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Abstract

This paper strives for repetitive activity counting in

videos. Different from existing works, which all analyze the

visual video content only, we incorporate for the first time

the corresponding sound into the repetition counting process.

This benefits accuracy in challenging vision conditions such

as occlusion, dramatic camera view changes, low resolution,

etc. We propose a model that starts with analyzing the sight

and sound streams separately. Then an audiovisual temporal

stride decision module and a reliability estimation module

are introduced to exploit cross-modal temporal interaction.

For learning and evaluation, an existing dataset is repur-

posed and reorganized to allow for repetition counting with

sight and sound. We also introduce a variant of this dataset

for repetition counting under challenging vision conditions.

Experiments demonstrate the benefit of sound, as well as

the other introduced modules, for repetition counting. Our

sight-only model already outperforms the state-of-the-art by

itself, when we add sound, results improve notably, especially

under harsh vision conditions. The code and datasets are

available at https://github.com/xiaobai1217/

RepetitionCounting.

1. Introduction

The goal of this paper is to count in video the repetitions

of (unknown) activities, like bouncing on a trampoline, slic-

ing an onion or playing ping pong. The computer vision

solutions to this challenging problem have a long tradition.

Early work emphasized on repetitive motion estimation by

Fourier analysis, e.g., [4, 10, 24, 36], and more recently by a

continuous wavelet transform [28, 29]. State-of-the-art solu-

tions rely on convolutional neural networks [11, 21, 42] and

large-scale count-annotated datasets [11, 42] to learn to pre-

dict the number of repetitions in a video. Albeit successful,

all existing works focus exclusively on the visual modality,

and could fail in poor sight conditions such as low illumi-

nation, occlusion, camera view changes, etc. Different from

existing works, we propose in this paper the first repetitive

activity counting method based on sight and sound.

Analyzing sound has recently proven advantageous in a
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Figure 1: From sight and sound, as well as their cross-modal in-

teraction, we predict the number of repetitions for an (unknown)

activity happening in a video. This is especially beneficial in chal-

lenging vision conditions with occlusions and low illumination.

variety of computer vision challenges, such as representation

learning by audio-visual synchronization [1, 3, 19, 23], video

captioning [25, 34, 39], sound source localization [27, 30],

to name a few. Correspondingly, several mechanisms for

fusing both modalities have been introduced. In works for

action recognition by previewing the audio track [20] and

talking-face generation [31, 38], the audio network usually

works independently and the predictions guide the inference

process of the visual counterpart. In contrast, feature multipli-

cation and concatenation operations, as well as cross-modal

attention mechanisms, are widely adopted for fusion in tasks

like audio-visual synchronization [2, 19, 27] and video cap-

tioning [25, 34, 39]. We also combine sight and sound, but

observe that for some activities, like playing ping pong, hu-

mans can count the number of repetitions by just listening.

This gives us an incentive that sound could be an important
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cue by itself. Hence, an intelligent repetition counting system

should be able to judge when the sight condition is poor and

therefore utilize complementary information from sound.

The first and foremost contribution of this paper is ad-

dressing video repetition estimation from a new perspective

based on not only the sight but also the sound signals. As a

second contribution, we propose an audiovisual model with

a sight and a sound stream, where each stream facilitates

each modality to predict the number of repetitions. As the

repetition cycle lengths may vary in different videos, we

further propose a temporal stride decision module to select

the best sample rate for each video based on both visual

and audio features. Our reliability estimation module finally

exploits cross-modal temporal interaction to decide which

modality-specific prediction is more reliable. Since existing

works focus on visual repetition counting only, our third con-

tribution entails two sight and sound datasets that we derive

from Countix [11] and VGGsound [8]. One of our datasets

is for supervised learning and evaluation and the other for

assessing audiovisual counting in various challenging vision

conditions. Finally, our experiments demonstrate the benefit

of sound, as well as the other introduced network modules,

for repetition counting. Our sight-only model already outper-

forms the state-of-the-art by itself, and when we add sound,

the results improve further, especially under harsh vision

conditions. Before detailing our model, as summarized in

Figure 1, we first discuss related work.

2. Related Work

Repetitive activity counting. Existing approaches for repe-

tition estimation in video rely on visual content only. Early

works [4, 10, 24, 36] compress the motion field of video into

one-dimensional signals and count repetitive activities by

Fourier analysis [4, 10, 24, 36], peak detection [33] or singu-

lar value decomposition [9]. Burghouts and Geusebroek [5]

propose a spatiotemporal filter bank, which works online

but needs manual adjustment. Levy and Wolf [21] design

a classification network able to learn from synthetic data.

Their network is designed to extract features from an input

video with a predefined sampling-rate, which cannot handle

repetitions with various period lengths. The synthetic dataset

is also less suitable for usage in the wild. All of the above

methods assume the repetitions are periodic, so they can

cope with stationary situations only.

Recently, algorithms for non-stationary repetitive action

counting have been proposed. Runia et al. [28, 29] are the

first to address non-stationary situations. They leverage the

wavelet transform based on the flow field and collect a

dataset containing 100 videos including non-stationary repe-

titions, but the videos do not contain an audio track. Zhang

et al. [42] propose a context-aware framework based on a 3D

convolution network, and introduce a new activity repetition

counting dataset based on UCF101 [32]. While effective,

the temporal length of every two repetitions is predicted by

an iterative refinement, making the approach less appealing

from a computational perspective. Dwibedi et al. [11] collect

a large-scale dataset from YouTube, named Countix, contain-

ing more than 6,000 videos with activity repetition counts.

Their method utilizes temporal self-similarity between video

frames for repetition estimation. It chooses the frame rate

sampling the input video by picking the one with the maxi-

mum periodicity classification score. While appealing, such

a rate selection scheme is not optimal for accurate counting,

as it is prone to select high frame rates leading to omissions.

Different from all these existing methods, we propose to

address repetitive activity counting by sight and sound. Our

network contains a temporal stride decision module able to

choose the most suitable frame rate for counting, based on

features from both modalities. To facilitate our investiga-

tion, we reorganize and supplement the Countix [11] dataset,

to arrive at two audiovisual datasets for repetitive activity

counting by sight and sound.

Learning by sight and sound. Many have demonstrated the

benefit of audio signals for various computer vision chal-

lenges, e.g., action recognition [14, 20], audiovisual event

localization [40] and self-supervised learning [1, 3, 19, 23].

As processing audio signals is much faster than video frames,

both Korbar et al. [20] and Gao et al. [14] reduce the compu-

tational cost by previewing the audio track for video analysis.

However, the Kinetics-Sound [1] used for training and eval-

uation in [1, 14, 20] is simply formed by all the videos in the

Kinetics dataset [6] covering 34 human action classes, which

are potentially manifested visually and aurally. As a result,

the audio track of many videos is full of background music,

which introduces noise for training and fair evaluation. Re-

cent talking-face generation works exploit sound for creating

photo-realistic videos [31,38]. While audio features are used

to generate expression parameters in [31], Wang et al. [38]

to map the audio to lip movements. There are also numer-

ous works [7, 18, 19, 30, 37, 41] that consider the interaction

between both modalities. Some simply integrate features

by concatenation for tasks like saliency detection [37] and

self-supervised learning [2, 19, 27]. Cartas et al. [7] combine

multi-modal predictions by averaging or training a fully con-

nected layer independently, for egocentric action recognition.

Works for sound source localization [27, 30] and separa-

tion [12, 13, 41, 43] also commonly generate cross-modal

attention maps. Hu et al. [17] use audio features to modulate

the visual features for more accurate crowd counting.

Exploiting sound for activity repetition counting is still

unexplored and to obtain audiovisual datasets facilitating

our research, we also select videos with usable audio track

from a large scale visual-only dataset manually to reduce

label noise. To cope with various ‘in the wild’ conditions,

we further introduce a novel scheme to explicitly estimate

the reliability of the predictions from sight and sound.
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Figure 2: Proposed class-agnostic activity repetition counting model. Our model contains four components (1) sight stream, (2) sound

stream, (3) temporal stride decision module and (4) reliability estimation module. Both streams contain a backbone network that outputs a

modality-specific counting prediction. The temporal stride decision module takes audio and visual features as inputs and outputs the frame

sample rate for the input video. Finally, the reliability estimation module decides what prediction from which modality to use.

3. Model

Given a video, containing a visual stream and its corre-

sponding audio stream, our goal is to count the number of

repetitions of (unknown) activities happening in the content.

To achieve this, we propose a model that contains four mod-

ules. (i) The sight stream adopts a 3D convolutional network

as the backbone. It takes video clips as inputs and outputs the

counting result for each clip. (ii) For the sound stream, we

rely on a 2D convolutional network, which takes the sound

spectrogram generated by the short-time Fourier transform

as input and outputs the counting result in the same way as

the sight stream. (iii) A temporal stride decision module is

designed to select the best temporal stride per video for the

sight stream based on both visual and audio features. (iv)

Finally, the reliability estimation module decides what pre-

diction to use. The overall model is summarized in Figure 2

and detailed per module next.

3.1. Repetition Counting by Sight

The sight stream uses an S3D [35] architecture and the

final classification layer is replaced by two separate fully

connected layers, as shown in Figure 2. Given a video clip

Vi of size T×H×W×3, visual features are extracted with

the following equation:

vi,feat = VCNN(Vi), (1)

where vi,feat ∈ R
512. Intuitively, a fully connected layer with

one output unit could suffice to output the counting result.

However, this setting leads to inferior repetition counts since

different types of movements should not be counted in the

same way, and each action class cannot be simply regarded

as one unique repetition class. For example, different videos

of doing aerobics contain various repetitive motions, while

bouncing on a bouncy castle or a trampoline contains similar

movements despite belonging to different action classes.

Therefore, in our work, two fully connected layers work

in tandem, with one f1
v outputting the counting result of

each repetition class and the other one f2
v classifying which

repetition class the input belongs to:

C
0

i,v = f1
v (vi,feat),C

0

i,v ∈ R
P ,

Ti,v = softmax(f2
v (vi,feat)),Ti,v ∈ R

P ,
(2)

where P is the number of repetition classes, C
0

i,v is the

counting result of each class, and Ti,v is the classification

result by the softmax operation. Here, we assume that there

are roughly P classes of repetitive motion patterns, and the

network learns to classify the training videos into those P

classes automatically during training. Then the final counting

result Ci,v from the visual content is obtained by:

Ci,v =

PX

k=1

C
0

i,v(k)Ti,v(k). (3)

For training the repetition counting, we define the loss func-

tion as follows:

L
0

=
1

N

NX

i=1

L2(Ci,v, li) + λv
1

|Ci,v − li|

li
, (4)

where N is the batch size, L2 is the L2 loss [26], li is the

groundtruth count label of the ith sample and λv
1 is a hy-
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perparameter for the second term. Note that when using

the L2 loss only, the model tends to predict samples with

groundtruth counts of large values accurately, due to higher

losses, while for videos with a few repetitions, the predicted

counts tend to be unreliable. Therefore, we add a second

term here to let the model pay more attention to such data.

Besides, we expect the output units of f2
v to focus on

different repetition classes given various videos. However,

without constraint, f2
v could simply output a high response

via the same unit. To avoid such degenerated cases, we add

a diversity loss [22] based on the cosine similarity:

Ldiv
i,v =

P−1X

q=1

PX

j=q+1

T
q
i,v · T

j
i,v

||T q
i,v||||T

j
i,v||

, (5)

where T q
v and T j

v are the qth and jth units of the classification

outputs. By minimizing such a diversity loss, the output

Tv in the same batch are encouraged to produce different

activations on different types of repetitive motions. Then the

total loss function is:

Lv =
1

N

NX

i=1

L2(Ci,v, li) + λv
1

|Ci,v − li|

li
+ λv

2L
div
i,v, (6)

where λv
2 is a hyperparameter.

3.2. Repetition Counting by Sound

The sound stream adopts a ResNet-18 [15] as the back-

bone. Following [8, 16], we first transform the raw audio

clip into a spectrogram and then divide it into a series of

257×500 spectrograms, which become the inputs to our net-

work. Similar to the sight stream, we also replace the final

classification layer by two separate fully connected layers,

with one classifying the input and the other one outputting

the corresponding counting result of each repetition class.

We use the same loss function as the sight stream:

La =
1

N

NX

i=1

L2(Ci,a, li) + λa
1

|Ci,a − li|

li
+ λa

2L
div
i,a, (7)

where Ci,a is the counting result from the audio track, and

λa
1 and λa

2 are hyperparameters.

3.3. Temporal Stride Decision

Repetitions have various period lengths for different

videos. For the sound stream, we can simply resize the spec-

trogram along the time dimension to ensure each 257×500
segment to have at least two repetitions. However, for the

sight stream, we cannot roughly resize the video frames

along the time dimension. Therefore, for each video, we

need to use a specific temporal stride (i.e. frame rate) to form

video clips of T frames as the inputs. This is important as

video clips with small temporal strides may fail to include at

least two repetitions, while too large temporal strides lead

the network to ignore some repetitions. Therefore, we add an

additional temporal stride decision module to select the best

temporal stride for each video. It has two parallel residual

blocks, processing visual and audio features from the third

residual block of the two streams, with the same structure as

those of the backbones. Then we concat the output features

(as shown in Figure 2) and send them into a fully connected

layer, which outputs a single unit representing the score of

the current temporal stride. We use a max-margin ranking

loss for training this module:

Ls =
1

N

NX

i=1

max(0, s−i − s+i +m), (8)

where m is the margin, s−i and s+i are the scores from nega-

tive and positive strides. During inference, we send a series

of clips from the same video with different strides into the

network, and select the stride with the highest score.

Training details. For each training video, the trained visual

model predicts the counting result with a series of temporal

strides, i.e. s = 1, ..., Sk, ..., SK , where SK is the maximum

stride we use. Then we can obtain corresponding predic-

tions C1
i,v, ..., C

SK

i,v . First, we select the temporal strides that

cover less than two repetitions as negative strides. Then,

we choose the smallest stride that is enough to contain at

least two repetitions as the positive temporal stride S∗. Cor-

respondingly, for the remaining strides, we quantitatively

compute their prediction deviations from the prediction of

the positive stride by:

δn =
C∗

i,v − Ck
i,v

C∗

i,v

, (9)

where C∗

i,v and Ck
i,v are the counting predictions from the

best stride and a selected stride, and δn is the computed

deviation. Finally, we select strides with δn>θs (θs is a

predefined threshold) as negative strides, since for these

strides, the network begins to omit certain repetitions. During

training, for each video, its S∗ is used to form a positive

video clip outputting s+i , while we randomly select one from

the negative strides to generate the clip outputting s−i .

3.4. Reliability Estimation

Depending on the sensory video recording conditions,

the reliability of the sight and sound predictions may vary.

To compensate for this variability, we introduce a reliability

estimation module to decide what prediction from which

modality is more reliable for the current input. As shown

in Figure 2, it contains one residual block for processing

the audio feature and one fully connected layer taking fea-

tures from both modalities as inputs. The output is a single

unit processed by a sigmoid function and represents the
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confidence γ of the audio modality. Correspondingly, the

confidence of the visual modality is 1 − γ. Then the final

counting result is obtained by:

Ci = Ci,v ∗ (1− γ) + Ci,a ∗ γ. (10)

As Ci is expected to be close to the groundtruth counting

label, the loss function we use for training is:

Lr =
1

N

NX

i=1

|Ci − li|

li
. (11)

Training details. During training, for each video, the ac-

curacy of Ci,v and Ci,a in Eq. 10 is expected to indicate

the reliability of the corresponding modality content. To

get Ci,v and Ci,a, one simple approach is to directly use

the predictions from the trained models. However, we em-

pirically observe that such a manner suffers from severe

over-fitting, since the learned models could overfit to recent

training samples with poor modality content. As a result,

the obtained Ci,v and Ci,a cannot represent the reliability

effectively. However, for one modality of a video, if the

corresponding model predicts inaccurately most of the time

during training, then intuitively the content may be too noisy

or poor for learning. Therefore, instead of Ci,v and Ci,a

from the final models, we use the average prediction of each

stream at different training stages. Here, we take the sight

stream as an example. After each training epoch, if the loss

computed by 1

N

PN
i=1

|Ci,v−li|
li

, N is the number of videos,

over the validation set is below a threshold θvr (i.e. current

model parameters have competitive performance), we record

the predictions of the model over the training videos. Once

the training is finished, we can obtain the average prediction

(i.e. empirical prediction) of each training video by record-

ings correspondingly. The empirical prediction of the sound

stream is computed in the same way, with a threshold θar for

the validation loss. Finally, our reliability estimation module

uses those empirical predictions for Eq. 10 during training

and learns to switch between sight and sound models for

effective late fusion.

4. Experimental Setup

4.1. Datasets

Existing datasets for repetition counting [11, 21, 28, 42]

focus on counting by visual content only. Thus, the videos

have either no audio information at all, or at best a few only.

Nonetheless, we evaluate our (sight) model on the two largest

existing visual-only datasets, i.e. UCFRep and Countix. As

we focus on counting by sight and sound, we also repurpose,

reorganize and supplement one of those two datasets.

UCFRep. The UCFRep dataset by Zhang et al. [42] contains

526 videos of 23 categories selected from UCF101 [32], a

widely used benchmark for action recognition, with 420

Vision challenge Number of videos

Camera viewpoint changes 69

Cluttered background 36

Low illumination 13

Fast motion 31

Disappearing activity 25

Scale variation 24

Low resolution 29

Overall 214

Table 1: Extreme Countix-AV dataset statistics.

and 106 videos for training and validation. Particularly, it

has boundary annotations for each repetition along the time

dimension. However, the large majority of videos do not

have any associated audio track.

Countix. The Countix dataset by Dwibedi et al. [11] serves

as the largest dataset for video repetition counting in the

wild. It is a subset of the Kinetics [6] dataset annotated with

segments of repeated actions and corresponding counts. The

dataset contains 8,757 videos in total of 45 categories, with

4,588, 1,450 and 2,719 for training, validation and testing.

Countix-AV. We repurpose and reorganize the Countix

dataset for our goal of counting repetitive activities by sight

and sound. We first select 19 categories for which the repeti-

tive action has a clear sound, such as clapping, playing tennis,

etc. As several videos contain artificially added background

music or have no audio track at all, they are less suited for

assessing the impact of the sound-stream, and the sight and

sound combination. Therefore, we manually filter out such

videos so that the videos preserved are guaranteed to contain

the environmental sound only, be it they may also include

realistic background noise or unclear repetition sounds. This

results in the Countix-AV dataset consisting of 1,863 videos,

with 987, 311 and 565 for training, validation and testing.

We maintain the original count annotations from Countix

and keep the same split (i.e. training, validation, or testing)

for each video. The dataset is detailed in the appendix.

Extreme Countix-AV. For most videos in Countix-AV, the

ongoing action is both visible and audible. As the audio sig-

nal is expected to play a vital role when the visual content is

not reliable, we further introduce the Extreme Countix-AV

dataset to quantitatively evaluate the benefits brought by au-

diovisual counting under various extreme sight conditions.

For data collection, we first define 7 vision challenges, ac-

cording to which we select videos. Then, 156 videos from

Countix-AV are selected and to enlarge this selection, we

choose and label another 58 videos from the VGGSound

dataset by Chen et al. [8]. The overall dataset and challenges

are summarized in Table 1, with video examples depicted in

Figure 3. More details are provided in the appendix.
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Figure 3: Example videos from the Extreme Countix-AV dataset. From top-row to bottom-row are videos with scale variation, camera

viewpoint change, fast motion, a disappearing activity and low resolution, with the numbers in colored boxes indicating counting results and

the corresponding groundtruth.

4.2. Evaluation Criteria

We adopt the same evaluation metrics as previous

works [11,24,28,29,42], i.e. the mean absolute error (MAE)

and off-by-one accuracy (OBO), defined as follows:

MAE =
1

N

NX

i=1

|ĉi − li|

li
, (12)

OBO =
1

N

NX

i=1

[|ĉi − li| ≤ 1], (13)

where N is the total number of videos, ĉi is the model pre-

diction of the ith video and li is the groundtruth. Specifically,

for the Extreme Countix-AV, we report MAE only, as those

videos have more repetitions than other datasets and OBO

cannot evaluate the performance effectively.

4.3. Implementation Details

We implement our method using PyTorch with two

NVIDIA GTX1080Ti GPUs. We provide training details

below and inference procedures in the appendix.

Sight and sound models. For the sight stream, all input

video frames are resized to 112×112, and we form each

clip of 64 frames with its temporal stride S∗ defined in

Section 3.3. We initialize the backbone with weights from

a Kinetics [6] pre-trained checkpoint. The training of the

sight model is on the original Countix training set [11] and

takes 8 epochs by SGD with a fixed learning rate of 10−4

and batch size of 8. λ1
v, λ2

v, λ1
a and λ2

a are all set to 10. The

sound model is trained with the same setting as the sight

stream but using our Countix-AV training set for 20 epochs.

Temporal stride decision module. The training takes 5
epochs with a learning rate of 10−3 after obtaining the neg-

ative strides of each video. Here, we provide two options.

First, it can be trained with the visual modality only, i.e.

without the audio feature, using the original Countix [11]

dataset so that the sight model can work independently. The

other option is our full setting (as shown in Figure 2) trained

on Countix-AV with the audio modality. Margin m in Eq. 8

is set to 2.9 and SK is set to 8. In experiments, we find the

value of θs does not influence results too much, and θs=0.29
works best (see appendix for ablation).
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Model components MAE ↓ OBO ↑

Sight stream 0.331 0.431

Sound stream 0.375 0.377

Sight with temporal stride 0.314 0.459

Averaging predictions 0.300 0.439

Full sight and sound model 0.291 0.479

Table 2: Benefit of model components on Countix-AV. All mod-

ules matter and reliability estimation is preferred over simple aver-

aging of sight and sound predictions.

Reliability estimation module. We first collect the empiri-

cal predictions before training, and θvr and θar are set to 0.36

and 0.40. Then, this module is trained on Countix-AV for 20

epochs with a learning rate of 10−4 and batch size of 8.

5. Results

Benefit of model components. Our model consists of four

main components: the sight and sound counting models, the

temporal stride decision module and the reliability estima-

tion module. We evaluate the performance of several network

variants on Countix-AV to validate the efficacy of each com-

ponent. The results are shown in Table 2. Note that for “Sight

stream” in the first row, its temporal stride decision module

takes the visual modality only as input. In isolation, the sight

stream performs better than the sound stream. When we in-

corporate audio features into the temporal stride decision

module, denoted as “Sight with temporal stride”, the MAE

of the sight stream is further reduced from 0.331 to 0.314.

This demonstrates the audio signals provide useful temporal

information. Simply averaging the predictions from both

modalities results in higher accuracy than either modality

alone. However, when we further reweigh the predictions by

our reliability estimation module, we obtain the best result

with an MAE of 0.291 and an OBO of 0.479.

Influence of loss function terms. The loss function used

for training the visual and audio models consists of three

terms. We perform an ablation on different term combina-

tions to further understand their contributions. Results in

Table 3 indicate both Ldiv and Lmae reduce the counting er-

ror, especially on the sound stream. We observe adding Ldiv

contributes to performance improvements because it allows

the units in the classification layer to affect each other during

training. It prevents this layer from converging to a degener-

ated solution, in which all videos are assigned to the same

repetition class. Combining all loss terms during training

produces best results for both modalities.

Effect of repetition classes. As detailed in Eq. 2 and 3, our

counting models for both modalities involve a parameter P ,

i.e. the number of repetition classes. We evaluate its effect

on both the sight and sound models. To this end, we fix the

Sight Sound

Loss term MAE ↓ OBO ↑ MAE ↓ OBO ↑

L2 0.371 0.424 0.471 0.338

L2 + Ldiv 0.324 0.478 0.410 0.343

Ldiv + Lmae 0.356 0.446 0.447 0.310

L2 + Lmae 0.370 0.421 0.426 0.340

L2 + Ldiv + Lmae 0.314 0.498 0.375 0.377

Table 3: Influence of loss function terms on Countix-AV. Each

term lowers the counting error, while Ldiv is indispensable.

backbone architectures and train them by setting P from 1
to 50 with the same setting described in Section 4.3. Here,

we do not include cross-modal interactions, i.e. the sight and

sound models are trained and evaluated on Countix and our

Countix-AV datasets, separately. The results are shown in

Figure 4. The performances of both models are inferior when

P has a low value, demonstrating the need to model various

types of repetitions. The performance fluctuates only slightly

when P is between 20 and 50. We observe that there is a

spike when P=36 for both streams, at where the networks

converge to local minimum and this can be eliminated by

more training epochs. In particular, the sight and sound mod-

els obtain their best results at P=41 and P=43, the values

we use for all other experiments, while Countix [11] and

our Countix-AV cover 45 and 19 action categories. Thus,

the repetition types do not simply correspond to the number

of action categories. For instance, in Figure 3, the second

and the last rows have similar repetition classification distri-

butions, while dissimilar to the fourth row. We show more

examples in the supplementary material.

Figure 4: Effect of repetition classes. The performances of both

streams fluctuates slightly when P is large enough, and achieves

the best result when P=41 (sight) and P=43 (sound).
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UCFRep Countix Countix-AV Extreme Countix-AV

MAE ↓ OBO ↑ MAE ↓ OBO ↑ MAE ↓ OBO ↑ MAE ↓

Baseline† 0.474 0.371 0.525 0.289 0.503 0.269 0.620

Dwibedi et al. [11] - - 0.364 0.697 - - -

Levy and Wolf* [21] 0.286 0.680 - - - - -

Zhang et al. [42] 0.147 0.790 - - - - -

This paper: Sight 0.143 0.800 0.314 0.498 0.331 0.431 0.392

This paper: Sound - - 0.793 0.331 0.375 0.377 0.351

This paper: Sight & Sound - - 0.307 0.511 0.291 0.479 0.329

† Sight-only model, pre-trained on Countix, publicly released by authors of [11].

* Sight-only model [21], reproduced and pre-trained on UCFRep by authors of [42].

Table 5: Comparison with state-of-the-art. Our sight model outperforms two recent state-of-the-art repetition counting algorithms in

terms of MAE, while combining sight and sound shows further benefit in reducing counting error, especially in visually challenging settings.

Vision challenge Sight Sound Sight & Sound

Camera viewpoint changes 0.384 0.376 0.331

Cluttered background 0.342 0.337 0.307

Low illumination 0.325 0.269 0.310

Fast motion 0.528 0.311 0.383

Disappearing activity 0.413 0.373 0.339

Scale variation 0.332 0.386 0.308

Low resolution 0.348 0.303 0.294

Overall 0.392 0.351 0.329

Table 4: MAE metric on hard cases in repetition counting.

Sound tends to have lower MAE than sight. Combining sight and

sound always outperforms sight only.

Effectiveness of temporal stride module. We also consid-

ered fixed temporal strides for the sight-stream on Countix.

MAE varies from 0.607 to 0.378 (see appendix). Our tempo-

ral stride decision module obtains a better 0.314 MAE.

Hard cases in repetition counting. To quantitatively evalu-

ate the contribution of sound information and how sensitive

the sight stream is under different visually challenging envi-

ronment, we test the sight, sound and full sight and sound

model separately on the Extreme Countix-AV dataset. The

results are listed in Table 4. Compared to the performance

on Countix-AV dataset, which is dominated by videos with

normal sight conditions, the MAE of the sight stream in-

creases considerably. In contrast, the sound stream performs

stably and is superior under visually challenging circum-

stances as expected, except for the scale variation challenge.

This means that changes in image quality can easily affect

the sight stream. Especially when activities are moving fast

or disappearing due to occlusions, the value of the sound

stream is prevalent. Combining sight and sound is always bet-

ter than sight only, resulting in considerable MAE reductions

on videos with camera view changes, disappearing activities,

scale variation and cluttered background. For scale variation,

the sound stream does not perform competitively compared

to the sight stream, while the fused results do improve over

the sight stream. This again indicates the effectiveness of

our reliability estimation module. For low illumination and

fast motion, the sight stream performs poor compared to

the sound stream, and the combination cannot improve over

the sound stream only. Overall, the integration of sight and

sound is better than unimodal models and more stable when

the imaging quality varies.

Comparison with state-of-the-art. We compare our

method with two recent state-of-the-art (vision-only) rep-

etition counting models [11, 42] and one early work by Levy

and Wolf [21], as shown in Table 5. As the complete code

of [11] is unavailable, we also report the performance of

their released (vision-only) model as a baseline. Our sight-

only stream already outperforms Dwibedi et al. [11] on their

original Countix dataset with respect to the MAE metric, and

achieves competitive performance on UCFRep [42]. Note

the work by Zhang et al. [42] needs the training videos to

have boundary annotations for each repetition, which are

not provided for Countix [11]. As Countix is dominated by

“silent” repetitions, our sound-only model performs inferior

compared to the sight-only model. Nevertheless, our full

sight and sound model sets a new state-of-the-art on all three

Countix datasets in MAE and surpasses the released model

of [11] by a large margin. Therefore, we conclude that when

the original sound track of the video is available, audiovisual

repetition counting is superior to sight-only models.

6. Conclusion

We propose to count repetitive activities in video by sight

and sound using a novel audiovisual model. To facilitate

further progress, we repurpose and reorganize an existing

counting dataset for sight and sound analysis. Experiments

show that sound can play a vital role, and combining both

sight and sound with cross-modal temporal interaction is

beneficial. Using sight only we already outperform the state-

of-the-art in terms of MAE. When adding sound, results

improve further, especially under harsh vision conditions.
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