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Abstract

Three-dimensional scanning by means of structured light

illumination is an active imaging technique involving pro-

jecting and capturing a series of striped patterns and then

using the observed warping of stripes to reconstruct the tar-

get object’s surface through triangulating each pixel in the

camera to a unique projector coordinate corresponding to

a particular feature in the projected patterns. The unde-

sirable phenomenon of multi-path occurs when a camera

pixel simultaneously sees features from multiple projector

coordinates. Bimodal multi-path is a particularly common

situation found along step edges, where the camera pixel

sees both a foreground and background surface. Gener-

alized from bimodal multi-path, this paper examines the

phenomenon of sparse or N -modal multi-path as a more

general case, where the camera pixel sees no fewer than

two reflective surfaces, resulting in decoding errors. Using

fringe projection profilometry, our proposed solution is to

treat each camera pixel as an underdetermined linear sys-

tem of equations and to find the sparsest (least number of

paths) solution by taking an application-specific Bayesian

learning approach. We validate this algorithm with both

simulations and a number of challenging real-world sce-

narios, demonstrating that it outperforms state-of-the-art

techniques.

1. Introduction

In a digital camera, each pixel on the focal plane array

records the average light measured across the pixel’s field of

view, and, in some cases, the pixel simultaneously records

light from multiple paths, such as when a pixel sees the edge

of the foreground object along with the non-occluded back-

ground object. In this situation, the collected intensity/color

will be a weighted sum of the foreground and background

intensity/color, depending on how much of the foreground

object takes up the pixel’s field of view (Fig. 1). Sep-

arating out the foreground and background contributions

plays a fundamental role in a range of classic imaging tasks,

such as image matting, where the alpha channel represents

the weighting of the foreground and background compo-
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Figure 1. Illustrations of the causes of sparse multi-path and its

representations in both 2D and 3D imaging. From left to right

are the FoV of a pixel on the sensor array during the imaging

procedure, a classic image matting task [30], and an ideal step

edge compared with a reconstructed step edge under the effect of

multi-path in the structured light or time-of-flight imaging tech-

niques [55].
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Figure 2. Illustration of sparse multi-path scenarios in (left) a

curved reflective surface, (middle) a step edge, and (right) a semi-

transparent surface in front of an opaque target with foreground

pixel A and background pixel B.

nents [47, 31]. In 3D imaging, the collecting of foreground

and background light paths along a step edge can result in

either a predictable smoothing of the step edge in the 3D re-

construction or a catastrophic, unpredictable displacement

of edge points [36, 54]. Fig. 2 illustrates three kinds of chal-

lenging sparse multi-path scenarios, including a curved re-

flective surface, a step edge, and a semi-transparent surface

in front of an opaque target. Regardless of the outcome,

the multi-path problem is unavoidable in any scanning situ-

ation, including structured light [23, 53] and time-of-flight

(ToF) [36, 34, 16], but it is an especially prevalent problem

in structured light as very little research has been performed

on the topic, and it has been largely ignored by the com-

puter vision and computational imaging community until

recently.

With the rapid development of deep learning in com-
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puter vision, there is now a diverse range of neural network

topologies [15, 42, 41, 57] that can process 3D data. This

has likewise driven a demand for large model databases that

include a diverse range of labeled objects, such as body

scans SMPL-X [40], face scans Florence [1], object scans

PartNet [35], Redwood [7], indoor scene scans ScanNet [9],

and outdoor road and vehicle scans KITTI [17]. As more

and more work is done building AI models that can rec-

ognize and reconstruct these existing objects, there will be

an increasing demand for 3D scanners to acquire similarly

diverse objects, perhaps containing specularities and other

hard-to-scan features. In order to address the need for a

large volume of these objects, scanners will be required to

handle these hard-to-scan features in a fully automated way.

A common active scanning technique for building high

resolution, 3D object databases is structured light imaging

(SLI), which involves projecting and capturing a series of

striped or structured patterns and reading the patterns as

they reflect off a target object’s surface [3, 19, 32, 21, 23,

50, 39, 44]. Because structured light scanners, including

single pattern techniques [49, 18, 56] and multiple pattern

techniques [19, 32, 5, 27], need to actively project patterns

onto the target surface, they often suffer from multi-path

issues in which a camera pixel sees light from multiple pro-

jector positions, making accurate scanning impossible. It is

a common and unavoidably important issue in many scan-

ning situations where a target surface includes a step edge

or a specular surface. Multi-path results, at best, in easily

identifiable outliers like spikes along edges, which can be

removed by filtering or, at worst, in imperceptible changes

to the surface like a blurring of edges. These small errors

can be catastrophic in certain applications, such as digital

dentistry where digital scans are replacing plastic molds for

the manufacturing of replacement crowns.

With regard to multi-path interference and its cancella-

tion, many papers have been devoted to ToF sensing using

unique hardware that needs to be customized or modified.

Structured light scanners, on the other hand, can be con-

structed from commodity components [53] and are, there-

fore, widely studied; however, very few solutions exist for

the multi-path problem, and relevant theories to address

multi-path have not been firmly established. In this paper,

we present an inexpensive and practical approach to address

this N -modal multi-path issue by treating each pixel as an

underdetermined linear system of equations and finding the

sparsest (least number of paths) solution. We do so with-

out any hardware modifications [39] or additional require-

ments for novel/customized patterns [8, 22]. As a result, it

is easy for our algorithms to be integrated into existing pop-

ular and broadly used phase shifting structured light scan-

ners. As part of this process, we combine a powerful sparse

Bayesian learning (SBL) framework with novel application-

specific constraints. In aggregate, these contributions lead

to state-of-the-art results in addressing multi-path problems

regarding fringe projection profilometry.

2. Related Work

Sparse Multi-Path While multi-path has long been a con-

cern in studies of structured light, very few solutions exist

short of relying on an alternate imaging technique like de-

flectometry [25]. Nevertheless, multi-path is gaining atten-

tion in the research literature. Dedrick [10] is an early doc-

umented example of examining multi-path interference in

SLI but without an effective algorithm for extracting the ab-

solute paths. Alternatively, Courture et al. [8] designed spe-

cial patterns that, while resistant to inter-reflections, would

not be recognized as traditional phase shifting patterns.

Zhang et al. [54] recently proposed a solution for bimodal

multi-path relying on scanning a target with increasing pat-

tern frequencies in order to measure the constructive and

destructive interference in the captured patterns.

By taking a number of scans at various spatial frequen-

cies, Zhang et al. [54] showed that it is possible to separate

the signals from the foreground and background surfaces

with the potential to produce two decoupled depth estimates

for each pixel seeing exactly two surfaces. However, Zhang

et al.’s technique requires both a large number of unique

spatial frequencies to separate paths and long sequences

of video. Therefore, while a traditional SLI scanner accu-

mulates three spatial frequencies and perhaps 24 frames of

video, one following Zhang’s approach might collect 10 or

more spatial frequencies with 80 or more frames of video.

Yu et al. [53] avoided the extra spatial frequencies by limit-

ing their filtering to detecting multi-path rather than recon-

structing the separate paths. In addition, neither Zhang et

al. nor Yu et al. attempted to address more than two light

paths, and even these two paths were limited to the field of

view of a particular pixel. Hence, these approaches could

not reconstruct a path, for example, that came from a spec-

ular reflection from the left or right of the projector’s field

of view.

Dense Multi-Path The majority of multi-path research on

more than two paths for any 3D imaging modality is based

on light transport modeling [45, 26, 20, 6], which is a dense

multi-path model where the light observed by a camera

pixel is derived from both a direct path from projector to

surface to camera [4] and an ambient plus dense multi-path

component where all reflections in the scene, specular and

diffuse, collectively combine into a single, constant or DC

signal [43, 28]. Accordingly, the goal of dense multi-path

correction is to separate the direct light path from the indi-

rect illumination/global illumination [24, 38]. To this end,

Nayar et al. [37] separated the direct and global illumina-

tion components of a scene by means of projecting a high

frequency binary illumination pattern and its complement.
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The assumption is that the multi-path reflections of the high

frequency pattern will be so diverse that their combination

will be the same for both the pattern and its complement.

With regard to choosing the best frequency, higher frequen-

cies are better as long as they are not so high as to be blurred

by the modulation transfer functions of the projector and

camera. From Nayar et al. [37], Gupta and Nayar [23] de-

veloped a structured light scanning technique, called mi-

cro phase shifting, to reconstruct unambiguous phase im-

ages without the low frequency phase, thereby making the

scans resilient to the effects of dense multi-path. The ac-

tual micro phase shifting is not responsible for removing

multi-path, but is rather just a way to perform phase un-

wrapping by employing only high spatial frequency pat-

terns, which are assumed to be immune to dense multi-

path. As such, Gupta and Nayar’s technique fails for sparse

multi-path [54], where high frequency spatial patterns are

equally susceptible to sparse multi-path interference. Over-

all, sparse multi-path, especially the N ≥ 2 multiple path

case, remains a challenging and unsolved problem in the

field.

3. N -Modal Multi-Path Model

In fringe pattern projection [58], a series of phase-shifted

sinusoidal patterns are projected onto the object with the

pixels of the projected patterns generalized as:

xt =
1

2
+

1

2
cos

(

2πf
m

M
−

2πt

T

)

, (1)

where xt is the intensity of the pixel in the mth of M -rows;

f is the spatial frequency of the fringe pattern that is equal

to the number of sinusoidal periods from top to bottom in

the projection area; and t is the frame index of the pattern in

its sequence of T frames numbered from 0 to T − 1. From

the camera’s perspective, a captured pixel is generalized as:

yt = a+ r cos

(

θ −
2πt

T

)

, (2)

where yt is the intensity of the pixel; a is the average in-

tensity of the pixel over the T patterns; and r is the ob-

served amplitude of the projected sinusoid seen by the cam-

era pixel. The magnitude, r, is then derived according to:

r =







(

T−1
∑

t=0

yt sin(
2πt

T
)

)2

+

(

T−1
∑

t=0

yt cos(
2πt

T
)

)2






1

2

,

(3)

while the angle, θ = 2πf m
M

, is derived according to:

θ = arctan

∑T−1

t=0
yt sin(

2πt
T

)
∑T−1

t=0
yt cos(

2πt
T

)
, (4)

where the projector coordinate, m, visible to the camera

pixel is extracted from θ using an appropriate phase un-

wrapping scheme [58]. Once m is uniquely identified, we

can derive the corresponding world Cartesian coordinate us-

ing calibrated lens models for the camera and projector.

In order to introduce the N -modal multi-path model, it

is instructive to examine the basis for the bimodal model.

In Zhang et al. [54], the authors explained how paths in-

teract as a function of the spatial frequency, f , to produce

standing waves of constructive and destructive interference

and how to decouple two light paths by taking advantage

of this interesting cue. However, in this section, we drop

the assumption that the number of observed multi-paths

is limited to two unique paths in order to incorporate the

general N ≥ 2 multi-path model. To start, assume we

perform a sequence of K scans using a projector with M
rows, each row being defined by the sinusoidal frequency

{fk : k = 1, 2, ...,K} and the normalized projector row

coordinate {wm = m
M

: m = 1, 2, ...,M}.
For each projected sequence, a pixel in the camera

records a magnitude, rk, and a phase, θk, such that after

all K scans, each camera pixel is defined by the vector

y = [r1e
−j2πf1θ1 , r2e

−j2πf2θ2 , ..., rKe−j2πfKθK ]⊺, mod-

eled according to:

y = Φx, (5)

where Φ represents the dictionary matrix holding all possi-

ble light paths equal to:















e−j2πf1w1 e−j2πf1w2 · · · e−j2πf1wM

e−j2πf2w1 e−j2πf2w2 · · · e−j2πf2wM

e−j2πf3w1 e−j2πf3w2 · · · e−j2πf3wM

...
...

. . .
...

e−j2πfKw1 e−j2πfKw2 · · · e−j2πfKwM















(6)

and x = [x1, x2, ..., xM ]⊺ represents the solved light path

in which the element, xm, represents the total amount of

light coming from all pixels in the mth projector row.

To solve for x, we formulate the problem in terms of

finding an unknown signal of interest from an incomplete

or limited number of observations. When the relationship

between the signal of interest and the observations is given

by an underdetermined system of linear equations, the sys-

tem has an infinite number of possible solutions. In gen-

eral, accurate estimates of the signal of interest that are con-

sistent with the measurements require additional regularity

constraints. In the case of the ℓ0 norm, we want to find the

solution to the underdetermined set of equations given by:

xopt = argmin
x

{

||y −Φx||2
2
+ λ||x||0

}

(7)

where xopt is the sparsest solution, i.e., the solution with the

least number of light paths between camera and projector.

Note that feasible (or nearly feasible) solutions to y ≈ Φx
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are unique if they are sufficiently sparse, meaning a suffi-

ciently small ℓ0 norm [13]. Hence, as long as the light paths

are sparse, then solving Eq. 7 is likely to find them.

4. N -Modal Multi-Path Reconstruction

In this section, we first introduce the basic sparse es-

timation algorithm that underpins the proposed multi-path

reconstruction technique and then explain our extension

technique to handle application-specific constraints. There

is no existing reference that we are aware of that imple-

ments these same real, non-negative constraints within a

broader complex sparse Bayesian learning framework. Nor

is there any reference that explicitly highlights the need

for a method that can handle correlated columns within the

present application context.

All of the algorithm-related sections are simply con-

cerned with minimizing Eq. 7 over x under various condi-

tions. More specifically, Section 4.1 focuses on minimizing

Eq. 7 with no constraints on x, and Section 4.2 adds the

constraints that x must be real and non-negative (one of our

main contributions; see Algorithm 1).

4.1. Basic Sparse Estimation Model

Because solving the unconstrained case Eq. 7 is NP-

hard, it is a common practice to replace the non-convex,

discontinuous ℓ0 regularizer with the convex ℓ1 norm re-

laxation ‖x‖1 =
∑

i |xi| [14, 12]. Unfortunately, though,

when Φ has highly correlated columns, as will necessar-

ily be the case for the application considered herein, then

this convex formulation will not represent a good approxi-

mation to Eq. 7. Likewise, greedy approaches for at least

locally minimizing Eq. 7, e.g., orthogonal matching pursuit

(OMP), are highly susceptible to being trapped at poor ex-

trema, especially with correlated designs.

Consequently, instead of problematic convex relax-

ations or greedy methods, we invoke a Bayesian modeling

paradigm [48] for solving both Eq. 7 and constrained al-

ternatives involving complex data. For this purpose, let us

simplify the problem by assuming y and Φ are purely real

and define the Gaussian likelihood as

p(y|x) ∝ exp
[

− 1

2λ
‖y −Φx‖

2

2

]

, (8)

where, for now, we assume that λ is a known noise variance

parameter. Next, we assume a parameterized, zero-mean,

Gaussian distribution as a prior over x. Specifically, we

have

p(x;γ) ∝ exp
[

− 1

2
x⊤Γ−1x

]

, Γ , diag[γ], (9)

where γ indicates a vector of unknown variance hyper-

paramters. Because both likelihood and prior are Gaussian,

the posterior distribution p(x|y;γ) is also Gaussian with

mean µx and covariance Σx given by

µx = ΓΦ⊤Σ−1

y y (10)

Σx = Γ− ΓΦ⊤Σ−1

y Φ

respectively, where

Σy , ΦΓΦ⊤ + λI (11)

is the conditional covariance of y given γ obtained by

marginalization over x. From these expressions, it is clear

that if γ is a sparse vector with mostly zero-valued en-

tries, then by virtue of its diagonal positioning and lefthand-

side multiplication in Eq. 10, the estimator µx will have a

matching sparsity profile or support pattern (i.e., the inde-

ces of nonzero values will be the same). Of course, for this

framework to be a successful strategy for producing spar-

sity, we require some way of determining a reasonable es-

timate for γ that favors pushing many or most elements to-

wards zero while preserving a good posterior fit for the data.

A Type-II maximum likelihood approach to this prob-

lem involves treating x as nuisance variables that can be

marginalized out of the model [33]. The resulting objective

then only depends on γ and, furthermore, because the re-

sulting convolution of the Gaussians integral is available in

closed-form [48], we can equivalently minimize the nega-

tive log-likelihood expression:

L(γ) = − log

∫

p(y|x)p(x;γ)dx

≡ y⊤Σ−1

y y + log |Σy |. (12)

Although this objective is non-convex in γ, the expectation-

maximization (EM) algorithm can be applied for minimiza-

tion purposes, treating x as the hidden data [11, 48]. For the

E-step, this involves simply computing the posterior mo-

ments of p(x|y;γ) as given by Eq. 10, while the M-step

reduces to the update:

γi ← (µx)
2

i + (Σx)ii , ∀i. (13)

Given that we only require the i-th diagonal element of Σx
(as opposed to the full matrix) for this update, the overall

computational complexity of Eqs. 10 and 13 is linear in

the dimension of x and quadratic in the dimension of y,

where generally dim[y] ≪ dim[x] by construction. Once

we have a hyper-parameter estimate, γ̂, we can compute a

final estimator, x̂, as the posterior mean from Eq. 10 eval-

uated at γ̂. We refer to this as our baseline ℓ0 norm sparse

estimator. Additionally, if analogous derivations are carried

through assuming that y, x, and Φ are complex (with com-

plex Gaussian underlying distributional assumptions), then

we only need to convert transposes to Hermitian transposes

to obtain the requisite EM updates. In the next section, we
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will present an alternative formulation of this sparse learn-

ing algorithm that serves to both elucidate why optimizing

Eq. 12 can lead to better sparse estimates and provide a

natural entry point for introducing practically-useful con-

straints in the complex domain.

4.2. Application­Specific Constraints via Alterna­
tive Formulation

Thus far, we have essentially deferred a direct search for

a sparse estimator x to the indirect search for an ostensibly

sparse γ, which can then later produce a sparse x. But the

mechanism by which this occurs is not at all obvious, es-

pecially given the assumption of a Gaussian prior that typi-

cally favors diverse or non-sparse solutions. However, if we

apply [51, Theorem 2], we can convert the estimation prob-

lem of minimizing L(γ) in γ-space to an equivalent prob-

lem in x-space, thereby facilitating transparent analysis and

a clear pathway for introducing useful application-specific

constraints. In particular, it can be shown that minimizing

Eq. 12 to find some γ̂ and then computing x̂ = µx using

Eq. 10 evaluated at γ̂ is equivalent to minimizing:

L(x) , ‖y −Φx‖
2

2
+ λf(x;Φ, λ), (14)

where

f(x;Φ, λ) , inf
γ<0

∑

i∈S

x2

i

γi
+ log |ΦΓΦ⊤ + λI| (15)

is a penalty function, parameterized by Φ and λ, and S =
{i : xi 6= 0} represents the set of indices, of elements in

x, that are not equal to zero. Note also that if any xi =
0, then the corresponding optimal γi will also equal zero,

given that the log-determinant term in Eq. 15 is a concave,

non-decreasing function of γ. And with complex data, the

only difference is that, again, a Hermitian transpose must be

substituted.

Interestingly, although there is generally no closed-form

solution for f itself, it nonetheless can be shown to be a

strictly concave, non-decreasing function of each coeffi-

cient magnitude, |xi|, for all λ ≥ 0, and, hence, it naturally

favors exactly sparse solutions [51], meaning many xi = 0.

Additionally, given the general determinant identity:

log
∣

∣

∣
ΦΓΦ⊤ + λI

∣

∣

∣
= log

∣

∣

∣

1

λ
Φ⊤Φ+ Γ−1

∣

∣

∣
+ . . .

. . .+ log |Γ|+ log |γI| , (16)

when we optimize Eq. 15, the effective penalty on x will

explicitly depend on Φ⊤Φ through the action of a volumet-

ric log-det measure. This effect allows regularization via f
to compensate for high correlations (i.e., large off-diagonal

elements in Φ⊤Φ) in producing higher quality sparse esti-

mates [52]. Therefore, for present purposes, where by de-

sign Φ will necessarily have highly correlated columns, we

are essentially replacing the ℓ0 norm with f , as opposed to

a standard convex ℓ1 norm alternative that often fails with

correlated designs.

Furthermore, despite the implicit, variational expression

for f , it is nonetheless possible to optimize Eq. 14 via a con-

venient iterative reweighted ℓ1-norm minimization process

[52]. In brief, this process requires iterating:

x ← argmin
x
‖y −Φx‖

2

2
+ λ

∑

i

wi |xi| ,

γi ← |xi|w
− 1

2

i , ∀i (17)

w ← diag

[

Φ

(

λI +ΦΓΦ⊤
)−1

Φ

]

1

2

,

which is guaranteed, based on properties of majorization-

minimization algorithms [46], to reduce or leave unchanged

Eq. 14 until a local minimum (or other critical point) is

reached. Standard convex solvers can, therefore, be used for

implementing the x update, and if complex data is assumed,

only the w update needs be changed by simply substituting

a Hermitian transpose as before (the convex solver for the x

update will, of course, also need appropriate modification).

Additionally, there is another key advantage of this re-

vised formulation that is especially salient for present pur-

poses. Assuming y and Φ are complex-valued instead of

real, then the optimal x̂ obtained from minimizing either

Eq. 12 or 14 will likely be an unconstrained complex vector

as well. However, we know a priori that x should be a non-

negative, real number by virtue of the physical problem con-

straints for the present structured light illumination prob-

lem. Introducing such constraints into the original Bayesian

formulation from Section 4.1 is not possible because the

marginalization required by type-II maximum likelihood is

no longer tractable. In contrast, optimizing Eq. 14 with con-

straints on x is much more straightforward. Essentially, we

need only modify the convex x update from Eq. 17 to in-

clude these constraints, which in many cases involves quite

simple modifications.

For example, proximal gradient methods are commonly

applied to solving weighted ℓ1-norm minimization prob-

lems such as the x update [2]. In brief, this approach is

based on constructing a decoupled quadratic upper bound

on the term g(x) , ‖y −Φx‖
2

2
via

g(x) ≤ g(x̃) + (x− x̃)
H
∇g(x̃) + L

2
‖x̃− x‖2

2
, (18)

where x̃ is an arbitrary parameter vector of the bound, L ∈
[

‖ΦHΦ‖,∞
)

, and

∇g(x̃) = ΦH (y −Φx̃) . (19)

This is because∇g(x) is Lipschitz continuous with the Lip-

schitz constant ‖ΦHΦ‖, in which case such a quadratic
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bound can always be constructed. Therefore, for a fixed

value of x̃, if we replace g(x) with this upper bound, then

after some algebraic manipulations, solving

min
x

(x− x̃)
H
∇g(x̃)+ L

2
‖x̃−x‖2

2
+λ

∑

i

wi |xi| (20)

can be replaced with i independent/decoupled problems of

the form

min
xi

L
2

∣

∣xi −
(

x̃i −
1

L
∇g(x̃)

)
∣

∣

2

+ λwi |xi| . (21)

Solving Eq. 21 has a simple closed-form solution, including

when real, non-negative constraints are enforced on each xi.

In this case, the optimal solution is easily shown to be

ximag
i ← 0, (22)

xreal
i ← max

[

real
(

x̃i −
1

L
∇g(x̃)

)

− λwi

L
, 0
]

, ∀i.

After computing a new x with Eq. 22, we can then set

x̃← x (23)

to update the bound and repeat. By the basic properties of

proximal gradient algorithms [2], iterating Eqs. 19, 22, and

23 is guaranteed to converge to an optimal solution of the

weighted ℓ1-norm minimization problem in Eq. 17 when

real, non-negative constraints are imposed. Therefore, these

iterations form an inner loop for solving the stated con-

strained sub-problem, while Eq. 17 serves as an outer loop

for the overall task. In aggregate, the combined iterations,

even if not executed until convergence, are guaranteed to re-

duce or leave unchanged Eq. 14 subject to ximag = 0 and

xreal ≥ 0.

The pseudo-code of our core sparse Bayesian learning

algorithm for minimizing Eq. 7 with real and non-negative

constraints is shown in Algorithm 1. Overall, the algorithm

is quite simple to implement. Basically, it involves iterating

the steps of Eq. 17, where the argmin over x is computed by

iterating Eqs. 19, 22, and 23 as an inner loop.

5. Experiments

To evaluate our method, we consider a classic compres-

sive sensing problem in which the goal is to reconstruct

sparse signals with N nonzero elements from K observa-

tions. Here, Φ is defined by Eq. 6, where we use spatial

frequencies {fk : k = 1, 2, ...,K,K = 60} and set M to

1000. We then perform a series of experiments, where N
ranges from 1 to 12. In each experiment, we perform 500

trials with each trial (i) randomly assigning N nonzero el-

ements in x, in the range [0.2, 1.2], and the rest to 0; (ii)

reconstructing x; and (iii) calculating the corresponding er-

ror.

The chamfer error [15] is shown in Fig. 3 (left) on the

log scale for the original signal with N nonzero elements

Algorithm 1 SBL Algorithm with Constraints

Input: Φ,y, L, λ
Output: x

w ← 1
ximag ← 0
xreal ← max(real(ΦHy), 0)
while not converged do

γi ←
|xi|√
w

i

, ∀i

w ← diag

[

ΦH
(

λI +Φdiag(γ)ΦH
)−1

Φ

]

1

2

while not converged do

∇g(x) = ΦH (y −Φx)
xreal
i ← max

[

real
(

xi −
1

L
∇g(x)

)

− λwi

L
, 0
]

,

∀i
end while

end while
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Figure 3. The reconstruction error plotted against (left) a varying

number of impulses, N , in x and (right) a varying number of spa-

tial frequencies, K.

and the estimated signal obtained from Eq. 7 using (1) the

convex ℓ1 norm; (2) orthogonal matching pursuit (OMP);

(3) baseline SBL; and (4) our enhanced version of the SBL

with constraints. The proposed SBL-based method out-

performs the ℓ1 norm and OMP at locating the spikes and

shows a significantly lower chamfer error. In Fig. 3 (right),

we plot the evolution of the reconstruction accuracy (eval-

uated by chamfer distance) versus different numbers of fre-

quencies. The performances of these SBL-based methods

look quite similar as the reconstruction error of the proposed

method decreases dramatically and stays within a limited

range when the number of scan frequencies is greater than

10 while OMP, which produces a local minimizer of the ℓ0
cost, often gets stuck at bad local optima regardless of the

number of scan frequencies. ℓ1 fails because the convex ℓ1
norm is not a good approximation of the ℓ0 norm for this

case.

Now, for a demonstration of multi-path separation, we

use the real-world scenarios as shown in Fig. 4 and evalu-

ate different processing approaches on them. The sinusoidal

wavelength range is an integral multiple of 8 pixels on the

projector with 480 rows from top to bottom. We shift 8

frames per frequency and capture 480 frames of video with
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Figure 4. The experimental scenarios include (left) a white, porce-

lain bowl and a specular, stainless steel bowl; and (middle) a white

plaster owl figurine sitting behind a semi-transparent plastic plate

and behind a polyester mesh fabric [54]. The (right) close-up re-

gion shows the magnitude of the observation in the owl and mesh

scene with foreground pixel A, background pixel B, and multi-

path pixel AB.

60 scan frequencies in total, namely {fn = 480/(8n), n =
1, 2, . . . ,K,K = 60}, which are sorted from high to low.

The proposed inexpensive and practical approach can si-

multaneously extract the phases and magnitudes of each

light path without any hardware modifications or additional

requirements for customized patterns. The first/strongest

light path is selected to plot the point clouds/phases. The

first interesting experimental task is to scan a white plaster

owl figurine through a polyester mesh fabric with the same

number of multi-frequency patterns. Some pixels on the

image sensor will see through the holes of the mesh, while

others will see both the foreground mesh and background

owl. This represents an unusually difficult multi-path sce-

nario because a large number of camera pixels receive light

from multiple projector positions. Fig. 5 illustrates the point

cloud reconstructions of the owl figurine, showing the ef-

fects of using the proposed methods with (top) 10 and (bot-

tom) 11 frequencies. Fig. 5 (a) represents the traditional

phase unwrapping with obviously devastating errors in the

3D reconstruction, while (b) and (c) show the current state-

of-the-art bimodal multi-path processing [54] and OMP on

sparse multi-path corrections with ghost-layers due to as-

suming an insufficient number of measured frequencies. It

is evident that the reconstruction improves from left to right

and top to bottom as the number of scan frequencies in-

creases. The proposed sparse Bayesian learning with con-

straints, as shown in (d), outperforms all others.

As a further demonstration of the sparse multi-path ap-

proach, the point cloud reconstructions of an owl sitting

behind a semi-transparent plastic plate are shown in the

front, side, and top view in Fig. 6 with (left) traditional un-

wrapped phase reconstruction, (middle) bimodal multi-path

reconstruction, and (right) the proposed sparse multi-path

reconstruction. We note that both the bimodal and sparse

models can decouple the light paths; however, in observing

the magnitude images from this owl and semi-transparent

plate scan, the proposed model achieves much greater de-

tail, as multiple tiny scratches are visible in Fig. 7 (right)

compared to (left), which shows the magnitude image of the

first/strongest light path from the prior bimodal model [54].

Figures 8 and 9 illustrate the different methods of multi-

path correction on the curved reflective surface of a white,

porcelain bowl and a metal bowl. As shown in Fig. 8,

the state-of-the-art bimodal multi-path procedure [54] is not

completely immune to issues caused by specularities on the

target surface; however, our proposed method greatly im-

proves the artifacts introduced by multi-reflection. Recon-

structing the metal bowl as shown in Fig. 9 is a particularly

challenging task as both micro phase shifting [23] and bi-

modal multi-path processing [54] fail to reconstruct the sur-

face, especially at the 12 and 6 o’clock positions. The re-

construction from micro phase shifting based on a scan un-

der 7 frequencies contains large holes and errors due to the

high-frequency specular interreflections. Compared to the

dense multi-path approach of micro phase shifting, bimodal

multi-path can, at least, reconstruct a secondary path, but it

fails in the presence of three or more paths. In this case,

the first/strongest light path may not always be the direct

path on such a curved and highly reflective surface. Thus,

we need to select the correct light path from a candidate

set (decoupled light paths) based on a piece-wise planar as-

sumption via discrete optimization [29]. Also of note is the

fact that any SLI system needs to be calibrated over a range

from some Zmin to some Zmax; we would, therefore, not

want to reconstruct points outside this range. The evolution

of the recomposed phase image versus an increasing num-

ber of decoupled light paths is shown in Fig. 9.

6. Limit on the Number of Separable Paths

Generally speaking, when searching for sparse solutions

to an underdetermined linear system of equations (with

more columns than rows), the maximum number of nonze-

ros we can expect to uniquely resolve will be less than the

number of measurements/rows. However, if the rank of the

measurement matrix turns out to be less than the number of

rows, then the effective number of measurements will also

be less. In this regard, we computed the singular value de-

composition of Φ given by Eq. 6 in order to examine how

many actually independent measurements are available. We

found that there are about 17 significant singular values of

Φ, and hence no possible algorithm can reliably estimate

more than 17 light paths.

The above analysis assumes that the sparse solutions are

unconstrained; however, at least in principle, real and/or

non-negativity constraints can potentially allow for the re-

covery of more than 17 nonzeros by eliminating some pro-

portion of confounding solutions.
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Figure 5. Point cloud reconstructions shown in side view of the owl figurine sitting behind the polyester mesh fabric using (top) 10

frequencies and (bottom) 11 frequencies with reconstructions acquired from (a) traditional phase unwrapping; (b) bimodal multi-path

processing [54]; (c) OMP; (d) our proposed SBL with constraints.

Figure 6. Illustration of the reconstructions of the owl figurine sit-

ting behind a semi-transparent plastic plate using (left) traditional

unwrapped phase, (middle) bimodal multi-path processed phase,

and (right) the proposed sparse multi-path processed phase.

Figure 7. The extracted magnitude image of (left) the primary

light path from the bimodal multi-path processing and (right) the

first/strongest light path from the sparse multi-path processing.

Figure 8. Reconstruction of a white, porcelain bowl. From left

to right are traditional phase, bimodal multi-path processed phase,

and the proposed SBL with constraints processed phase.

Figure 9. (Top) The reconstruction of a shiny, steel bowl show-

ing: (left) MicroPS from [23], (center-left) bimodal multi-path

from [54], (center-right) the first/strongest light path based on pro-

posed SBL with constraints, and (right) the recomposed phase im-

age in the left half of the red region of interest via the top thirteen

decoupled light paths. (Bottom) Close-up regions of the top-right

scan where the right side of each red box is the unprocessed phase,

while the left side shows the evolution of recomposed phase image

versus an increasing number of decoupled light paths with (left)

the first two paths, (center-left) the first three paths, (center-right)

the first five paths, and (right) the first thirteen paths.

7. Conclusion and Future Work

This paper has elucidated the problem of multi-path in

the structured light method. The problem of mixing multi-

ple rays in one pixel was formulated as an under-determined

linear system. Furthermore, a mathematical method for

estimating the contained light rays under the assumption

of sparseness was described. The proposed modified ver-

sion of the sparse Bayesian learning method to handle con-

straints is potentially useful for other problems as well. As

we have demonstrated, the new technique outperforms the

bimodal multi-path solution when dealing with sharp edges,

inter-reflection, or semi-transparent objects. Moreover, it

was shown that the number of separable paths depends on

the frequency set. In the future, we may seek to obtain

some ideas from [14] and try computing the SVD of Φ con-

structed by different frequencies to investigate the optimal

frequency setting for sparse multi-path corrections.
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