source code is available at GitHub 1.

1. Introduction

Image captioning task aims to automatically generate a

natural language sentence to describe the visual content of

a given image. The encoder-decoder framework inspired

by neural machine translation [34] has been widely adopted

by captioning models[39, 40, 41, 5, 25], in which the CNN

based encoder extracts visual features and the RNN based

decoder generates the output sentence. Besides, the atten-

*corresponding author
1https://github.com/zhangxuying1004/RSTNet
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(a)

Caption: A man hitting a tennis 

ball with a racquet.

(b)

Figure 1. This paper aims at reducing the spatial information loss

of features and characterizing the visualizability of words in Cap-

tioning task. (a) shows the loss of spatial information when the

grid features are flattened and fed to the transformer encoder. (b)

illustrates the examples of visual (red) and non-visual (blue) word.

tion mechanism was introduced in order to help the model

focus on the relevant positions when generating each word

[41, 16]. Based on the encoder-decoder framework, most

efforts to improve image captioning model focus on two

main aspects: a) optimizing the visual features extracted

from the input image [2, 42, 12], and b) improving the

model structure for feature processing [41, 2, 23, 6, 28].

In terms of visual representation, region-based visual

features [2] have become the dominant approach in major

vision and language tasks like image captioning and visual

question answering. However, the region extraction pro-

cess is so time-consuming that currently most of the models

with region features are directly trained and evaluated on

cached visual features. Recently, Jiang et al. [15] revisited

the grid features for VQA and demonstrated that grid fea-

tures extracted from exactly the same layer of region feature

detector [30] work quite well, both in speed and accuracy.

In this paper, we also utilize grid features as the main vi-

sual representation for our captioning model. Nevertheless,

grid features are flattened when fed to a transformer model,

which inevitably leads to the loss of spatial information, as

shown in Figure 1(a). Thus, we propose Grid-Augmented

(GA) module which incorporates the spatial geometric re-

lationships between relative locations into grids in order to

facilitate a more comprehensive use of the grid features.
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In terms of model structure for feature processing, trans-

former [37] based captioning models [13, 6, 28] have been

leading state-of-the-art performance on public benchmarks.

The transformer architecture is able to better capture the re-

lationship between visual features and process sequences in

parallel during training. However, not all words in a cap-

tion are visual words and have corresponding visual signals

due to the semantic gap between vision and language [23],

as shown in Figure 1(b). For the attention module in trans-

former decoder layer, the intermediate representations used

to predict each word are stacked together. As a result, all

word predictions are treated equally, based on Scaled Dot-

Product [37] operation, whether the word is a visual word

or non-visual word. In other words, no effective measures

have taken to process visual words and non-visual words

differently for transformer based image captioning models.

Thus, We build Adaptive Attention (AA) module based

on language context and visual signals for transformer ar-

chitecture to measure the contribution of visual signals and

language context for a fine-grained caption generation.

We apply the GA module and AA module to our

transformer based image captioning model, Relationship-

Sensitive Transformer (RSTNet). For each attention mod-

ule of transformer encoder, the relative geometry informa-

tion of grid features is incorporated to calculate a more ac-

curate attention distribution. For the decoder, there will be

a trade-off between the contributions of visual and language

cues rather than predicting words directly.

We extensively evaluate our RSTNet on the MSCOCO

benchmark dataset [22], where quantitative and qualitative

experiments prove the effectiveness of our model. In partic-

ular, our proposed RSTNet achieves state-of-the-art perfor-

mance both offline and online. To gain more insights, we

used the intermediate output of our RSTNet to measure the

visualness of each word appeared in the Karpathy [17] test

split of MSCOCO, which not only demonstrates the effec-

tiveness of the proposed model but also reveals the impact

of the semantic gap in a more intuitive way.

Our contributions can be summarized as follows:

• We propose a Grid-Augmented (GA) module, an ex-

tension to the flattened grid features, to boost the cap-

tioning performance by integrating the spatial informa-

tion of raw visual features extracted from an image.

• We propose an Adaptive-Attention (AA) module, dy-

namically measuring the contribution of visual signals

and language signal for the prediction of each word, to

facilitate a more fine-grained captioning generation.

• We apply GA module and AA module into our RST-

Net to achieve new state-of-art performance on COCO

benchmark dataset. To grain more insights, We de-

fine a cross-domain attribute termed visualness, which

quantitatively measures the visualizability of each

word in vocabulary.

2. Related Work

2.1. Image Captioning

The main development of image captioning [41, 40,

5, 14, 24] can be divided into two stages: traditional

method stage and deep learning method stage. In traditional

method stage, retrieval-based [8, 27, 10] and template-based

[19, 26, 36] methods are two common types of implementa-

tion for image captioning. Given an image, retrieval-based

methods retrieve one or a set of most similar sentence from

a pre-specified sentence pool, while template-based meth-

ods generate slotted sentence templates and use detected

visual concepts to fill in the slots. With great progress

made in deep learning, the encoder-decoder paradigm de-

rived from neural machine translation was exploited in cap-

tioning models [25, 39] where CNN was used as the en-

coder to extract visual features from an image and RNN as

the decoder to generate the corresponding output sequence.

After that, the main focus of image captioning is to model

the interaction between visual and lingual cues via attention

mechanism to get more faithful and rich captions. For ex-

ample, Xu et al. [41] introduced soft and hard attention into

LSTM-based decoder, Lu et al. [23] proposed an adaptive

attention mechanism to dynamically decide whether to at-

tend visual signals when generating each word, Anderson et

al. [2] proposed bottom-up and top-down attention mech-

anism that makes the visual features in attention upgrade

from grid-level to object and salient region level.

2.2. Region Features vs. Grid Features

The representation of visual features have gone through

two main stages after the extensive application of deep

learning. In the first stage, a series of convolution neu-

ral network [32, 11] were proposed to represent visual in-

formation with grid features, and these grid features have

achieved excellent performance on visual tasks like image

classification [18, 32, 35, 11] and multi-modal tasks like

image captioning. In the second stage, the emerging of R-

CNN based detection models demonstrate the effectiveness

of region features for fine-grained tasks. Typically, Ander-

son et al. [2] applied the pre-trained region feature to multi-

modal task and achieved excellent performance in both im-

age captioning and visual question answering. After that,

region features have been extensively studied and become

the de-facto standard for most vision and language tasks.

Recently, Jiang et al. [15] revisited the grid fea-

tures for VQA and discovered that grid features extracted

from exactly the same layer of a pre-trained detector can

perform competitively against their region-based counter-

parts and meanwhile solve several critical issues like time-

consuming, end-to-end training etc. These problems also

exists in the state-of-art image captioning models. In this

paper, we utilize grid features as visual representation. In
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Figure 2. Overview of our RSTNet architecture for image captioning. Firstly, raw grid features are extracted according to [15], based on

which we apply our grid-augmented module to enrich the grid features with spatial position and spatial relation. The language signal is

encoded by a pre-trained BERT-based language model. Depending on the enhanced visual and language signals, we propose an adaptive

attention module to perform multi-modal reasoning for word prediction. Our RSTNet is able to dynamically measure the contribution of

visual and language signal to get more fine-grained image captions.

addition, we also explore an augmented form of grid fea-

tures trying to solve the issue of spatial information loss

caused by grid features flattening.

2.3. Transformer Models

RNN-based models are limited by their sequence na-

ture and suffer from dependencies between distant posi-

tions [37]. In order to address this problem, [37, 7, 33]

proposed to replace recurrence and convolutions with at-

tention mechanisms and excitedly refreshed almost all the

metrics of neural language processing (NLP). Subsequently,

great efforts have been made to transfer this idea into image

captioning. [3] explored the convolutional language model

in image captioning model. Herdade et al. [12] incorpo-

rated geometry relationships between region features into

transformer architecture for captioning. [13] proposed a

GLU like structure on attention mechanism to determine

the relevance between attention results and queries. Li et

al. [20] extended the attention module linking transformer

encoder and decoder to exploit visual information and se-

mantic knowledge extracted by a external attribute detector.

[6] introduced a learnable priori information to augment the

attention module in transformer encoder and a mesh struc-

ture to build full connections between each encoder layer

and each decoder layer. Pan et al. [28] introduced Bi-linear

Pooling into transformer model to exploit both spatial and

channel-wise bi-linear attention distributions.

Although the aforementioned transformer-based cap-

tioning models have achieved quite promising results, a se-

rious problem still exists: all word sequences are coupled

into high dimensional tensor, where visual and non-visual

words are treated equally. In this paper, we explore an adap-

tive attention based on a transformer backbone so that the

model can adaptively measure the contributions of visual

signals and the current language context when predicting

the word sequence for captioning.

3. Method

Figure 2 shows the overall architecture of our proposed

RSTNet. The visual signals are represented by our grid-

augmented features, the language signal is extracted by a

pre-trained BERT-based language model, and our adaptive

attention module measures the contribution of visual signals

and the language context for word prediction.

We first show grid feature representation in Sec 3.1.

Then, we give the details of language feature representa-

tion in Sec 3.2. Next, we introduce the implementation of

the proposed Relationship-Sensitive Transformer (RSTNet)

for image captioning task in Sec 3.3. Besides, we define vi-

sualness to describe the visualizability of words in Sec 3.4

and give the training details of the RSTNet in Sec 3.5.

3.1. Grid Feature Representation

We get the raw grid features following the operation in

[15]. Given a set of h×w grid features, previous approaches

usually flatten them and directly send them into a trans-

former encoder. However, this flattening operation will in-

evitably cause the loss of spatial information of the input

image, e.g., the position and relationship of grid pairs.

In this paper, we build a Grid-Augmented (GA) module

which incorporates relative geometry relationships between

grid positions to solve the above issue.

We first calculate a pair of 2D relative positions of each

grid:
{(

xmin
i , ymin

i

)

, (xmax
i , ymax

i )
}

, where
(

xmin
i , ymin

i

)
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is the relative position coordinate of the upper left corner of

the grid i, and (xmax
i , ymax

i ) is the relative position coor-

dinate of the lower right corner of the grid i, as shown in

Figure 1(a). The specific calculation process is shown in

the supplementary material. We then calculate the relative

center coordinate (cxi, cyi), relative width wi, and relative

height hi of grid i as follows:

(cxi, cxi) = (
xmin
i + xmax

i

2
,
ymin
i + ymax

i

2
), (1)

wi = (xmax
i − xmin

i ) + 1, (2)

hi = (ymax
i − ymin

i ) + 1. (3)

Finally, we imitate the computation of region geometry fea-

tures in [12, 9] to obtain the relative geometry features be-

tween two grids i and j:

rij =











log(
|cxi−cxj |

wi
)

log(
|cyi−cyj |

hi
)

log(wi

wj
)

log( hi

hj
)











, (4)

Gij = FC(rij), (5)

λg
ij = ReLU(wT

g Gij), (6)

where r ∈ R
N×N×4 is the relative geometry relationship

between grids, FC is a fully-connected layer with activa-

tion function, G ∈ R
N×N×dg is a high-dimensional rep-

resentation of r, wg is a weight parameter to be learned,

λg ∈ R
N×N is the relative geometry feature, and N =

h × w. The ReLU function acts as a zero trimming opera-

tion, which makes sure that we only consider the relations

between grids with geometric relationships.

3.2. Language Feature Representation

In order to get the language features of given sequence,

we once tried to imitate the method in [23], which utilizes a

gated word memory as the language feature of current word.

However, we found through experiments that memory in-

formation and hidden information are highly coupled for

transformer decoder, resulting in a serious language bias.

Thus, we follow the recent trends in the community of

Natural Language Processing and build a BERT-based [7]

language model (BBLM) to extract language features. Con-

sidering only being able to access the partially generated

sentence information at testing phase, we add a masked at-

tention module similar to transformer decoder layer on top

of the BERT model. Figure 3 depicts a schema of our lan-

guage feature module. Given a word sequence W = (<
bos >,w1, w2, ..., wM ), this module will predict this se-

quence Ŵ = (ŵ1, ŵ2, ..., ŵM , < eos >) word by word

with offset by one time step. This process flow can be ex-

Tok 1 Tok MTok 2

𝑆<bos> 𝑆1 𝑆2 𝑆M

E<bos> E1 E2 EM
T<bos> T1 T2 TM

ෞ𝑒𝑜𝑠Tok 1 Tok 2 Tok 3

bos

Feed Forward

Masked

MultiHead Attention

BERT

⋯
⋯

⋯
⋯⋯

Figure 3. The architecture of our BERT-Based Language Model.

The pre-trained BERT model is used to extract language features,

and the Masked Multi-Head Attention prevents the word predic-

tion of current step from the interference of the later step.

pressed by the following formulas:

lf = BERT (W ), (7)

S = MaskedAttentionModule(FF1(lf) + pos), (8)

Ŵ = log softmax(FF2(S)), (9)

where lf ∈ R
M×dbert is the output language feature of the

BERT model, pos ∈ R
M×dmodel is the position encoding of

word sequence, S ∈ R
M×dmodel is the output of the masked

attention module, and Ŵ ∈ R
M×dvocab is the log softmax

distribution of predicted words.

We train this language model with cross-entropy loss.

All parameters are frozen and the output of masked atten-

tion module S is used as the representation of language fea-

tures in RSTNet. This operation is formulated as:

st ← BBLM(W<t), st ∈ R
dmodel . (10)

3.3. RelationshipSensitive Transformer (RSTNet)

A typical transformer-based image captioning model fol-

lows the classic encoder-decoder framework, where the en-

coder takes the visual features extracted from the image as

input and further processes them to strengthen their rela-

tionships. Given the encoded features from an encoder, the

decoder then generates the output sequence word by word.

The core component of transformer is Scaled Dot-Product

Attention [37] whose input consists of matrix Q, K and V ,

where Q is the combination of nq query vectors, K and V
are the combining results of nk key vectors and nk value

vectors, respectively.

Encoder The raw image feature is first flattened, and then

embedded by a fully-connected layer followed by a ReLU

and a dropout layer to project its dimension to dmodel =
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⋯⋯

⋯𝑼 𝒔𝒕
⋯𝑼 𝒔𝟏 ⋯𝑼 𝒔𝟐 ⋯𝑼 𝒔𝑴

⋯
𝐌𝐚𝐬𝐤𝐞𝐝𝐌𝒖𝒍𝒕𝒊𝐇𝐞𝐚𝐝𝐀𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧

𝒉𝒕
⋯ 𝒉𝑴𝒉𝟏 𝒉𝟐

𝒒𝒕
concatenate by time step

MultiHead

Attention
take the t time step 

as an example

Language Signals Visual Signals Hidden States

Words Prediction Words Prediction

Figure 4. Illustration of our adaptive attention module. This mod-

ule ensures that our model reconsiders the effect of language con-

text before word prediction at each time step.

512. The embedded features are send to the first encoder

layer of the transformer model. The Scaled Dot-Product

Attention in the encoder layer is formulated as:

Q = UWq,K = UWk, V = UWv, (11)

Z = softmax(
QKT

√
dk

)V, (12)

U ← U + Z. (13)

where U ∈ R
N×dmodel is the packed visual feature vectors

passing in transformer encoder layer, Wq , Wq , Wq are ma-

trices of learnable weights, and dk is a scaling factor.

Grid Augmented (AA) Module In order to compensate

for the spatial information loss of the grid features caused

by the flattening operation, we propose a grid-augmented

Scaled Dot-Product Attention to enhance the encoder layer.

In our proposal, incorporating the relative geometry feature

introduced in Sec 3.1, we calculate a more accurate atten-

tion map. The grid-augmented Scaled Dot-Product Atten-

tion is formally define as follows:

Zaug = softmax(
QKT

√
dk

+ λg))V, (14)

U ← U + Zaug, (15)

where λg is the relative geometry feature of the grid features

and Zaug is the result of our augmented attention.

Decoder The word sequence features is first processed by

word embedding and incorporated with word sequence po-

sition encoding before used as the input of the first decoder

layer of the transformer model. The decoder of transformer

can be formulated as:

ht = Decoder(U,W<t), (16)

where U ∈ R
N×dmodel is the output of the last layer of

transformer encoder, W<t = (w0, w2, ..., wt−1)
T ,W<t ∈

R
t×dmodel is word sequence feature of the partially gener-

ated sentence, and ht is the hidden state output by trans-

former decoder to predict the current word wt.

The decoding process can be seen as a process continu-

ously incorporating visual information under the guidance

of word sequence features of the partially generated sen-

tence to get the hidden state of the current word. However,

the current word might be a non-visual word, as shown in

Figure 1(b) in which case the language context should play

a more important role than the visual signals for the word

prediction. In the following, we proposed an Adaptive At-

tention which processes and attends to the visual and lan-

guage signal simultaneously to solve the above issue.

Adaptive Attention (AA) Module We build our adaptive

attention module on top of the classic transformer decoder.

Instead of predicting word using the hidden state ht directly,

language signals introduced in Sec 3.2, visual signals out-

put by encoder and the hidden states are combined together

to measure the contribution of visual signals and language

signal for each word prediction. Figure 4 depicts the the ar-

chitecture of our Adaptive Attention module. The Adaptive

Attention is formally define as follows:

qi,t = htW
Q
i , ki,t = [U ; st]W

K
i , vi,t = [U ; st]W

V
i ,

(17)

headi,t = softmax(qi,tk
T
i,t)vi,t, (18)

headi = Concate(headi,1, ..., headi,M ), (19)

att = Concate(head1, ..., headh)W
O, (20)

where qi,t is the query vector for the t-th word word in head

i of multi-head attention, ki,t, vi,t are the key matrix and

value matrix for the t time step word in head i of multi-head

attention respectively, headi,t is the attention result for the

t-th word word in head i, headi is the attention result for

the word sequence in head i, att is the attention result of

multi-head attention for sequence generation.

3.4. Visualness

To gain more insights of our model, we define a cross-

domain attribute called visualness, denoted as γ, based on

our adaptive attention. The visualness of the t time step

word γt is define as follows:

αi,t = softmax(qi,tk
T
i,t), αi,t ∈ R

n+1, (21)

βi,t = αi,t[−1], βi,t ∈ R, (22)

βt = average(β1,t, ..., βh,t), βt ∈ R, (23)

γt = 1− βt, (24)

where αi,t is the softmax distribution of attention for the

t-th word in head i, βi,t is language signal weight for the
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Figure 5. Visualization of the word visualness based on RSTNet.

Words with high visualness can be clearly identified, while low

visualness words show no direct correlation to the image contents.

t-th word in head i, βt is average pooling of language sig-

nal weight over all head of multi-head attention for the t-th
word. γt quantitatively measures the visualizability of the

t-th word which can be aggregated across the entire dataset

to generate the average γ score for each word in the vo-

cabulary. We show and discuss the visualizations of typical

words with high and low visualness, along with their related

images, in Figure 5.

3.5. Training Details

Following a standard practice of image captioning [2,

31], we first optimize our model with the cross entropy loss:

LXE(θ) = −
T
∑

t=1

log(pθ(w
∗
t |w∗

1:t−1)), (25)

where θ is the parameters of our model, w∗
1:T is the target

ground truth sequence.

Then, we directly optimize the non-differentiable metric

with Self-Critical Sequence Training [31]:

LRL(θ) = −Ew1:T pθ
[r(w1:T )], (26)

where the reward r(·) is the CIDEr-D score.

Besides, we use the gradient expression in [6], where

using the mean of rewards rather than greedy decoding to

baseline the reward. The gradient expression for one sample

is formulated as:

b =
1

k
(

k
∑

i

r(wi)), (27)

∇θLRL(θ) ≈ −
1

k

k
∑

i=1

((r(wi
1:T )− b)∇θlog pθ(w

i
1:T )),

(28)

where k is the number of the sampled sequences, wi
1:T is

the i-th sampled sequence, and b is the mean of the rewards

obtained by the sampled sequences.

4. Experiments

4.1. Experimental setup

Dataset We evaluate our proposed model on the MS-COCO

dataset [22], which is the most popular benchmark dataset

for image captioning task. The MS-COCO dataset contains

123,287 images, which includes 82,783 training images,

40,504 validation images and 40,775 testing images, each

of them annotated with 5 different captions. We adopt the

splits provided by Karpathy et al.[17], where 5,000 images

are used for validation, 5000 images for testing and the rest

images for training. We remove punctuation from all sen-

tences and convert them to lower case, and drop the words

that occur less than 5 times, ending up with a vocabulary of

10201 words.

Evaluation Metrics Following the standard evaluation pro-

tocol, we use the full set of captioning metrics to evaluate

the quality of image captioning, including BLEU [29], ME-

TEOR [4], ROUGR [21], CIDEr [38], and SPICE [1].

Implementation Details We follow the implementation of

a Transformer-base model proposed by [6] to set hyper-

parameters and facilitate the training of our RSTNet.

Specifically, an input image I is represented as a grid fea-

ture following the operation in [15], where the grid size is

7 × 7 and the dimension of image features is 2048. If not

specifically specified, the dmodel of the transformer is 512,

the number of heads is 8, and the inner dimension of FFN

module is 2048. The dropout probability we use is 0.1.

We adopt Adam optimizer to train our model. For cross

entropy training, We use a epoch decay schedule for varying

the learning rate to replace the learning rate policy in [6],

the initial learning rate is 1, and the lambda learning rate is

define as follows:

lambda lr =



















base lr ∗ e/4, e ≤ 3,

base lr, 3 < e ≤ 10,

base lr ∗ 0.2, 10 < e ≤ 12,

base lr ∗ 0.2 ∗ 0.2, otherwise,

(29)

where base lr is set to 0.0001 and e is the current epoch

number that starts from 0. For self-critical sequence train-

ing, the learning rate is set to a fixed value of 5× 10−6.

Our training is started with cross entropy optimization.

If the cider value drops for 5 consecutive epochs, it will

turn to self-critical sequence training. The training process

stops when the cider value drops for 5 consecutive epochs

in self-critical sequence training.

4.2. Ablative Analysis

To fully examine the impact of our proposed Grid-

Augmented (GA) module and Adaptive Attention (AA)

module, we conduct ablative study to compare different

variants of RSTNet. We start from a base model which uses
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Table 1. Ablation study on ResNext101 grid features

GA module AA module B@1 B@4 M R C S

% % 80.9 38.9 29.0 58.5 131.2 22.7

% " 80.9 39.0 29.2 58.6 132.6 22.8

" % 80.9 39.0 29.2 58.7 132.1 22.8

" " 81.1 39.3 29.4 58.8 133.3 23.0

Table 2. Ablation study on ResNext152 grid features

GA module AA module B@1 B@4 M R C S

% % 81.2 39.4 29.4 59.0 133.2 23.1

% " 81.0 39.2 29.6 58.9 134.3 23.3

" % 81.6 39.6 29.6 59.2 134.2 23.2

" " 81.8 40.1 29.8 59.5 135.6 23.3

base transformer model without any modification. Then, we

incorporate GA module, AA module into the base model re-

spectively. Finally, we incorporate both GA and AA mod-

ule into the base model to build our RSTNet. In order to ex-

amine the generality, the above experiments are conducted

on ResNext101 grid features and ResNext152 grid features

and shown in Table 1 and Table 2, respectively.

In ResNext101 experiments, GA and AA schema al-

ready respectively bring an improvement with respect to the

base transformer (from 131.2 to 132.1 and 131.2 to 132.6

respectively). In ResNext152 experiments, the improve-

ment still exists (from 133.2 to 134.3 and 133.2 to 134.2

respectively), thus confirming that the two modules we pro-

posed are beneficial. When we combine the two modules to-

gether, a bigger improvement appears (from 131.2 to 133.3

and 133.2 to 135.6 in ResNext101 and ResNext152 experi-

ment respectively).

Table 3. Performance comparision with the state of the art on the

COCO ”Karpathy” test split.

Model

Metrics
B@1 B@4 M R C S

SCST [31] - 34.2 26.7 55.7 114.0 -

Up-Down [2] 79.8 36.3 27.7 56.9 120.1 21.4

RFNet [16] 79.1 36.5 27.7 57.3 121.9 21.2

GCN-LSTM [43] 80.5 38.2 28.5 58.3 127.6 22.0

SGAE [42] 80.8 38.4 28.4 58.6 127.8 22.1

ORT [12] 80.5 38.6 28.7 58.4 128.3 22.6

AoANet [13] 80.2 38.9 29.2 58.8 129.8 22.4

M2 Transformer [6] 80.8 39.1 29.2 58.6 131.2 22.6

X-Transformer [28] 80.9 39.7 29.5 59.1 132.8 23.4

RSTNet(ResNext101) 81.1 39.3 29.4 58.8 133.3 23.0

RSTNet(ResNext152) 81.8 40.1 29.8 59.5 135.6 23.3

4.3. Quantitative Analysis

Offline Evaluation We report the performance compar-

isons between our RSTNet and the state-of-art models on

the offline COCO Karpathy test split in Table 3. The mod-

els we compare to include SCST [31], Up-Down [2], RFNet

Table 4. Comparing with SOTAs on ResNext101 grid features

Model

Metrics
B@1 B@4 M R C S

UP-Down [2] 75.0 37.3 28.1 57.9 123.8 21.6

Transformer [6] 80.9 38.9 29.0 58.5 131.2 22.7

AoA Transformer [13] 80.8 39.1 29.1 59.1 130.3 22.7

M2 Transformer [6] 80.8 38.9 29.1 58.5 131.8 22.7

X-Transformer [28] 81.0 39.7 29.1 59.0 130.2 22.8

RSTNet(Ours) 81.1 39.3 29.4 58.8 133.3 23.0

[16], GCN-LSTM [43], SGAE [42], ORT [12], AoANet

[13], M2 Transformer [6], and X-Transformer [28]. SCST

uses attention over features and proposes self-critical train-

ing policy. Up-Down and RFNet boost the performance

by using attention over spatial regions. GCN-LSTM and

SGAE use Graph CNN and auto-encoding scene graphs

respectively to exploit pairwise relationships between im-

age regions for a rich semantic representation of the image.

ORT introduces transformer architecture into image cap-

tioning and models the spatial relationship between region

features. AoANet enhances conventional visual attention by

further measuring the relevance between the attention result

and query. M2 Transformer builds a full-connected archi-

tecture between each encoder layer and each decoder layer.

X-Transformer introduces Bilinear Pooling into the atten-

tion module of a base transformer. As it can be observed,

our RSTNet significantly outperforms all the other methods

in terms of most evaluation metrics.

Comparison with strong baselines In order to eliminating

the interference of grid features, we also conduct experi-

ments to compare our proposed RSTNet with the SOTAs

on the same ResNext101 grid features in Table 4. Note

that, the dmodel parameter of Transformer architecture in

X-Transformer is set to 768, while the one in other models

is set to 512, as a result, we adjust the dmodel parameter

of X-Transformer to 512 for a fair comparison, and choose

the 50 epoch results of self-critical training for displaying.

The eventual experimental results demonstrate that our pro-

posed RSTNet can achieve a superior performance when

comparing with other SOTA methods under the same visual

features and architecture configuration.

Online Evaluation We also report the performance of our

proposed RSTNet model on the online COCO test server.

The model we use is an ensemble of 4 RSTNet models

trained on the Karpathy training split. Table 5 shows the

performance of our RSTNet model comparing with the top-

performing models of the leaderboard over official testing

images with 5 reference captions (c5) and 40 reference cap-

tions (c40) respectively.

4.4. Qualitative Analysis

Figure 6 shows some examples of the captions generated

by our RSTNet and the original Transformer given the same
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Table 5. Leaderboard of the published state-of-the-art image captioning models on the COCO online testing server, where B@N, M, R and

C are short for BLEU@N, METEOR, ROUGE-L and CIDEr scores. All values are reported as percentage.

Model

Metrics B@1 B@2 B@3 B@4 METEOR ROUGE-L CIDEr-D

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST [31] 78.1 93.7 61.9 86.0 47.9 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-Down [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

RFNet [16] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 37.1 122.9 125.1

GCN-LSTM [43] 80.8 95.9 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

SGAE [42] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

ETA [20] 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4

AoANet [13] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

M2 Transformer [6] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

X-Transformer(ResNet-101) [28] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4

X-Transformer(SENet-154) [28] 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5

RSTNet(ResNext101) 81.7 96.2 66.5 90.9 51.8 82.7 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4

RSTNet(ResNext152) 82.1 96.4 67.0 91.3 52.2 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0

Figure 6. Examples of image captioning results by Base Trans-

former and our RSTNet, coupled with the corresponding ground-

truth sentences. Note that, Base Transformer and our RSTNet are

fed with the same visual features here.

images. Intuitively, the captions generated by our RST-

Net are more accurate and distinguishable comparing to the

original Transformer model.

In order to better demonstrate the usefulness of our RST-

Net, we investigate the Karpathy COCO test dataset, and

calculate all γ values for each image based on our RSTNet.

Note that if a word appears more than once in the caption

generation process for an image, we only extract one sin-

gle average value as the visualness of the word in that im-

age. We get a matrix image2word ∈ R
5000×10201, which

can be used to query word visualness for each image. We

then average the image2word matrix over the image di-

mension, and get a vector word2visualness ∈ R
10201 to

represent the visualness of each word. Finally, in Fiugre 5,

we visualize the representative top and bottom words and

their corresponding images according to word2visualness
and image2word. High visualness words can be clearly

identified in the image, while the images of low visualness

words tend to contain random objects and scenes. These re-

sults are in accordance with people’s intuition, which shows

that our RSTNet can well distinguish visual and non-visual

words, providing an intuitive explanation to its superior per-

formance against the previous models.

5. Conclusion

In this paper, we present RSTNet, a novel Relationship-

Sensitive Transformer-based model for image captioning,

which encodes images with grid-augmented visual features

and models visual and non-visual words with adaptive at-

tention. On the one hand, our RSTNet incorporates relative

spatial geometry features to compensate for the loss of spa-

tial information when grid features are flattened. On the

other hand, our RSTNet utilizes an adaptive attention mod-

ule to dynamically measure the contribution of visual sig-

nals and language signal for word prediction at each time

step. Extensive experiments on MS-COCO dataset and the

visualization of the proposed visualness attribute demon-

strate the effectiveness of our model.
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