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Abstract

Bayesian neural networks have been widely used in

many applications because of the distinctive probabilistic

representation framework. Even though Bayesian neural

networks have been found more robust to adversarial at-

tacks compared with vanilla neural networks, their ability

to deal with adversarial noises in practice is still limited.

In this paper, we propose Spectral Expectation Bound Reg-

ularization (SEBR) to enhance the robustness of Bayesian

neural networks. Our theoretical analysis reveals that

training with SEBR improves the robustness to adversar-

ial noises. We also prove that training with SEBR can re-

duce the epistemic uncertainty of the model and hence it can

make the model more confident with the predictions, which

verifies the robustness of the model from another point of

view. Experiments on multiple Bayesian neural network

structures and different adversarial attacks validate the cor-

rectness of the theoretical findings and the effectiveness of

the proposed approach.

1. Introduction

Bayesian neural networks [8, 29] provide a probabilis-

tic view of deep learning frameworks by treating the model

weights as random variables. One of the profound advan-

tages of a Bayesian neural network is that it can provide

both the aleatoric uncertainty and the epistemic uncertainty

estimations because of the probabilistic representation of

the model. In contrast, a vanilla deep neural network only

models the aleatoric uncertainty by a certain probability dis-

tribution. Thus, Bayesian neural networks are successfully

applied in many tasks to model uncertainties and build a

more reliable and robust system, including but not limited

to computer vision tasks [17, 20, 30] and natural language

processing tasks [39].

*Tao Song is the corresponding author.
†This work was supported in part by National NSF of China (NO.

61872234, 61732010, 61525204) and Shanghai Key Laboratory of Scal-

able Computing and Systems.

Neural network models without particular settings [2,

14] are sensitive and vulnerable to adversarial attacks in

testing. Defenses against adversarial attacks are difficult.

The Lipschitz constant serves as an evaluation metric of

the adversarial robustness of a model by providing a worst-

case bound [18, 37]. Many previous methods enhance

the model robustness by constricting the Lipschitz constant

[10, 23, 31]. These methods have made a significant im-

provement in both theoretical analysis and practical appli-

cations. However, they cannot be used in Bayesian neural

networks directly because of the probabilistic representa-

tions of model parameters.

Bayesian neural networks, on the other hand, are use-

ful for defending adversarial noises compared with vanilla

neural networks. Because of the probabilistic representa-

tions of model parameters and predictions, Bayesian neu-

ral networks can be applied to detect adversarial samples

from normal samples [5, 24, 34]. Moreover, Bayesian neu-

ral networks have been found to have adversarial robustness

naturally. Y. Gal et al. [13] and Carbone et al. [9] reveal

that any gradient-based adversarial attacks are invalid on

Bayesian neural networks under some extremely idealized

conditions, e.g., idealized architecture [13], sufficient data

and sampling times [9]. Nonetheless, these studies all have

certain limitations. In many practical scenarios, predictions

on adversarial samples are still necessary even though they

have been detected. Additionally, the idealized conditions

are almost impossible in practice. Therefore, there is still

a vast space for further improvement of the robustness of

Bayesian neural networks.

This paper presents a method, Spectral Expectation

Bound Regularization (SEBR), to enhance the robustness

of Bayesian neural networks. The model trained with SEBR

has a smaller expectation of the spectral norm of the training

parameter matrices. As a result, the improvement on the ad-

versarial robustness of Bayesian neural networks is guaran-

teed based on theoretical derivation in this paper. Moreover,

the impact of SEBR on the epistemic uncertainty of the out-

put of Bayesian models is also studied theoretically and it

further verifies the robustness of the proposed method. Ex-
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periments are carried out to validate both the correctness of

the theoretical findings and the improvement on the robust-

ness of the models in a variety of actual scenarios.

In summary, the main contributions are listed as follows:

• This paper proposes Spectral Expectation Bound Reg-

ularization (SEBR), which applies the Lipschitz con-

straint in Bayesian neural networks efficiently. Ac-

cording to the theoretical analysis, it can improve the

robustness of the Bayesian neural network models.

• It is proved that SEBR training reduces the uncertainty

of the model effectively in theoretical analysis, which

provides another explanation of the model robustness.

• Experiments on multiple Bayesian neural network

structures verify the theory and the effectiveness of the

proposed method. The codes are available in https:

//github.com/AISIGSJTU/SEBR.

2. Related Work

Robustness on Bayesian Neural Networks. Bayesian

neural networks, where the model weights are treated as

random variables, provide a probabilistic view of deep

learning models [29]. Many previous methods investigated

the robustness of Bayesian neural networks. It has been

shown that Bayesian neural networks are effective in de-

tecting adversarial samples [5, 24, 34], and it is observed

that models tend to make wrong predictions on adversarial

samples where the model outputs have high uncertainties

[24]. X. Liu et al. applied adversarial training in Bayesian

neural networks and gained an obvious robustness improve-

ment [25]. From another point of view, Y. Gal et al. [13]

revealed that idealized Bayesian neural networks can even

avoid adversarial attacks. As the sufficient conditions in

[13] are difficult to achieve in practice, Carbone et al. [9]

further demonstrated that Bayesian neural networks are ro-

bust to gradient-based adversarial attacks in the large-data,

over-parameterized limit. However, as the idealized condi-

tions are almost impossible, Bayesian neural networks do

not perform perfectly on defending against adversarial at-

tacks in real tasks.

Lipschitz Constraint in Neural Networks. Methods

about Lipschitz continuity are widely used to enhance

the robustness and other targets in deep learning models.

Yoshida and Miyato [40] proposed the spectral norm regu-

larization to maintain the Lipschitz continuity by penalizing

the sum of spectral norms of the parameter weight matrices.

Further, Gouk et al. generalized the spectral norm regular-

ization to non-l2 norms and convolution layers [15]. On the

other hand, Miyato et al. [28] proposed spectral normaliza-

tion, where the spectral norms are normalized so that the

Lipschitz constraint Lip(f) = 1 is satisfied. It is added

into the discriminator in a generative adversarial network

and the quality of generated samples gets improved. Jens

Behrmann et al. [4] proved that the ResNet is invertible if

its Lipschitz constant is restricted to Lip(f) < 1 on the

residual blocks. Many other papers [3, 6, 12, 19, 32] apply

the Lipschitz constraint and spectral norm in deep learning

to enhance the generalizability and robustness. However,

these existing methods are not suitable for Bayesian neu-

ral networks because of the probabilistic representations of

parameters. Our method is the first to apply the Lipschitz

constraint in Bayesian neural networks.

3. Background

3.1. Variational Inference in Bayesian Neural Net­
works

Suppose we have observations D = {(x1,y1), (x2,y2),
. . . }. A Bayesian neural network parameterized by W uses

a variational distribution Q(W) to approximate the true

posterior probability P (W|D). For simplicity, we con-

sider Bayesian neural networks with Gaussian priors, and

parameters are represented as Gaussian distributions. The

Bayesian neural network minimizes the Kullback–Leibler

(KL) divergence

KL(Q(W)||P (W|D))) = −

∫

Q(W) log
P (W|D)

Q(W)
dW

= logP (D)−

∫

Q(W) log
P (W,D)

Q(W)
dW.

(1)

Since logP (D) is a constant for given observations D, min-

imizing the KL divergence is equivalent to minimizing

L = −

∫

Q(W) log
P (W,D)

Q(W)
dW

= −EW logP (D|W) +KL(P (W)||Q(W))).

(2)

Note that −L is a lower bound of logP (X), thus L is usu-

ally called the Evidence Lower Bound (ELBO) loss [7]. In

practical Bayesian neural networks, the first term is usually

estimated for each sample (x,y) in the observations by the

following Monte Carlo sampling

−EW logP (D|W) ≈ −
1

K

K∑

k=1

log p(y|x,Wk),Wk ∼ Q(W),

(3)

where log p(y|x,Wk) can be calculated by the cross-

entropy loss in classification tasks. The second term

KL(P (W)||Q(W))) is directly computed analytically

with a presumed prior distribution.
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3.2. Lipschitz Continuity for Neural Networks

Lipschitz continuity is a significant property of a func-

tion in mathematical analysis. A function f : X → Y , is

said to be Lipschitz continuous if there exists a real constant

α ≥ 0 such that, for ∀x1,x2 ∈ X , we have

dY (f (x1) , f (x2)) ≤ α · dX (x1,x2) , (4)

where dX and dY denote the distance metrics on set X and

Y , respectively. The smallest α that satisfies this condition

is referred to as the Lipschitz Constant of function f . In

the context of a deep neural network, the function f is a

composite function composed by multiple functions:

f(x) = (φL ◦ φL−1 · · · ◦ φ1) (x), (5)

where each φl is the mapping function of each layer l =
1, · · · , L. For the convenience of expression, we let Lip(·)
represent the Lipschitz constant of a function. According to

the composition property of Lipschitz continuity, we have

Lip(f) ≤

L∏

l=1

Lip(φl). (6)

Hence, to constraint the Lipschitz constant of the whole

function f , it is sufficient to bound the Lipschitz constants

for the mapping functions φl of each layer l = 1, · · · , L.

3.3. Uncertainty Estimation

Uncertainty estimation is one of the significant func-

tions of Bayesian neural networks, which is also essential

in the evaluation of the robustness of a deep learning model

[16, 24, 27]. For a classification model with parameters W,

input x and output y in classes C = {c1, c2, . . . , cm}, fol-

lowing previous work [1, 11], we model the uncertainty in

the prediction by its predictive entropy

H(y|x,W) =

m∑

i=1

p(y = ci|x,W) log p(y = ci|x,W).

(7)

It contains both aleatoric uncertainty Ha and epistemic un-

certainty He. The aleatoric uncertainty Ha is given by

Ha(y|x,W) = EWH(y|x,W) ≈
1

K

K∑

k=1

H(y|x,Wk),

(8)

which implies that it can be estimated by K Monte Carlo

samplings. The epistemic component He is given by the

difference between the total uncertainty H and the aleatoric

uncertainty Ha, i.e.,

He(y|x,W) = H(y|x,W)− EWH(y|x,W). (9)

In a regression task, the output becomes a vector y in-

stead of a class, which means the predictive entropy cannot

be used to measure the uncertainty. Instead, the uncertainty

can be measured by the following variance of the Gaussian

mixture distribution over outputs [1]:

H(y|x,W) = σ2(y|x,W) =
1

K

K∑

k=1

σ2(y|x,Wk)

︸ ︷︷ ︸

aleatoric uncertainty

+
1

K

K∑

k=1

µ(y|x,Wk)
2 −

(

1

K

K∑

k=1

µ(y|x,Wk)

)2

︸ ︷︷ ︸

epistemic uncertainty

.

(10)

The aleatoric uncertainty Ha is usually used to model the

uncertainty caused by the noise in data, while the epistemic

uncertainty He corresponds to the uncertainty in model pa-

rameters and model structures [1].

4. Spectral Expectation Bound Regularization

Here we consider an L-layer feed-forward Bayesian neu-

ral network to explain our method. A layer with the map-

ping function fW(x) = f(Wx + b) accepts x ∈ R
m as

the input. Here f(·) represents an activation function, e.g.

relu and sigmoid, and W represents all trainable pa-

rameters of the function, including W and b. The elements

in parameter matrices W and b are all random variables

in the Bayesian framework. Therefore, when we forward

the function multiple times, the output vector y is sampled

from a probabilistic distribution determined by input x and

parameters W.

In the following section, we will consider how to make

the function robust to a given perturbation. The following

theorem presents that the expectation of disturbance of the

output in a layer is bounded by the expectation of the spec-

tral norm of parameter matrix E‖W‖2, the length of the

perturbation vector ‖ξ‖, and the Lipschitz constant of the

activation function Lip(f).

Theorem 1. Consider function fW(x) = f(Wx + b),
where the activation function f(·) is Lipschitz continuous

with Lipschitz constant Lip(f). For any perturbation ξ with

norm ‖ξ‖, we have

EW ‖fW(x+ ξ)− fW(x)‖ ≤ Lip(f) · E‖W‖2 · ‖ξ‖,
(11)

where ‖W‖2 represents the spectral norm of matrix W , and

it is defined as

‖W‖2 = max
ξ∈Rn,ξ 6=0

‖Wξ‖

‖ξ‖
. (12)
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The proof of this theorem is given in the Supplementary

Material. Note that the Lipschitz constant of the activation

function f(·) is fixed for a given Bayesian neural network

structure. Besides, the Lipschitz constant of many popu-

larly used activation function, e.g., relu and sigmoid,

is bounded by 1. Therefore, the expectation of the spectral

norm of the weight matrix can influence the sensitivity of

a Bayesian neural network model. The model will become

more robust if E‖W‖2 of each layer get restricted.

Similar to the spectral norm regularization in vanilla neu-

ral networks [40], a simple method to restrict E‖W‖2 in a

Bayesian neural network model is to add it to the loss as a

regularization term, i.e.,

minimize
W

L+
λ

2

L∑

l=1

(E‖W l‖2)
2, (13)

where the expectation is estimated by Monte Carlo sam-

pling and the spectral norm is calculated by the Power Iter-

ation method. However, this method has a very high com-

putational complexity. We denote the times of Monte Carlo

sampling as K and the iterations of Power Iteration as N .

Then, the time complexity of such calculation is O(KN).
To accelerate the training process, we propose a method to

fast estimate the upper bound of E‖W‖2 analytically, in-

stead of directly estimating the expectation for W by Monte

Carlo sampling and Power Iteration.

Theorem 2 gives an upper bound of the expectation of

the spectral norm of a Gaussian random matrix.

Theorem 2. Consider a Gaussian random matrix W ∈
R

m×n, where Wij ∼ N(Mij , A
2

ij) with M,A ∈ R
m×n.

Suppose G ∈ R
m×n is a zero-mean Gaussian random ma-

trix with the same variance, i.e., Gij ∼ N(0, A2

ij). We have

E‖W‖2

≤‖M‖2 + c

(

max
i

‖Ai,:‖+max
j

‖A:,j‖+ Emax
i,j

|Gij |

)

,

(14)

where c is a constant independent of W .

The proof for this theorem is shown in the Supplemen-

tary Material. With Theorem 2, we do not need to directly

optimize E‖W‖2. We can optimize the upper bound of

E‖W‖2. Specifically, the Power Iteration method is uti-

lized to estimate the spectral norm of ‖M‖2. Monte Carlo

sampling is adopted to estimate the last term Emaxi,j |Gij |.
The remaining term, maxi ‖Ai,:‖+maxj ‖A:,j‖ can be di-

rectly calculated on given A. Therefore, the time complex-

ity is reduced from O(KN) to O(K + N) successfully.

The constant c can be simply ignored because it is indepen-

dent of the input and our target is to minimize the whole

algebraic expression. Therefore, we can add the upper

Algorithm 1: Variational Inference with Spectral

Expectation Bound Regularization

1 Compute the ELBO loss L with Equation (2).

2 LS = 0
3 for l = 1 to L do

4 Define M l, Al following Theorem 2.

5 Ll = 0
// First: ‖M‖2

6 sample u ∼ N(0,1)
7 for Sufficient iterations N do

8 v = (M l)Tu/‖(M l)Tu‖

9 u = M lv/‖M lv‖

10 end

11 Ll = Ll + uTM lv

// Second: maxi ‖A
l
i,:‖+maxj ‖A

l
:,j‖

12 Ll = Ll +maxi ‖A
l
i,:‖+maxj ‖A

l
:,j‖

// Third:
∑K

k=1
maxi,j

∣
∣ǫ ·Al

ij

∣
∣
2

13 sum = 0
14 for Sufficient MC simulation times K do

15 sample ǫk ∼ N(0, 1)

16 sum = sum+maxi,j
∣
∣ǫk ·Al

ij

∣
∣

17 end

18 Ll = Ll + sum/t

19 LS = LS + 1

2
L2

l

20 end

21 L = L+ λ · LS

22 Update with the gradient on minimizing L.

bound as a regularisation term into the loss function. Con-

sequently, we consider the following empirical risk mini-

mization problem:

minimize
W

L+ λ · LS . (15)

Here L is the ELBO loss as defined in Equation (2). The

notation LS represents the SEBR loss:

LS =
1

2

L∑

l=1

(‖M l‖2 +max
i

‖Al
i,:‖+max

j
‖Al

:,j‖+

K∑

k=1

max
i,j

∣
∣ǫk ·Al

ij

∣
∣)2, ǫk ∼ N(0, 1).

(16)

The parameter λ is a regularization factor, which controls

the trade-off between the robustness and the expressive

power of the model. We refer to this method as Spectral

Expectation Bound Regularization (SEBR). The algorithm

to apply SEBR together with variational inference in prac-

tice is provided in Algorithm 1.
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Figure 1. The variation trends of both Monte Carlo estimation and the estimated upper bound of E‖W‖2 in a 3-layer Bayesian neural

network during training. Best viewed in color.

Figure 2. The comparison of the change of the Monte Carlo estimation and the estimated upper bound of E‖W‖2 between the original

model and the model trained with the SEBR method. Best viewed in color.

Method Avg. time per epoch

Reg. on E‖W‖2 1654.8 (s)

SEBR 410.5 (s)

Table 1. Time cost comparison between SEBR and the direct reg-

ularization on E‖W‖2.

5. Influence of SEBR on Uncertainty

In this section, we show that our SEBR method can re-

duce the epistemic uncertainty on the output of a Bayesian

neural network model.

The following theorem shows the epistemic uncertainty

of the output of a one-layer Bayesian neural network de-

creases after one step gradient descent with SEBR.

Theorem 3. Consider a Bayesian neural network with

only a linear layer fW(x) = Wx + b, where x ∈ R
n,

W ∈ R
m×n. Denote the epistemic uncertainty (following

the definition in Equation (10)) of the output after one step

gradient descent without SEBR as He, and the epistemic

uncertainty after one step gradient descent with SEBR as

H ′
e. With sufficient sampling times, we have

H ′
e ≤ He. (17)

Proof. With sufficient sampling times, the epistemic uncer-

tainty the function fW(x) = Wx+ b estimates is the vari-

ance of µ(y|x,W). Since x is a constant vector and all el-

ements of W are independent Gaussian variables, we have

He = σ2(µ(y|x,W)) = σ2(
1

n

n∑

i=1

m∑

j=1

Wijxj)

=
1

n2

n∑

i=1

m∑

j=1

x2

jσ
2(Wij)

=
1

n2

n∑

i=1

m∑

j=1

x2

jA
2

ij .

(18)

Here A is the standard deviation matrix of W following the

definition in Theorem 2. Compared with normal training,

the one step gradient descent with SEBR additionally opti-

mize the SEBR loss LS . Let A and A′ be the standard de-

viation matrices corresponding to training with SEBR and

without SEBR respectively. For each p = 1, 2, . . . ,m and

q = 1, 2, . . . , n,

A′
pq =Apq − α

√

2LS(
∂‖M‖2
∂Apq

+
∂maxi ‖Ai,:‖

∂Apq

+

∂maxj ‖A:,j‖

∂Apq

+
∂
∑K

k=1
maxi,j |ǫk ·Aij |

∂Apq

),

(19)
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Model Dataset Attack Noise ℓ∞ norm Acc. w/o. SEBR (%) Acc. w. SEBR (%) ∆ (%)

Bayesian

MLP
MNIST

/ 0 0 97.05± 0.38 96.83± 0.48 −0.22

FGSM

small 0.04 83.83± 0.51 85.74± 0.64 + 1.91

medium 0.16 8.97± 0.28 43.69± 5.92 + 34.72

large 0.3 5.06± 0.21 24.54± 8.65 + 19.48

PGD

small 0.04 81.99± 1.05 83.67± 0.67 + 1.68

medium 0.16 4.20± 0.84 9.54± 2.82 + 5.34

large 0.22 1.55± 0.35 3.18± 1.52 + 1.63

Bayesian

CNN
MNIST

/ 0 0 98.88± 0.27 98.70± 0.04 −0.18

FGSM

small 0.04 85.64± 2.52 86.14± 2.76 + 0.50

medium 0.08 55.98± 4.40 60.27± 8.65 + 4.29

large 0.14 18.16± 0.57 22.55± 11.23 + 4.39

PGD

small 0.04 82.91± 2.63 85.10± 2.96 + 2.19

medium 0.08 36.53± 5.85 49.20± 10.75 + 12.67

large 0.14 9.88± 2.02 12.33± 5.31 + 2.45

Bayesian

MLP
Fashion
MNIST

/ 0 0 84.38± 0.37 78.75± 0.83 −5.63

FGSM

small 0.04 60.96± 0.24 62.06± 1.15 + 1.10

medium 0.1 24.29± 1.16 31.65± 1.25 + 7.36

large 0.2 1.99± 0.57 4.59± 0.75 + 2.60

PGD

small 0.04 59.86± 0.34 61.80± 1.13 + 1.94

medium 0.1 19.18± 1.01 29.67± 1.22 + 10.49

large 0.2 0.44± 0.14 2.71± 0.60 + 2.27

Bayesian

CNN
Fashion
MNIST

/ 0 0 87.45± 0.57 84.83± 0.33 −2.62

FGSM

small 0.04 40.82± 1.86 46.03± 4.22 + 5.21

medium 0.08 15.89± 0.97 18.96± 5.00 + 3.07

large 0.1 10.24± 0.31 11.97± 3.95 + 1.73

PGD

small 0.04 32.81± 1.70 39.92± 3.25 + 7.11

medium 0.06 15.03± 2.03 20.87± 4.00 + 5.84

large 0.08 5.62± 0.73 9.27± 1.62 + 3.65

Table 2. Comparison on the Robustness of Models without SEBR and with SEBR. The mean value and maximum deviation of three runs

are reported.

where α > 0 is the learning rate.

It is obvious that the first term
∂‖M‖2

∂Aij
= 0 since the

mean matrix M is unrelated to Aij . The second term
∂ maxi ‖Ai,:‖

∂Apq
> 0 when p = argmaxi ‖Ai,:‖; otherwise,

∂ maxi ‖Ai,:‖
∂Apq

= 0. Similarly, the third term
∂ maxj ‖A:,j‖

∂Apq
is

non-negative. The last term satisfies

∂
∑K

k=1
maxi,j |ǫk ·Aij |

∂Apq

=

K∑

k=1

∂maxi,j |ǫk| ·Aij

∂Apq

≥ 0.

(20)

Therefore, we have: ∀p, q, A′
pq ≤ Apq . By substituting it

into Equation (18), we can get the result of the theorem.

Theorem 3 states that our SEBR naturally reduces the

epistemic uncertainty on the output of the Bayesian neu-

ral network effectively. On the other hand, it is obvious

that the aleatoric uncertainty can also be reduced because

of the optimization on the spectral norm of the mean matrix

‖M‖2. The reduction on both the epistemic uncertainty and

the aleatoric uncertainty is observed and verified in the fol-

lowing experiments, which enables our model to be robust

and confident on the predictions.

6. Experiments

In this section, we empirically verify our theoretical

findings and investigate the effectiveness of the proposed

SEBR method. We train a variety of Bayesian neural net-

works, including Bayesian MLPs and Bayesian CNNs, on

MNIST dataset [22], Fashion-MNIST dataset [38], CIFAR-

10 dataset, and CIFAR-100 dataset [21]. In Section 6.1,
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Model Dataset Attack Noise ℓ∞ norm Acc. w/o. SEBR (%) Acc. w. SEBR (%) ∆ (%)

Bayesian MLP

+ Adv. Training
MNIST

/ 0 0 97.22± 0.27 96.94± 0.39 −0.28

FGSM

small 0.04 92.87± 0.27 92.08± 0.12 −0.79
medium 0.16 54.56± 1.71 57.63± 1.08 + 3.07

large 0.3 9.94± 0.13 33.09± 8.23 + 23.15

PGD

small 0.04 92.57± 0.40 91.87± 0.26 −0.70
medium 0.16 40.05± 5.32 40.66± 4.18 + 0.61

large 0.22 11.15± 5.70 16.47± 3.57 + 5.32

Bayesian CNN

+ Adv.Training
MNIST

/ 0 0 98.89± 0.19 98.77± 0.08 −0.12

FGSM

small 0.04 96.23± 0.40 95.96± 0.23 −0.27
medium 0.2 62.34± 4.70 63.20± 4.10 + 0.86

large 0.44 11.36± 2.17 14.18± 0.82 + 2.82

PGD

small 0.04 95.98± 0.40 95.79± 0.24 −0.19
medium 0.2 26.17± 4.39 30.06± 3.92 + 3.89

large 0.44 6.85± 1.67 8.78± 1.07 + 1.93

Table 3. Comparison on the Robustness of Adversarial trained Models without SEBR and with SEBR. The mean value and maximum

deviation of three runs are reported.

we experimentally present the variation of the models after

adding the SEBR and validate the theoretical motivation.

In Section 6.2, we discuss the improvement on the robust-

ness of defending adversarial attacks on Bayesian neural

networks with SEBR. In Section 6.3, we analyze the un-

certainty variation caused by SEBR and verify Theorem 3

experimentally .

6.1. Variation of Models after adding SEBR

We present the experiment results to verify that the upper

bound of E‖W‖2 is a suitable estimation and it can reflect

the change trend of the real value of E‖W‖2. The exper-

iments are done on a Bayesian MLP with three layers on

the MNIST dataset [22]. The values of E‖W‖2 and our es-

timated upper bound are recorded for each layer during a

50-epoch training. Figure 1 shows the results. Even though

there is an obvious gap between the upper bound and the

un-biased estimated value by the Monte-Carlo estimation,

the difference between them keeps stable and their varia-

tion trends are synchronous. This validates the rationality

of utilizing the upper bound in our method.

We further investigate how our SEBR method influences

E‖W‖
2
. The parameter λ is set to be 0.01 in the Bayesian

neural network. The experiment results are shown in Fig-

ure 2. The added constraint on the upper bound from SEBR

not only reduces the upper bound itself but also reduces the

un-biased evaluated value estimated by the Monte Carlo es-

timation, which validates the effectiveness of SEBR.

To verify that SEBR indeed reduces the time cost in prac-

tice, we compare the time cost for SEBR and the direct reg-

ularization method on the expectation of the spectral norms

shown in Equation (13). The simulation times of Monte

Carlo sampling and iteration times of Power Iteration are set

as 10. According to the experimental results shown in Ta-

ble 1, the direct optimization on E‖W‖2 makes the training

very slow because it needs sufficient times for both Monte

Carlo sampling and Power Iteration and the calculation of

the expectation is necessary in every forward propagation.

The training with SEBR significantly reduces the amount of

time cost for training compared with the direct optimization

method. Hence, it enhances the feasibility of the method in

practice.

6.2. Improvements on Adversarial Robustness

The Fast Gradient Sign Method (FGSM) [14] is one of

the most commonly used attack methods. The Projected

Gradient Descent method (PGD) [26] is a more sophisti-

cated and powerful adversarial attack method. To evaluate

the impact of different settings of λ for the SEBR method

shown in Equation (15), we measure the change in robust-

ness with varying λ on defending the FGSM and the PGD

attacks. The results are presented in Figure 3, where the

accuracy is used as the evaluation metric. In the absence

of adversarial noise, our SEBR causes a slight decrease on

performance. It is normal because of the trade-off between

clean accuracy and adversarial accuracy [35, 41]. With the

increase of λ from 0 (i.e., model without SEBR) to 0.02,

the model becomes more robust on defending noises, even

though there is a subtle performance decrease on data with-

out adversarial noise. On the other hand, when we con-

tinue increasing λ, the model performs worse because of

the poorer fitting ability. Therefore, using a suitable λ is

important to achieve fairly competent performance.

Table 2 provides the comparisons of robustness of the
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(a) FGSM attack

(b) PGD attack

Figure 3. Change in robustness on defending FGSM and PGD at-

tacks with different λ in SEBR. Best viewed in color.

(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure 4. Uncertainties measured by Bayesian neural networks

on data with adversarial noises. Models trained with SEBR have

lower uncertainty on the predictions. Best viewed in color.

models without SEBR and with SEBR, where both the

Bayesian MLP models and the Bayesian CNN models are

tested on the MNIST [22] dataset and the Fashion MNIST

dataset [38]. We continue using the 3-layer neural network

in the MLP model, and we use LeNet as the CNN architec-

ture here. The hyper-parameter settings and the implemen-

tation details are reported in the Supplementary Material.

We present the accuracy of the models on defending adver-

sarial attacks of different norms. Since different adversarial

attacks are not of the same attack power and the robustness

of different baseline models are also different, different ab-

solute noise ℓ∞ norms are adopted for different models to

reflect the robustness of the model in various situations as

fully as possible. The models with SEBR are more robust

on defending all of small, medium, large noises compared

with the original Bayesian neural network models. To verify

that SEBR is also effective on more modern architectures

and larger datasets, we show more experiment results about

SEBR of Bayesian CNN with VGG [33] architecture on CI-

FAR10 and CIFAR100 datasets in the Supplementary Ma-

terial. SEBR keeps effective on the larger diverse datasets

and more complex network architecture.

We also implement the model adversarially trained with

FGSM as a higher baseline. It utilizes the information from

model gradients and input data, and hence it is among the

most effective defense techniques [14, 25, 36]. The results

are shown in Table 3. It makes models robust on defensing

data with small noise. Nonetheless, our SEBR method fur-

ther improves the model robustness obviously on defensing

larger adversarial noise, which further verifies the univer-

sality and effectiveness of SEBR.

6.3. Uncertainty Variation

To further verify the robustness of the models trained

with SEBR, we measure the aleatoric uncertainty and the

epistemic uncertainty on Bayesian neural networks trained

with SEBR and without SEBR. Figure 4 presents the mea-

sured uncertainties on data with small FGSM adversarial

noises (ℓ∞ = 0.1). More experimental results on clean

data and other noises can be found in the Supplemen-

tary Material. All of the experiments show that the mod-

els trained with SEBR has lower uncertainties, including

both the aleatoric uncertainty and the epistemic uncertainty.

Therefore, our SEBR makes the models more confident on

the predictions and improves the robustness.

7. Conclusion

In this paper, we propose the SEBR method that restricts

the expectation of the Lipschitz constant on Bayesian neu-

ral networks. The theoretical analysis demonstrates that

SEBR improves the robustness of defending against ad-

versarial noises. The relationship between SEBR training

and the output uncertainty variation is also discussed. It

is proved that SEBR reduces the uncertainty on the model

outputs. We verify our proposals by experiments on both

the Bayesian MLP model and the Bayesian CNN model in

defending FGSM and PGD attacks. Further experiments

validate that models trained with SEBR have lower uncer-

tainties, which verifies the robustness from another side.
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