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Abstract

Few-shot segmentation has been attracting a lot of atten-

tion due to its effectiveness to segment unseen object classes

with a few annotated samples. Most existing approaches

use masked Global Average Pooling (GAP) to encode an an-

notated support image to a feature vector to facilitate query

image segmentation. However, this pipeline unavoidably

loses some discriminative information due to the average

operation. In this paper, we propose a simple but effective

self-guided learning approach, where the lost critical in-

formation is mined. Specifically, through making an initial

prediction for the annotated support image, the covered and

uncovered foreground regions are encoded to the primary

and auxiliary support vectors using masked GAP, respec-

tively. By aggregating both primary and auxiliary support

vectors, better segmentation performances are obtained on

query images. Enlightened by our self-guided module for

1-shot segmentation, we propose a cross-guided module for

multiple shot segmentation, where the final mask is fused us-

ing predictions from multiple annotated samples with high-

quality support vectors contributing more and vice versa.

This module improves the final prediction in the inference

stage without re-training. Extensive experiments show that

our approach achieves new state-of-the-art performances

on both PASCAL-5i and COCO-20i datasets. Source code

is available at https://github.com/zbf1991/SCL .

1. Introduction

Semantic segmentation has been making great progress

with recent advances in deep neural network especially

Fully Convolutional Network (FCN) [18]. Requiring suf-

ficient and accurate pixel-level annotated data, state-of-the-

art semantic segmentation approaches can produce satisfy-

ing segmentation masks. However, these approaches heav-

ily rely on massive annotated data. Their performance drops

dramatically on unseen classes or with insufficient anno-
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Figure 1. Motivation of our approach. Even using the same im-

age as both support and query input, previous approaches cannot

generate accurate segmentation under the guide of its ground-truth

mask.

tated data [33].

Few-shot segmentation [8, 14, 20, 24] is a promising

method to tackle this issue. Compared to fully supervised

semantic segmentation [3, 5, 11, 13] which can solely seg-

ment the same classes in the training set, the objective of

few-shot segmentation is to utilize one or a few annotated

samples to segment new classes. Specifically, the data in

few-shot segmentation is divided into two sets: support set

and query set. This task requires to segment images from

the query set given one or several annotated images from

the support set. Thus, the key challenge of this task is how

to leverage the information from the support set. Most ap-

proaches [6, 17, 30, 35, 32, 26] adopt a Siamese Convolu-

tional Neural Network (SCNN) to encode both support and

query images. In order to apply the information from sup-

port images, they mainly use masked Global Average Pool-

ing (GAP) [38] or other strengthened methods [19] to ex-

tract all foreground [30, 35, 16] or background [30] as one

feature vector, which is used as a prototype to compute co-

sine distance [36] or make dense comparison [35] on query

images.

Using a support feature vector extracted from the sup-

port image does facilitate the query image segmentation,

but it does not carry sufficient information. Fig. 1 shows

an extreme example where the support image and query im-

age are exactly the same. However, even the existing best
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performing approaches fail to accurately segment the query

image. We argue that when we use masked GAP or other

methods [19] to encode a support image to a feature vector,

it is unavoidable to lose some useful information due to the

average operation. Using such a feature vector to guide the

segmentation cannot make a precise prediction for pixels

which need the lost information as support. Furthermore,

for the multiple shot case such as 5-shot segmentation, the

common practice is to use the average of predictions from 5

individual support images as the final prediction [36] or the

average of 5 support vectors as the final support vector [30].

However, the quality of different support images is differ-

ent, using an average operation forces all support images to

share the same contribution.

In this paper, we propose a simple yet effective Self-

Guided and Cross-Guided Learning approach (SCL) to

overcome the above mentioned drawbacks. Specifically,

we design a Self-Guided Module (SGM) to extract compre-

hensive support information from the support set. Through

making an initial prediction for the annotated support image

with the initial prototype, the covered and uncovered fore-

ground regions are encoded to the primary and auxiliary

support vectors using masked GAP, respectively. By ag-

gregating both primary and auxiliary support vectors, better

segmentation performances are obtained on query images.

Enlightened by our proposed SGM, we propose a Cross-

Guided Module (CGM) for multiple shot segmentation,

where we can evaluate prediction quality from each sup-

port image using other annotated support images, such that

the high-quality support image will contribute more in the

final fusion, and vice versa. Compared to other compli-

cated approaches such as the attention mechanism [35, 34],

our CGM does not need to re-train the model, and di-

rectly applying it during inference can improve the final per-

formance. Extensive experiments show that our approach

achieves new state-of-the-art performances on PASCAL-5i

and COCO-20i datasets.

Our contributions are summarized as follows:

• We observe that it is unavoidable to lose some useful

critical information using the average operation to ob-

tain the support vector. To mitigate this issue, we pro-

pose a self-guided mechanism to mine more compre-

hensive support information by reinforcing such easily

lost information, thus accurate segmentation mask can

be predicted for query images.

• We propose a cross-guided module to fuse multiple

predictions from different support images for the mul-

tiple shot segmentation task. Without re-training the

model, it can be directly used during inference to im-

prove the final performance.

• Our approach can be applied to different baselines to

improve their performance directly. Using our ap-

proach achieves new state-of-the-art performances on

PASCAL-5i (mIoU for 1-shot: 61.8%, 5-shot: 62.9%)

and COCO-20i datasets (mIoU for 1-shot: 37.0%, 5-

shot: 39.9%) for this task.

2. Related Work

2.1. Fully Supervised Semantic Segmentation

Fully supervised semantic segmentation, requiring to

make pixel-level prediction, has been boosted by recent

advances in Convolutional Neural Network (CNN) espe-

cially FCN [18]. Many network frameworks have been

designed based on FCN. For example, UNet [21] adopted

a multi-scale strategy and a convolution-deconvolution ar-

chitecture to improve the performance of FCN [18], while

PSPNet [37] was proposed to use the pyramid pooling mod-

ule to generate object details. Deeplab [3, 5] designed an

Atrous Spatial Pyramid Pooling (ASPP) [4] module and

used dilated convolution [2] to the FCN architecture.

2.2. FewShot Segmentation

Most previous approaches adopt a metric learning strat-

egy [10, 28, 25, 1, 12] for few-shot segmentation. For ex-

ample, In PL [6], a two-branch prototypical network was

proposed to segment objects using metric learning. SG-

One [36] proposed to compute a cosine similarity between

the generated single support vector and query feature maps

to guide the segmentation process. CANet [35] designed

a dense comparison module to make comparisons between

the support vector and query feature maps. PANet [30] in-

troduced a module to use the predicted query mask to seg-

ment the support images, where it still relied on the gen-

erated support vector. FWB [19] tried to enhance the fea-

ture representation of generated support vector using fea-

ture weighting while CRNet [16] focused on utilizing co-

occurrent features from both query and support images to

improve the prediction, and it still used a support vector

to guide the final prediction. PPNet [17] tried to gener-

ate prototypes for different parts as support information.

PFENet [27] designed a multi-scale module as decoder to

utilize the generated single support vector.

However, most approaches used masked GAP [38] or

some more advanced methods such as FWB [19] to fuse all

foreground or background features as a single vector, which

unavoidably loses some useful information. Our proposed

method tries to provide comprehensive support information

using a self-guided approach.

3. Problem Setting

The purpose of few-shot segmentation is to learn a seg-

mentation model which can segment unseen objects pro-

vided with a few annotated images of the same class. We

need to train a segmentation model on a dataset Dtrain and
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Figure 2. The framework of our SCL approach for 1-shot segmentation. We firstly use an encoder to generate feature maps Fs and Fq

from a support image and a query image, respectively. Then masked GAP is used to generate the initial support vector vs. After that, our

proposed self-guided module (SGM) takes vs and Fs as input and output two new support vectors vpri and vaux, which are then used as

the support information to segment the query image. Encoders for support and query images share the same weights.

evaluate on a dataset Dtest. Suppose the classes set in Dtrain

is Ctrain and the classes set in Dtest is Ctest, there is no over-

lap between training set and test set, i.e., Ctrain ∩ Ctest = ∅.

Following the previous definition in [23], episodes are

applied to both training set Dtrain and test set Dtest to set a

K-shot segmentation task. Each episode is composed of a

support set S and a query set Q for a specific class c. For

one episode, the support set contains K images and their

masks, i.e., S =
{

(Iis,M
i
s)
}K

i=1
, where Iis represents the ith

image and M i
s indicates its binary mask for the class c. A

query set contains N images and their binary masks for the

class c, i.e., Q =
{

(Iiq,M
i
q)
}N

i=1
, where M i

q is only used

for training. For clear description, we use Strain and Qtrain

to represent the training support set and query set, while

Stest and Qtest for the test set. A model is learned using

the training support set Strain and query set Qtrain. Then the

model is evaluated on Dtest using the test support set Stest

and query set Qtest.

4. Methodology

4.1. Overview

Fig. 2 shows our framework for 1-shot segmentation,

which can be divided into the following steps:

1) Both support and query images are input to the same

encoder to generate their feature maps. After that, an

initial support vector is generated using masked GAP

from all foreground pixels of the support image.

2) With the supervision of the support image mask, our

SGM produces two new feature vectors including the

primary and auxiliary support vectors, using the initial

support vector and support feature map as input.

3) In this step, the primary and auxiliary support vectors

are concatenated with the query feature map to guide the

segmentation of query images. Through a query Feature

Processing Module (FPM) and a decoder, the segmenta-

tion mask for the query image is generated. Note that all

encoders and decoders are shared.

4.2. SelfGuided Learning on Support Set

Self-Guided module (SGM) is proposed to provide com-

prehensive support information to segment the query image.

The details of our SGM can be found in Fig. 3.

Suppose the support image is Is, after passing through

the encoder, its feature maps is Fs. Then we use masked

GAP to generate the initial support vector following previ-

ous approaches [35, 36, 39]:

vs =

hw
∑

i=1

Fs(i) · [Ms(i) = 1]

hw
∑

i=1

[Ms(i) = 1]

, (1)

where i is the index of the spatial position. h and w are

the height and width of the feature map, respectively. [·] is

Iverson bracket, which equals to 1 if the inside condition

8314



Decoder

ℒ𝑐𝑒𝑠1
x2

Decoder ℒ𝑐𝑒𝑠2

𝐹𝑠

𝑣𝑎𝑢𝑥

expand

expand

expand

𝑣𝑝𝑟𝑖

𝑣𝑠

masked GAP

Self-Guided Module

𝐹𝑠𝐴

𝑉𝑠

𝑉𝑠𝑎𝑢𝑥

𝑉𝑠𝑝𝑟𝑖
𝐹𝑠𝑣

Main

Lost

𝑀𝑠

𝑀𝑠

𝑀𝑠

Output

1 × 1 × 𝑑
ℎ × 𝑤 × 𝑑

ℎ × 𝑤 × 𝑑
ℎ × 𝑤 × 𝑑

ℎ × 𝑤 × 3𝑑 1 × 1 × 𝑑

1 × 1 × 𝑑

Support 

FPM

Support 

FPM

pooling …

conv

…

conv

Conv

Conv

element-wise additionConcatenate

𝐹𝑠𝐴 (𝐹𝑠𝑣)
Support FPM (Single-Scale)

Support FPM (Multi-Scale)

ℎ × 𝑤 × 3𝑑

ℎ1 × 𝑤1 × 𝑑

ℎ18 × 𝑤18 × 𝑑

C

C

ℎ × 𝑤 × 𝑑

ℎ × 𝑤 × 𝑑

C

𝐹𝑠𝐴 (𝐹𝑠𝑣)
Figure 3. The details of our proposed SGM. Our SGM uses the feature map Fs and the support vector vs of the support image as input,

and produces two new support vectors vpri and vaux. In order to provide high-quality support vectors, the support image mask is used as

supervision. We provide two kinds of support Feature Processing Modules (FPM) to adapt to different decoders. All support FPMs share

the same weights and all decoders are shared with the decoder in Fig 2.

is true, otherwise equals to 0. Ms is a binary mask and

Ms(i) = 1 indicates the ith pixel belongs to class c. Note

that Ms needs to be downsampled to the same height and

width as Fs.

Both Fs and vs are input to our proposed self-guided

module (SGM). The initial feature vector vs is firstly du-

plicated and expanded to the same size with Fs following

[27, 35], represented as Vs, which is then concatenated with

Fs to generate a new feature map:

Fsv = Concat([Fs, Vs, Vs]), (2)

where Concat(·) is the concatenation operator.

Then, the probability map for the support image is gener-

ated after passing through the support FPM and the decoder:

Ps1 = softmax(D(FPMs(Fsv))), (3)

where Ps1 is the predicted probability map, i.e., Ps1 ∈
R

h×w×2. D(·) means the decoder and details can be found

in Sec. 5.1. softmax is the softmax layer. FPMs(·) is the

support FPM, as shown in Fig. 3. According to the re-

quirements of different decoders, we design two kinds of

support FPMs: one for providing single-scale input to the

decoder [35, 32] and the other one for providing multi-scale

input to the decoder [27].

Then the predicted mask is generated from Ps1:

M̂s = argmax(Ps1), (4)

where M̂s is a binary mask, in which element 0 is the back-

ground and 1 is the indicator for being class c.

Using the predicted mask M̂s and the ground-truth mask

Ms, we can generate the primary support vector vpri and

the auxiliary support vector vaux:

vpri =

hw
∑

i=1

Fs(i) · [Ms(i) = 1] · [M̂s(i) = 1]

hw
∑

i=1

[Ms(i) = 1] · [M̂s(i) = 1]

, (5)

vaux =

hw
∑

i=1

Fs(i) · [Ms(i) = 1] · [M̂s(i) 6= 1]

hw
∑

i=1

[Ms(i) = 1] · [M̂s(i) 6= 1]

. (6)

In Eq. (5), [Ms(i) = 1] · [M̂s(i) = 1] indicates the cor-

rectly predicted foreground mask using the initial support

vector vs as support. In Eq. (6), [Ms(i) = 1] · [M̂s(i) 6= 1]
indicates the missing foreground mask. From Eq. (5) and

Eq. (6), it can be found that vpri keeps the main support in-

formation as it focuses on aggregating correctly predicted

information, vaux focuses on collecting the lost critical in-

formation which cannot be predicted using vs. Fig. 4 shows

more examples about the masks to produce vpri and vaux.

It can be seen that vpri ignores some useful information un-

avoidably while vaux collect all the lost information in vpri.

In order to guarantee vpri can collect most information

from the support feature map, a cross-entropy loss is used

on Ps1 predicted in Eq. (3) :

Ls1
ce = −

1

hw

hw
∑

i=1

∑

cj∈{0,1}

[Ms(i) = cj ]log(P
cj
s1 (i)), (7)

where 0 is the background class and 1 is the indicator for

a specific foreground class c. P
cj
s1 (i) denotes the predicted

probability belonging to class cj for pixel i.
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Figure 4. Visualization of the masks for generating vpri and vaux.

(a) original images. (b) ground-truth (masks for generating vs).

(c) masks for generating vpri. (d) masks for generating vaux. In

most cases, vpri aggregates the main information of the support

image and vaux mainly collects edge information. In some special

cases (the last two columns), vpri loses some body information

and vaux encodes all the lost information.

Then we duplicate and expand vpri and vaux to the same

height and width with Fs, represented as V s
pri and V s

aux, re-

spectively. Following previous process, Fs, V pri
s and V aux

s

are concatenated to generate a new feature map FA
s :

FA
s = Concat(

[

Fs, V
pri
s , V aux

s

]

). (8)

After that, the predicted probability map Ps2 is generated

based on the new feature map FA
s :

Ps2 = softmax(D(FPMs(F
A
s ))). (9)

Similar with Eq. (7), we use a cross-entropy loss to en-

sure aggregating vpri and vaux together can produce accu-

rate segmentation mask on the support image:

Ls2
ce = −

1

hw

hw
∑

i=1

∑

cj∈{0,1}

[Ms(i) = cj ]log(P
cj
s2 (i)). (10)

We only use foreground pixels to produce support vec-

tors since background is more complicated than the fore-

ground. Therefore, we cannot guarantee the support vector

from background is far away from that of the foreground.

4.3. Training on Query Set

Using our proposed SGM, we generate the primary sup-

port vector vpri and auxiliary support vector vaux, where

vpri contains the primary information of support image and

vaux collects the lost information in vpri.

Using the same encoder with Is, we also generate the

query feature map Fq , then vpri and vaux are duplicated

and expanded to the same height and width as Fq , both of

which are then concatenated with Fq to generate a new fea-

ture map:

FA
q = Concat(

[

Fq, V
pri
q , V aux

q

]

), (11)

where Fq is the feature map of query image Iq , which is

generated using the same encoder with the support image

Is. V pri
q and V aux

q correspond to expanded results of vpri
and vaux, respectively.

Then FA
q is input to a query FPM followed by a decoder

to obtain the final prediction:

Pq = softmax(D(FPMq(F
A
q ))), (12)

where FPMq(·) is the query FPM. Pq is the predicted proba-

bility map. (More details about the query FPM and decoder

can be found in Sec. 5.1 and our supplement material.)

We use a cross-entropy loss to supervise the segmenta-

tion of the query image:

Lq
ce = −

1

hw

hw
∑

i=1

∑

cj∈{0,1}

[Mq(i) = cj ]log(P
cj
q (i)), (13)

where P
cj
q (i) denotes the predicted probability belonging

to class cj for pixel i.

The overall training loss is defined as:

L = Ls1
ce + Ls2

ce + Lq
ce, (14)

where Ls1
ce , Ls2

ce are the loss functions defined by Eq.(7) and

Eq.(10) in Sec. 4.2.

4.4. CrossGuided Multiple Shot Learning

Enlightened by our SGM for 1-shot segmentation, we

extend it to Cross-Guided Module (CGM) for the K-shot

(K > 1) segmentation task. Among the K support im-

ages, each annotated support image can guide the query im-

age segmentation individually. Based on this principle, we

design our CGM where the final mask is fused using pre-

dictions from multiple annotated samples with high-quality

support images contributing more and vice versa.

For K-shot segmentation task, there are K support

images in one episode, i.e., the support set S =
{

(I1s ,M
1
s ), (I

2
s ,M

2
s ), ..., (I

K
s ,MK

s )
}

. For the kth support

image Iks , we can firstly use it as the support image and all

K support images as query images to input to our proposed

1-shot segmentation model G. The predicted mask for the

ith support image Iis is:

M̂ i|k
s = argmax(G(Iis|I

k
s )), (15)

where M̂
i|k
s is the predicted mask of Iis under the support

of Iks . G(Iis|I
k
s ) outputs the predicted score map of Iis using

Iks as the support image and Iis as the query image.

The ground-truth mask M i
s for image Iis is available.

Thus, we can evaluate the confident score of Iks based on

the IOU between the predicted masks and their ground-truth

masks:

Uk
s =

1

K

K
∑

i=1

IOU(M̂ i|k
s ,M i

s), (16)
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Figure 5. Architecture of the query FPM and decoder in

CANet [35]. CANet used the predicted probability map Pq(t−1)

from the previous iteration in its query FPM, and its decoder

adopts single-scale residual layers following an ASPP module [4].

where IOU(·, ·) is used to compute the intersection over

union score. Then the final predicted score map for an given

query image Iq is:

P̂q = softmax(
1

K

K
∑

k=1

Uk
s G(Iq|I

k
s )). (17)

A support image with a larger Uk
s makes more contribu-

tion to the final prediction, and the generated support vector

is more likely to provide sufficient information to segment

query images, and vice versa.

Using CGM does not need to re-train a new model, and

we can directly use the segmentation model from 1-shot

task to make predictions. Thus, CGM can improve the per-

formance during inference without re-training.

5. Experiments

5.1. Implementation Details

Our SCL approach can be easily integrated into many

existing few-shot segmentation approaches, and the effec-

tiveness of our approach is evaluated using two baselines:

CANet [35] and PFENet [27], both of which use masked

GAP to generate one support vector for a support image.

All decoders in our SGM share the same weights with the

decoder in the baseline.

We use single-scale support FPM in our SGM when us-

ing CANet [35] as the baseline since its decoder adopted

single-scale architecture. Besides, the query FPM in

CANet [35] used the probability map Pq(t−1) from the pre-

vious iteration in the cache to refine the prediction. Fig. 5

shows details of the query FPM and decoder in CANet [35].

We use multi-scale support FPM in our SGM when us-

ing PFENet [27] as the baseline since its decoder adopted

a multi-scale architecture. Additionally, the query FPM in

PFENet [27] used a prior mask from the pre-trained model

on ImageNet [22] as extra support. More details can be

found in our supplement material. Note that none of Pq(t−1)

or the prior mask is used in the support FPM in our SGM.

All training settings are the same as that in CANet [35]

or PFENet [27]. The channel size d in Fig. 2 and Fig. 3

is set to 256. The batch size is 4 with 200 epochs used.

The learning rate is 2.5×10-4 and weight decay is 5×10-4 if

CANet [35] is the baseline. The learning rate is 2.5×10-3

and weight decay is 1×10-4 if PFENet [27] is the baseline.

During inference for the 1-shot task, we follow the same

settings as in CANet [35] or PFENet [27]. For 5-shot seg-

mentation, we directly use the segmentation model trained

on 1-shot task. Following [30], we average the results from

5 runs with different random seeds as the final performance.

All experiments are run on Nvidia RTX 2080Ti.

5.2. Dataset and Evaluation Metric

We evaluate our approach on PASCAL-5i and COCO-

20i dataset. PASCAL-5i is proposed in OSLSM [23],

which is built based on PASCAL VOC 2012 [7] and SBD

dataset [9]. COCO-20i is proposed in FWB [19], which is

built based on MS-COCO [15] dataset.

In PASCAL-5i, 20 classes are divided into 4 splits, in

which 3 splits for training and 1 for evaluation. During

evaluation, 1000 support-query pairs are randomly sam-

pled from the evaluation set. For more details, please re-

fer to OSLSM [23]. In COCO-20i , the only difference

with PASCAL-5i is that it divides 80 classes to 4 splits.

For more details, please refer to FWB [19]. For PASCAL-

5i, we evaluate our approach using both CANet [35] and

PFENet [27] as baselines. For COCO-20i, we evaluate our

approach based on PFENet [27].

Following [30], mean intersection-over-union (mIoU)

and foreground-background intersection-over-union (FB-

IoU) are used as evaluation metrics.

5.3. Comparisons with Stateoftheart

In Table 1, we compare our approach with other state-

of-the-art approaches on PASCAL-5i. It can be seen that

our approach achieves new state-of-the-art performances on

both 1-shot and 5-shot tasks. Additionally, our approach

significantly improves the performances of two baselines on

1-shot segmentation task, with mIoU increases of 2.1% and

1.0% for CANet [35] and PFENet [27], respectively. For

the 5-shot segmentation task, our approach achieves 59.2%

and 62.9% mIoU using CANet [35] and PFENet [27], re-

spectively, both of which are direct improvement without

re-training the model.

In Table 2, we compare our approach with others on the

COCO-20i dataset. Our approach outperforms other ap-

proaches by a large margin, with mIoU gain of 4.6% and

1.4% for 1-shot and 5-shot tasks, respectively.

Table 3 shows the comparison between our approach and

two baselines using FB-IoU on PASCAL-5i. Our approach

using PFENet [27] as the baseline achieves new state-of-

the-art performance. Besides, adopting our approach on

CANet [35] obtain 4.1% and 1.1% FB-IoU increases for

1-shot and 5-shot tasks, respectively.

In Fig. 6, we report some qualitative results generated

8317



Table 1. Comparison with other state-of-the-arts using mIoU (%) as evaluation metric on Pascal-5i for 1-shot and 5-shot segmentation. “P.”

means Pascal. “ours-SCL (CANet)” and “ours-SCL (PFENet)” means CANet [35] and PFENet [27] are applied as baselines, respectively.

Method Backbone
1-shot 5-shot

P.-50 P.-51 P.-52 P.-53 Mean P.-50 P.-51 P.-52 P.-53 Mean

OSLSM (BMVC’17) [23] vgg16 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 44.0

SG-One [36] vgg16 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1

PANet (ICCV’19) [30] vgg16 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7

PGNet (ICCV’19) [34] resnet50 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5

CRNet (CVPR’20) [16] resnet50 - - - - 55.7 - - - - 58.8

RPMMs (ECCV’20) [31] resnet50 55.2 65.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3

FWB (ICCV’19) [19] resnet101 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9

PPNet*(ECCV’20) [17] resnet50 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0

DAN (ECCV’20) [29] resnet101 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5

CANet (CVPR’19) [35] resnet50 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

PFENet (TPAMI’20) [27] resnet50 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

ours-SCL (CANet) resnet50 56.8 67.3 53.5 52.5 57.5 59.5 68.5 54.9 53.7 59.2

ours-SCL (PFENet) resnet50 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9

* We report the performance without extra unlabeled support data.

Table 2. Comparison with other state-of-the-arts using mIoU (%) as evaluation metric on COCO-20i for 1-shot and 5-shot segmentation.

“C.” means COCO-20. “ours-SCL (PFENet)” means PFENet [27] is applied as the baseline.

Method Backbone
1-shot 5-shot

C.0 C.1 C.2 C.3 Mean C.0 C.1 C.2 C.3 Mean

FWB (ICCV’19) [19] resnet101 19.9 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7

PPNet (ECCV’20) [17] resnet50 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5

DAN (ECCV’20) [29] resnet101 - - - - 24.4 - - - - 29.6

PFENet (TPAMI’20) [27] resnet101 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4

ours-SCL (PFENet) resnet101 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9

Table 3. Comparison with other state-of-the-arts using FB-IoU (%)

on Pascal-5i for 1-shot and 5-shot segmentation.

Method Backbone
FB-IoU (%)

1-shot 5-shot

CANet (CVPR’19) [35] resnet50 66.2 69.6

PFENet (TPAMI’20) [27] * resnet50 71.4 -

ours-SCL (CANet) resnet50 70.3 70.7

ours-SCL (PFENet) resnet50 71.9 72.8

* The result is generated using models provided by the au-

thor.

by our approach using PFENet [27] as the baseline. It can

be seen that our approach produces integral segmentation

masks covering object details. More experimental and qual-

itative results can be found in our supplement material.

5.4. Ablation Study

In this section, we conduct ablation studies on PASCAL-

5i using CANet [35] as the baseline and all results are aver-

age mIoU across 4 splits.

We firstly conduct an ablation study to show the influ-

ence of our proposed SGM and CGM in Table 4. For 1-shot,

Table 4. Ablation study of our proposed SGM and CGM on

PASCAL-5i for both 1-shot and 5-shot segmentation. “Avg.”

means we use the average score of predictions from multiple sup-

port images. “base.” means the baseline, which only uses the ini-

tial support vector without Ls1
ce .

shot base. SGM Avg. CGM mIoU FB-IoU

1 X - - 55.4 66.2

1 X X - - 57.5 70.3

5 X X 55.9 66.7

5 X X 56.9 69.7

5 X X X 58.7 70.3

5 X X X 59.2 70.7

compared with the baseline, using SGM improves the per-

formance by a large margin, being 2.1% and 4.1% for mIoU

and FB-IoU, respectively. For 5-shot, using both SGM and

CGM together obtains a 59.2% mIoU score, which is 3.3%

higher compared to the baseline with the average method.

Compared with the average method, our CGM directly in-

creases the mIoU score by 0.5% when SGM is adopted. It

is worth to notice that our CGM does not need to re-train

the model and the gain is obtained in the inference stage.

Table 5 shows the influence of the support vectors on

the proposed SGM for 1-shot segmentation. If only vs
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Figure 6. Qualitative results of our approach on Pascal-5i. (a) Support images for the 1-shot task and their masks. (b) Query images and

their ground-truth. (c) PFENet [27] 1-shot results. (d) Ours-SCL (PFENet) 1-shot results. (e) Ours-SCL (PFENet) 5-shot results.

Table 5. Ablation study of the support vectors in our proposed

SGM on PASCAL-5i for 1-shot segmentation. vs, vpri and vaux

are initial, primary and auxiliary feature vectors generated by our

SGM, respectively. Note that Ls1
ce is used for vs.

vs vpri vaux mIoU (%) FB-IoU (%)

X 55.6 67.3

X 56.6 69.5

X 51.4 65.2

X X X 57.1 69.9

X X 57.5 70.3

Table 6. Ablation study of loss functions in the SGM on PASCAL-

5
i for 1-shot segmentation. Ls1

ce means the loss function in Eq. (7).

Ls2
ce means the loss function in Eq. (10).

Ls1
ce Ls2

ce mIoU (%) FB-IoU (%)

X 55.6 67.3

X 56.8 69.6

X X 57.5 70.3

is adopted, the mIoU and FB-IoU scores are 55.6% and

67.3% respectively. Using SGM (with both vpri and vaux)

achieves 57.5% and 70.3% on mIoU and FB-IoU, with a

significant gain of 1.9% and 3.0% on mIoU and FB-IoU,

respectively. Besides, It can also be seen that when us-

ing vpri and vaux individually, it only achieves 56.6% and

51.4% on mIoU, both of which are much lower than using

them jointly. Solely using vaux even performs worse than

the baseline (only using vs). Furthermore, we also evaluate

the performance when using all support vectors (vs, vpri
and vaux) together, it can be seen that it does not improve

the results, which also proves that vpri and vaux already

provide sufficient information as support, demonstrating the

effectiveness of our SGM. Note that when using all support

vectors, channels of FA
q should be increased to 4d.

Table 6 studies the influence of loss functions Ls1
ce and

Ls2
ce in SGM. Using both Ls1

ce and Ls2
ce significantly outper-

forms the baseline. If only Ls1
ce is adopted without Ls2

ce , the

obtained mIoU score is 55.6%, being 1.9% lower than using

both loss functions together. This is because Ls2
ce provides

one more step of training by treating the support image as

query image, where both support vectors vpri and vaux are

deployed. Similarly, if only Ls2
ce is adopted without Ls1

ce ,

the obtained performance is also lower than using both loss

functions together. This is because using Ls1
ce can ensure

primary support vector vpri focus on extracting the main

information while vaux focus on the lost information. With-

out Ls1
ce , the roles of vpri and vaux get mixed and vague.

6. Conclusion

We propose a self-guided learning approach for few-shot

segmentation. Our approach enables to extract compre-

hensive support information using our proposed self-guided

module. Besides, in order to improve the drawbacks of av-

erage fusion for multiple support images, we propose a new

cross-guided module to make highly quality support images

contribute more in the final prediction, and vice versa. Ex-

tensive experiments show the effectiveness of our proposed

modules. In the future, we will try to use the background

information as extra support to improve our approach.
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