
Stochastic Whitening Batch Normalization

Shengdong Zhang1 Ehsan Nezhadarya∗1 Homa Fashandi∗1 Jiayi Liu2

Darin Graham1 Mohak Shah2

1Toronto AI Lab, LG Electronics Canada 2America R&D Lab, LG Electronics USA

{shengdong.zhang, ehsan.nezhadarya, homa.fashandi, jason.liu, darin.graham, mohak.shah}@lge.com

Abstract

Batch Normalization (BN) is a popular technique for

training Deep Neural Networks (DNNs). BN uses scaling

and shifting to normalize activations of mini-batches to ac-

celerate convergence and improve generalization. The re-

cently proposed Iterative Normalization (IterNorm) method

improves these properties by whitening the activations iter-

atively using Newton’s method. However, since Newton’s

method initializes the whitening matrix independently at

each training step, no information is shared between con-

secutive steps. In this work, instead of exact computation of

whitening matrix at each time step, we estimate it gradually

during training in an online fashion, using our proposed

Stochastic Whitening Batch Normalization (SWBN) algo-

rithm. We show that while SWBN improves the convergence

rate and generalization of DNNs, its computational over-

head is less than that of IterNorm. Due to the high efficiency

of the proposed method, it can be easily employed in most

DNN architectures with a large number of layers. We provide

comprehensive experiments and comparisons between BN,

IterNorm, and SWBN layers to demonstrate the effectiveness

of the proposed technique in conventional (many-shot) image

classification and few-shot classification tasks.

1. Introduction

Gradient descent-based methods are the de-facto training

algorithms for DNN, and mini-batch Stochastic Gradient

Decent (SGD) has become the most popular first-order op-

timization algorithm. In mini-batch SGD, instead of com-

puting the gradients for the entire training set as in batch

gradient descent, or based on one training sample as in con-

ventional SGD, the gradients are computed based on a small

random subset of the training set called mini-batch. The

stochastic nature of mini-batch SGD helps a DNN find bet-

ter local optima or even the global optima than batch gradient

descent. We use SGD to refer to mini-batch SGD in the rest

of the paper.

* Equal contribution.

Figure 1: The SWBN diagram shows how whitening parameters and

task parameters inside an SWBN layer are updated in a decoupled

way. Whitening parameters (in blue rectangles) are updated only

in the forward phase, and are fixed in the backward phase. Task

parameters (in red rectangles) are fixed in the forward phase, and

are updated only in the backward phase.

Due to the change in the distribution of the inputs of DNN

layers at each training step, the network experiences Internal

Covariate Shift (ICS) as defined in the seminal work of [17].

ICS affects the input statistics of the subsequent layers, and

as a result, it degrades the training efficiency.

Eliminating the effect of ICS can accelerate the training

of DNN by helping the gradient flow through the network,

stabilizing the distributions of the activations, and enabling

the use of a larger learning rate. To alleviate these effects,

BN has been proposed in [17].

Recent studies have shown that whitening (decorrelat-

ing) the activations can further reduce the training time and

improve the generalization [8, 24, 15]. However, when

dealing with high-dimensional data, the requirement of

eigen-decomposition [8, 24], Singular Value Decomposi-

tion (SVD), or Newton’s iteration [15] for computing whiten-

ing matrices has been the bottleneck of these methods.

In this paper, we propose a method called SWBN, which

gradually learns whitening matrices separately in each layer

during training. The proposed method eliminates the need

for expensive matrix decomposition and inversion for whiten-

ing data as SWBN learns the whitening matrix in an online

fashion. Our formulation clearly shows the computational

advantage of SWBN to other whitening techniques applied

in DNNs, such as [8], [15] and [14].

In Section 2, we review the related works on normal-

10978

ization and whitening techniques for DNN. In Section 3,

we derive and discuss the SWBN algorithm. In Section 4,

we present extensive experimental results to show the ef-

fectiveness of the proposed method for different network

architectures and datasets. In summary, the key advantages

of the proposed method are as follows:

• SWBN is designed to be a drop-in replacement for BN.

It decouples the learning process of whitening matrices

from the back-propagation algorithm. Thus there is no

need to modify the network architecture, task loss, or

the optimization algorithm to enable whitening.

• SWBN takes advantages of both BN and whitening

to improve convergence rate and generalization per-

formance of DNN models with small computational

overhead.

• There are a few whitening approaches that aim to serve

as drop-in replacements for BN layers. However, they

can only replace a small number of BN layers in a DNN

with their whitening layers due to the computational

burden. In contrast, SWBN learns whitening matrices

without expensive matrix decomposition or matrix in-

version operations, enabling SWBN layers to replace a

large number of BN layers.

2. Related Works

Activation normalization is known to be a very effec-

tive technique in speeding up the training of DNNs [25]. A

straightforward solution is to center the input mean to zero,

and use nonlinear activation functions that range from -1 to 1

[22]. Although this method limits the activation values, acti-

vation distribution may still largely vary during the training,

as caused by the change in the parameters of the previous

layers known as ICS.

To alleviate ICS, BN was proposed as a technique that em-

ploys the mean and variance of the mini-batch to normalize

the activations [17]. At training time, this technique stabi-

lizes the distributions of the activations and allows the use of

larger learning rates. BN, however, may not work well with

small mini-batches, because mean and variance estimates

are less accurate. To improve the estimation accuracy for

small mini-batches, other variants have been proposed, such

as Batch Renormalization [16], Weight Normalization [26],

Layer Normalization [1], Group Normalization [32], Online

Normalization [5], PowerNorm [27], and Streaming Normal-

ization [23], etc.

Whitening (decorrelating) the activations may further im-

prove the training time and generalization of DNN models.

This usually happens as a result of improving the condition-

ing of the input covariance matrix, which leads to better

conditioning of the Hessian matrix or Fisher information

matrix of network parameters. One way to whiten activa-

tions is to add regularization terms to the task loss. Cogswell

et al. [6] have proposed a regularizer, DeCov, that adds

decorrelation loss to the task loss function, which encour-

ages decorrelation between activations and non-redundant

representations in DNNs. An extended version of DeCov

based on group-based decorrelation loss has been proposed

in [34]. In [35], spectral norm regularization is proposed. It

designs a penalty term added to the task loss function, which

regularizes parameter matrices by the approximated largest

singular values and their corresponding singular vectors via

the Power Iteration method. Although these methods are

shown to improve network generalization, they introduce

extra hyper-parameter to merge the decorrelation regularizer

with the task loss.

Some approaches do not introduce any extra term to

the task loss. Natural neural networks [8] and generalized

whitened neural networks [24] propose two types of Zero-

phase Component Analysis (ZCA)-based whitening layers

to improve the conditioning of the Fisher information matrix

of a DNN. To avoid the high cost of eigenvalue decom-

position that is required to compute the whitening matrix,

both methods amortize the cost over multiple consecutive up-

dates, by performing the whitening step only at every certain

number of iterations. Similarly, Decorrelated Batch Nor-

malization (DBN) [14] directly whitens the activations by

eigenvalue decomposition of the sample covariance matrix

computed over each mini-batch, but its usage in a large DNN

is limited due to its high computational cost. Further, [31]

proposes back-propagation friendly eigen-decomposition to

whiten the activations by combining the Power Iteration

method and the truncated SVD. IterNorm [15], as an im-

proved version of DBN, uses Newton’s method to compute

the square root inverse of the covariance matrix, iteratively.

Although Newton’s method improves the whitening effi-

ciency, IterNorm still has the following drawbacks: First,

ZCA whitening is used for each mini-batch independently.

In other words, at each training step, the exact whitening

matrix is computed specifically for the current mini-batch.

As a result, the information of this whitening matrix does not

carry over to the computation of the whitening matrix at the

next step. Second, because Newton’s method requires multi-

ple iterations of matrix multiplication, applying IterNorm to

all the layers of a very deep neural network is computation-

ally inefficient.

3. Stochastic Whitening Batch Normalization

In this section, we first review the whitening techniques

and explain the issues that arise when these techniques are

employed directly in the training of DNN models. Later,

we introduce our stochastic whitening batch normalization

algorithm and provide explanations and complexity analysis

of how and why SWBN works.

10979

3.1. Whitening Transformation

A random vector ~z ∈ R
d, with zero mean, is said to

be white if the expectation of the covariance of ~z satisfies

E[~z~zT] = Id, where Id is an identity matrix. Therefore, ele-

ments of ~z have unit variance and are mutually uncorrelated.

Whitening is a process that transforms a zero-mean random

vector ~x ∈ R
d into ~z by a linear transformation. Existing

methods for data whitening are to search for a transforma-

tion matrix W ∈ R
d×d, such that ~z = W~x [19]. Principal

Component Analysis (PCA) whitening and ZCA whitening

algorithms are two commonly used methods. Both of these

algorithms require the covariance matrix Σ~x = E[~x~xT], and

its decomposition via eigenvalue decomposition, or Cholesky

decomposition on its inverse matrix Σ−1
~x .

The eigenvalue decomposition decomposes the covari-

ance matrix as Σ~x = UDUT , where U is an orthogonal ma-

trix and D is a diagonal matrix with eigenvalues of the covari-

ance matrix on its diagonal. In the case of Cholesky decom-

position, we have Σ−1
~x = LLT , where L is a lower triangular

matrix with positive diagonal values. In practice, the sample

covariance matrix Σ̂~x is used. In this work, we only consider

PCA and ZCA whitening algorithms. In PCA whitening, the

transformation matrix W is of the form W = D−1/2UT ,

and in ZCA whitening W is of the form W = UD−1/2UT .

It is worth mentioning that left-multiplying any orthogo-

nal matrix to the PCA whitening matrix W forms a new

whitening matrix [19]. The ZCA whitening matrix is the

only whitening matrix that is symmetric.

More details of these whitening algorithms are included

in [2], [9], [18], and [19].

3.2. Introduction to SWBN

The computational cost of whitening matrices usually

becomes the bottleneck when applying any of the above-

mentioned whitening algorithms to train a DNN, especially

for networks with millions or billions of parameters. One

important question to answer is whether the complete whiten-

ing process is necessary at each training step. Because of

ICS, a whitening matrix computed at one step could be very

different from the one computed at the next step, making the

full computation of the whitening matrix at the previous step

a waste. Therefore, it will be ideal if the whitening algorithm

can reduce the computational cost via gradually whitening

the data over training iterations.

In this work, we introduce SWBN, a stochastic algorithm

that gradually learns whitening matrices and whitens acti-

vations simultaneously. SWBN whitens the activations by

stochastically minimizing a whitening loss with respect to an

internal matrix. A whitening loss is a function of the covari-

ance matrix. The internal matrix keeps track of the changes

of the input distribution through the loss minimization, and

eventually becomes a whitening matrix. However, unlike

DeCov, spectral norm, or any other methods involving modi-

fication of the loss functions, in SWBN, the whitening loss

is decoupled from the task loss. Decoupling them not only

reduces the chance of divergence at training time but also

speeds up convergence. Also, as shown in [15], although

fully whitening the activations helps accelerate convergence,

partial whitening on each mini-batch may yield better gener-

alization due to the noise introduced from partial whitening.

In addition, different from DBN or IterNorm that completely

whiten activations at each step, an SWBN layer uses its inter-

nal matrix to “slightly” whiten the activations with respect

to a predefined whitening loss before they are fed into the

next layer. As training continues, the matrix gets closer to

the final whitening matrix, and the output of an SWBN layer

becomes whiter. We discuss two whitening criteria in the

next subsection.

3.3. Whitening Criteria

We define the whitening criterion as the whitening loss

function, which is a measure of distance between a covari-

ance matrix and the identity matrix.

Definition 1. A whitening criterion for a positive semi-

definite matrix Σ is a function C : Sn+ 7→ R
+∪{0} that maps

Σ to a non-negative real number which quantifies the dissim-

ilarity between Σ and the identity matrix I . Sn+ represents a

set of positive semi-definite matrices of size n× n.

With this definition, we can define a whitening matrix

under a criterion C for a random vector ~x.

Definition 2. Let ~x ∈ R
d be a zero-mean d-dimensional

random vector and Σ~x = E[~x~xT]. A matrix W ∗ is called a
whitening matrix under a criterion C, or C-whitening matrix,
of ~x, W satisfies:

W
∗ = argmin

W
C(Σ~y) = argmin

W
C(WΣ~xW

T)

where ~y = W~x, and Σ~y = E[~y~yT] = WE[~x~xT]WT .
In this work, we consider the following two whitening

criteria derived by Kullback–Leibler (KL) divergence and
Frobenius norm:

CKL(WΣ~xW
T) =

1

2
(tr(WΣ~xW

T)− ln det(WΣ~xW
T)− d) (1)

CFro(WΣ~xW
T) =

1

2
||I −WΣ~xW

T ||Fro (2)

It is obvious that both criteria reach their minimum values

of 0 if WΣ~xW
T = Id. The first criterion is derived from

KL divergence based on the assumption of having two zero-

mean Gaussian distributions with covariance matrices equal

to Σ~y and Id. The second criterion directly computes the

Frobenius norm of the difference between the identity matrix

Id and the sample covariance matrix. Unlike CKL, CFro

has no assumptions on the probability distribution. These

two criteria are the core of the proposed SWBN algorithm.

More details can be found in Appendix B.

10980

Algorithm 1: Forward Propagation of SWBN Lay-

ers at Training Phase

Input : Input batch X ∈ R
d×n = [~x1, · · · , ~xn]

Output : Processed data X̂ ∈ R
d×n

Initialization:

Whitening parameters: W = Id;

Task parameters: ~γ, ~β ∈ R
d;

Hyperparameters: tolerance ǫ = 10−8, moving

average momentum η = 0.95, step size α;

Criterion: C = CKL or CFro;

Expected mean and variance: ~µE = ~0, ~vE = ~1.

1. Calculate batch mean: ~µ← 1

n
Σn

i=1~xi

2. Calculate batch variance:

~v ← 1

n−1
Σn

i=1(~xi − ~µ)⊙ (~xi − ~µ)*

3. Update the expected mean: ~µE ← η~µE + (1− η)~µ
4. Update the expected variance: ~vE ← η~vE + (1− η)~v

5. Standardize data: XS
← Λ−

1

2 (X − ~µ~1Tn), where

Λ← diag(~v) + ǫId
†

6. Calculate sample covariance matrix:

Σ̂B ←
1

n
XS(XS)T

7. Compute and update matrix from Eq. (3):

W ←W − α∆W

8. Enforce symmetry constraint: W ← 0.5(W +WT)
9. Multiply W to standardized data: XW

←WXS

10. Compute output: X̂ ← XW
⊙ (~γ~1Tn) + (~β~1Tn)

3.4. Update Rules for SWBN Layer

Assume ~x is an input vector to a hidden layer of a DNN

model. We find the C-whitening matrix W of each layer by

minimizing the whitening criterion using SGD. We update

W by W ←W − α∆W , where α is the step size and ∆W

is the update matrix. The update rules with respect to the

criteria in Eq. (1) and Eq. (2) mentioned above are:

∆W =

{

(W Σ̂~xW
T − Id)W, for CKL,

(W Σ̂~xW
T−Id)W Σ̂~x

||Id−W Σ̂~xWT ||Fro
, for CFro,

(3)

where Σ̂~x is the sample covariance matrix.

Cardoso et al. [4] shows that optimizing W to be a mini-

mizer of CKL by its update rule in Eq. (3) results in a whiten-

ing matrix. To our knowledge, this is the first time that the

update rule of CKL is applied in a mini-batch SGD setting

for training DNNs. The proposed update rule of CFro is

not only less sensitive to the whitening step size and the

batch size, but also shows better performance on few-shot

classification, based on the experimental results in Section 4.

Unlike the update rule of CFro, the update rule of CKL is

derived by relative gradients. The derivation of these update

rules and the detailed discussion are given in Appendix B.

Algorithm 2: Back-propagation of SWBN Layers

at Training Phase

Input : Gradients of task loss L w.r.t output
∂L
∂X̂
∈ R

d×n

Intermediate data from Algorithm 1, XS , XW , ~µ, ~v

Whitening matrix from Algorithm 1, W

Output : Gradients w.r.t. X , ~γ, ~β i.e. ∂L
∂X ∈ R

d×n,
∂L
∂~γ ∈ R

d, ∂L

∂~β
∈ R

d

Initialization: ∂L
∂X ← 0d×n, ∂L

∂~γ ←
~0d, ∂L

∂~β
← ~0d

for k = 1, . . . , d do

[∂L∂~γ]k ← Σn
j=1

∂L
∂X̂kj

XW
kj

[∂L
∂~β

]k ← Σn
j=1

∂L
∂X̂kj

for l = 1, . . . , n do
∂XS

kl

∂vk
← − 1

2 (X
S
kl − µk)(vk + ǫ)−

3

2

∂XS
kl

∂µk
← − 1√

vk+ǫ
∂vk

∂Xkl
← 2

n−1 (Xkl − µk)
∂µk

∂Xkl
← 1

n
∂XS

kl

∂Xkl
← 1√

vk+ǫ
+

∂XS
kl

∂vk

∂vk
∂Xkl

+
∂XS

kl

∂µk

∂µk

∂Xkl

[∂L∂X]kl ←
∂XS

kl

∂Xkl
Σd

i=1γiWik
∂L
∂X̂il

end

end

3.5. SWBN Algorithm

Forward propagation steps for SWBN layer in training

and prediction phases are shown in Algorithms 1 and 3, re-

spectively. We define two sets of parameters in the algorithm:

whitening parameters and task parameters. Figure 1 illus-

trates how these two sets of parameters are updated in the

training and prediction phases.

For a DNN model with a convolutional layer, the input to

an SWBN layer is a tensor T ∈ R
d×h×w×n, where d, h, w

and n stand for the number of feature channels, height, width

and batch size, respectively. Note that in the test phase, n is

equal to 1. To apply any of the above algorithms to T , we

just need to reshape it into a matrix X ∈ R
d×(hwn) before

feeding it to the layer, and reshape the output X̂ back to the

original shape.

Steps 1 to 5 of Algorithm 1 standardize each element of

the input ~x to have zero mean and unit variance. Standard-

ization can stabilize and improve the training convergence

rate in a way similar to BN. More importantly, it avoids

potential numerical issues on covariance matrix estimation.

Since the sample covariance matrix Σ̂ is used to compute

the update ∆W , it has a direct influence on the convergence

of W as well as the training of the whole DNN. If we es-

*⊙ stands for Hadamard product.
†diag(·) creates a diagonal matrix whose diagonal is the given vector.

10981

Algorithm 3: Forward Propagation of SWBN Lay-

ers at Prediction Phase

Input : Input feature vector to the layer ~x ∈ R
d

Output : Output feature vector ~x′ ∈ R
d

1. ~xS ← Λ
− 1

2

E (~x− ~µE), where

ΛE ← diag(~vE) + ǫId

2. ~x′ ← (W~xS)⊙ ~γ + ~β

timate Σ̂ simply by the centered data X − ~µ~1T , due to the

stochastic nature of training a DNN, the numerical range of

entries of Σ̂ could have a large variation, especially at the

early stages of training. This can make the learning of W

unstable, or may cause the training to diverge. IterNorm [15]

avoids this problem by normalizing the sample covariance

matrix by its trace. In SWBN, standardizing ~x solves the

problem, because the resulting sample covariance matrix

Σ̂B of the standardized data becomes the sample correlation

matrix, whose entries are in the range [−1, 1]. In step 7 of

Algorithm 1, we use the update rule of Eq. 3 to optimize

W . For stable convergence, the step size α needs to be a

small positive number, e.g. 10−5. Note that in the beginning

of training, W dose not fully whiten the data. As training

continues, the updates to W make it a better whitening ma-

trix with respect to the chosen criterion C. As discussed in

Section 3.1, to render the ZCA whitening matrix symmetric,

we also enforce the symmetry constraint on W in step 8. In

step 10, following the same procedure as BN to scale and

shift the standardized input of each layer, we apply an affine

transformation Γ ∈ R
d×d to the whitened activations and

shift it by a vector ~β. To keep the number of parameters and

thus the computational complexity low, we employ a diago-

nal matrix for Γ, as in [17], which is the same as applying

the scaling factor γi to each channel.

During the back-propagating step, we only need to com-

pute the gradients for the preceding layers ∂L
∂X , and the gra-

dients for the scaling and shifting parameters ∂L
∂~γ and ∂L

∂~β
, as

described in Algorithm 2. We do not compute the gradients

of the whitening matrix W . The detailed derivation of the

gradients in Algorithm 2 are given in Appendix C.

In the prediction phase, as described in Algorithm 3, we

standardize the input to the layer by the fixed expected mean

~µE , and the variance ~vE . Then we whiten the standardized

data by the whitening matrix W obtained from Algorithm 1.

The output vector is then computed by scaling and shifting

the whitened standardized input.

3.6. Computational Complexity

We choose to compare SWBN only with IterNorm, be-

cause DBN adopts eigenvalue decomposition to compute the

whitening matrix and thus has much higher computational

cost. We consider the total number of multiplications re-

quired by matrix multiplications in these algorithms, as they

dominate computation.

Let’s assume the input data matrix is of size Rd×n, where

d is the number of feature channels, and n is the number of

data samples. At training time, the IterNorm algorithm has

three steps that depend on matrix multiplications: 1) calcula-

tion of the sample covariance matrix, 2) Newton iterations

for the whitening matrix, 3) and whitening the input data.

Steps 1 and 3 require 2d2n multiplications. The update for-

mula of Newton iteration for the whitening matrix is given

by Wk = 1
2 (3Wk−1 −W 3

k−1Σ̂N) [15], where Wk ∈ R
d×d

is the whitening matrix at the kth iteration, and Σ̂N ∈ R
d×d

is the sample covariance matrix normalized by its trace. The

number of matrix multiplications for T iterations is 3Td3.

Thus, IterNorm requires 2d2n + 3Td3 multiplications in

total.

In SWBN, the majority of the computation during train-

ing time comes from steps 6, 7, and 8 in Algorithm 1. Sim-

ilar to IterNorm, the cost of steps 6 and 8 stems from the

computation of the sample covariance matrix and whitening

the input data. It is trivial to show that step 7 in Algo-

rithm 1 requires 3 matrix multiplications for both CKL and

CFro, which result in the total number of multiplications

2d2n + 3d3. IterNorm requires T = 5 to give stable per-

formance, resulting in 2d2n+ 15d3 multiplications, while

SWBN-KL and SWBN-Fro need 2d2n+3d3 multiplications.

SWBN’s constant of the leading term d3 is five times smaller

than that of IterNorm. As a result, SWBN is computation-

ally more efficient. At inference time, similar to BN and

IterNorm, the SWBN layer can be merged into its adjacent

fully-connected layers or convolutional layers. Therefore,

the SWBN algorithm adds no extra computational overhead

at inference time.

In addition, SWBN is more memory efficient than

IterNorm. As indicated in [15], in the forward phase,

IterNorm needs to store all intermediate whitening matri-

ces Wk’s from the Newton iterations, as they are required

to compute gradients in the backward propagation phase.

SWBN only needs to store one W , as this matrix is static

in the backward propagation phase. In other words, for

IterNorm, if T = 5, then 5d2 memory space is needed,

whereas SWBN only takes d2.

4. Experiments

In this section, we show the effectiveness of SWBN in

terms of convergence speed and generalization through ab-

lation studies and experiments on benchmark datasets for

the classification task. In section 4.1, We demonstrate the

effect of whitening step size α and the batch size on each

model loss and convergence rate, both at training and test

phases. Also, we conduct experiments to show how ef-

fectively the proposed SWBN-KL and SWBN-Fro layers

can whiten the features maps. The computational complex-

10982

ity comparison between SWBN and IterNorm is given in

Section 4.1.4. In Section 4.2, we show that by replacing

BN layers with SWBN layers, DNN models achieve better

generalization performance and training efficiency on bench-

mark classification datasets CIFAR-10, CIFAR-100 [21] and

ILSVRC-2012 [7], as well as few-shot classification bench-

mark datasets CIFAR-FS [3] and mini-Imagenet [30].

4.1. Ablation Studies

We conduct all the experiments for ablation studies in a

controlled configuration. For each experiment on a dataset,

we first implement a model with BN layers. Next, we

make exact copies of this model and replace their BN layers

with SWBN-KL, SWBN-Fro layers, and IterNorm layers,

respectively. All the scaling and shifting parameters ~γ and ~β

in SWBN layers are initialized to 1’s and 0’s, respectively.

This insures that all the models in an experiment have iden-

tical model parameters before training. We use SGD with

the learning rate of 0.1 with momentum of 0.9 as the opti-

mization algorithm. We set the batch size to 128 for all the

experiments, unless stated otherwise. To remove any possi-

ble factor that may affect network performance other than

these normalization layers, we do not use any regularization

techniques, such as weight decay or dropout [29]. CIFAR-

10 [21] is used for the experiments, which has 60K, 32× 32
pixels color images, 50K in the training set and 10K in the

test set. The task is to classify images into 10 categories.

4.1.1 Effect of Whitening Step Size

The step size α in Algorithm 1 is an important hyper-

parameter which controls the convergence speed of a whiten-

ing matrix. To investigate how this number affects the train-

ing of a model, we use a common VGG model architecture

given in Appendix A, and train it on CIFAR-10 dataset.

Each experiment is run for 100 epochs. The learning rate

is divided by 2 at every 30 epochs. The loss curves for

α ∈ {10−4, 10−5, 10−6} are depicted in Figure 2. For

α = 10−4, the convergence behavior is not as stable as

that of α = 10−5 and 10−6. In comparison with SWBN-KL,

SWBN-Fro shows slightly better stability. We conjecture

that the Frobenius norm denominator ||Id −W Σ̂~xW
T ||Fro

normalizes the gradients.

When α = 10−6, although the convergence is more stable

than 10−4, it yields larger test loss than α = 10−5, and the

generalization improvement of SWBN seems negligible. In

comparison with SWBN-KL, SWBN-Fro yields lower test

loss. The experiment results show that α = 10−5 gives a

better trade-off between convergence rate and stability.

4.1.2 Effect of Batch Size

We also show the effect of different batch sizes on the per-

formance of SWBN. We also include the results of IterNorm

Figure 2: Effect of whitening step sizes on training and test loss. The

plots show the mean curves of 10 runs with ±1 standard deviation.

Best viewed in color.

Figure 3: Effect of different batch sizes. The plots show the mean

curves of 5 runs with ±1 standard deviation. Best viewed in color.

for comparison. We follow the same configuration, except

each experiment is run for 150 epochs, and the learning rate

is divided by 10 at every 30 epochs. The loss curves with

1 standard deviation error bars for batch sizes 32, 128 and

512 are shown in Figure 3. As seen, the lowest test losses

for different batch sizes are achieved by SWBN-Fro. The

models with SWBN layers outperform those with BN and

IterNorm layers in terms of test loss.

4.1.3 Whitening Effect of SWBN

To demonstrate the whitening effect of the SWBN algorithm,

we feed in random 5000 CIFAR-10 images to a trained VGG

model, and extract its output of the last normalization layer,

i.e. the features before being scaled and shifted by parame-

ters ~γ and ~β, respectively. Figure 4 shows the heatmap plots

of the correlation matrices generated from the hidden fea-

tures before training (i.e., epoch 0), and after 150 epochs. For

better visualization, we only show the correlation heatmaps

for randomly selected 128 features. In these plots, darker

pixels represent smaller values in the correlation matrix.

The plots in the first column show that BN layers can not

whiten the feature maps as batch normalized features remain

highly correlated throughout training. The second and third

columns of the plots show that the correlation matrices of

the features after the SWBN layers are close to the identity

matrix, indicating that the features are highly whitened.

4.1.4 Wall-clock Time Comparison

To demonstrate the efficiency of SWBN, we perform a se-

ries of experiments to measure the training time of SWBN

and IterNorm. We follow the same procedures as described

in [15] to measure wall-clock time. We use TITAN Xp with

10983

E
p

o
ch

0
E

p
o

ch
1
5
0

BN SWBN-KL SWBN-Fro

Figure 4: Comparison of heatmaps of correlation matrices. Columns,

from left to right, represent heatmaps for the models with BN,

SWBN-KL, and SWBN-Fro layers, respectively. Rows, from top

to bottom, represent heatmaps of the corresponding models before

and after training, respectively.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Layer Type

Channels
d=256 d=1024 d=2048

BatchNorm 1.7ms 5.01ms 11.44ms

SWBN-KL 13.5ms 72.5ms 256.4ms

SWBN-Fro 13.2ms 72.3ms 260.12ms

IterNorm 15.5ms 111.8ms 475.34ms

Table 1: Single layer wall-clock time (in ms), averaged over 100
runs, for BatchNorm, IterNorm and SWBN.

CIFAR-10 (1 GPU) SWBN-KL SWBN-Fro IterNorm

ResNetV2-164 123s 125s 187s

WRN-40-10 226s 230s 299s

ImageNet (8 GPUs) SWBN-KL SWBN-Fro IterNorm

ResNetV2-50 27min 31min 97min

ResNetV2-101 38min 43min 184min

Table 2: Training time per epoch of IterNorm and SWBN layers on

CIFAR-10 and ImageNet datasets, averaged over 3 runs.

Pytorch v1.3 and CUDA 10.1 for the experiments. We define

the input tensor X ∈ R
h×w×d×m and the 3 × 3 convolu-

tional tensor W ∈ R
3×3×d×d, where h = w = 32, d and

m = 64 are height, width, number of channels and batch

size, respectively. Pytorch implementations of SWBN and

IterNorm are used to run these experiments. For each dimen-

sion d ∈ {256, 1024, 2048}, wall-clock time of one forward

pass plus backward pass for a single layer is averaged over

100 runs. Experimental results are summarized in Table 1.

To show the efficiency of SWBN with popular DNN mod-

els, we select the wide architecture Wide ResNet(WRN) [36]

and the deep architecture ResNetV2 [12]. All BN layers in

these models are replaced with SWBN and IterNorm, and

the models are trained on CIFAR-10 dataset with images

of size 32 × 32 × 3. Further, we do the same experiments

with ResNetV2 on the ImageNet dataset with images of size

224× 224× 3. The batch size is fixed to 128 for CIFAR-10
and 256 for ImageNet. On ImageNet, we use 8 Tesla V100

GPUs for acceleration. Table 2 summarizes training time

of one epoch for models with different whitening layers.

As seen, SWBN models are significantly faster than their

IterNorm counterparts, especially for very deep CNNs with

a large input size.

4.2. Image Classification

In this section, we evaluate the performance of SWBN on

image classification benchmarks CIFAR-10, CIFAR-100 and

ILSVRC-2012 (ImageNet). The performance of SWBN is

compared with that of the state-of-the-art whitening methods,

such as DBN [14] and IterNorm [15].

4.2.1 CIFAR-10 and CIFAR-100

In this section, we provide SWBN’s performance on CIFAR-

10 and CIFAR-100 datasets using deep and wide CNNs. We

select a deep model architecture, ResNetV2 [12], and a wide

model architecture, Wide ResNet (WRN) [36]. We use the

same architecture as reported in [36] and [12], and replace

all BN layers with SWBN or IterNorm layers. CIFAR-100 is

a variant dataset of CIFAR-10, which has 60K color images

of size 32× 32: 50K in the training set and 10K in the test

set. The task is to classify images into 100 categories instead

of 10, making it more challenging than CIFAR-10 because

there are fewer data samples for each category. Every ex-

periment was repeated 10 times with different random seeds.

The mean test accuracies are reported in Tables 3 and 4.

We use the same training configuration, hyper-parameters

and data augmentation setups as described in the original

papers. The whitening step size α is set to 10−5 for all the

experiments. Because no results on CIFAR-100 dataset are

reported in [15], we used the released code from [15] to

run these experiments. We don’t conduct additional exper-

iments for DBN because IterNorm is faster and has better

performance [15].

As shown in Table 3, for CIFAR-10 dataset models with

SWBN layers generally outperform the ones with BN layers,

and have similar performance as those with IterNorm lay-

ers. However, as shown in Table 4, for CIFAR-100 dataset,

SWBN layers improve the generalization performance of

these models. Surprisingly, IterNorm layers reduce the gen-

eralization performance of deep CNN models like ResNetV2
comparing with BN layers.

4.2.2 ILSVRC-2012 (ImageNet)

In this section, we compare SWBN with IterNorm on

ILSVRC-2012, a.k.a. ImageNet dataset. The dataset has

1.28 million images for training and 50, 000 images for test-

ing. The task is to classify an image into 1000 classes.

In [15], to speed up the training of ResNet [11] with

IterNorm on this dataset, the authors only replaced the first

BN layer with an IterNorm layer and added one IterNorm

10984

Models BN Baseline DBN IterNorm SWBN-KL SWBN-Fro

ResNetV2-56 92.92 N/A 93.11∗ 93.4 93.23

ResNetV2-164 94.54 [12] N/A 94.45∗ 94.68 94.59

WRN-28-10 96.11 [36] 96.21 [14] 96.19∗ 96.23 96.18

WRN-40-10 96.2 [36] 96.26 [14] 96.23∗ 96.39 96.35

Table 3: CIFAR-10 Results. All numbers for SWBN models are

averaged test accuracies (%) of 10 runs. Best average accuracies

are highlighted in bold face, and N/A indicates that the accuracy is

not reported in the referenced paper. ∗ indicates results produced

by the released code of [15].

Models BN Baseline IterNorm SWBN-KL SWBN-Fro

ResNetV2-56 73.01 72.1∗ 73.12 72.9

ResNetV2-164 75.56 74.12∗ 76.13 76.02

WRN-28-10 81.15 [36] 79.83∗ 81.41 81.31

WRN-40-10 81.7 [36] 80.56∗ 81.7 81.78

Table 4: CIFAR-100 Results. All numbers for SWBN models are

average test accuracies (%) of 10 runs. Best average accuracies

are highlighted in bold face. ∗ indicates results produced by the

released code of [15]. The BN baseline accuracies reported for

WRN in [36] are the best single run results.

Model
BN IterNorm SWBN-KL SWBN-Fro

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

ResNet-50 75.3 [10] 92.2 [10] 77.09 [15] 93.53 [15] 77.03 93.61 76.95 93.23

ResNeXt-50 77.8 N/A N/A N/A 78.1 93.71 78.2 93.68

ResNeXt-101 78.8 94.4 N/A N/A 79.39 94.51 79.27 94.48

Table 5: Single run results of ILSVRC-2012. N/A indicates the

accuracy is not reported in the referenced paper or not available for

high computational cost.

layer before the last linear layer, a total of two IterNorm

layers used in their models. To make a fair comparison, we

use the same setting, by replacing 2 BN layers with SWBN

layers at the exact locations in the model. The results are

shown in the first row of Table 5.

To further test the scalability and performance improve-

ment of SWBN for larger state-of-the-art models, we train

two ResNeXt models [33] with SWBN layers. We em-

ploy the same configuration as defined in [33], and choose

ResNeXt-50, 32x4d and ResNeXt-101, 32x4d, which have

∼ 25M and ∼ 44M parameters, respectively. Experimental

configurations can be found in Appendix D.

Both top-1 and top-5 test accuracies are reported in Ta-

ble 5. The test accuracies were evaluated on the single-

cropped 224× 224 test images. As seen, the ResNeXt mod-

els that use SWBN layers outperform the ones with BN

layers, both in top-1 and top-5 accuracies. This validates the

scalability of the proposed SWBN layer for large networks

and datasets. We were not able to perform identical experi-

ments for IterNorm on ResNeXt due to high computational

cost of IterNorm, as discussed in Section 3.6 and indicated

in Table 1 and 2.

4.3. Fewshot Classification

Few-shot classification aims to recognize unlabeled sam-

ples of newly observed classes given only one or a few

labeled samples. Unknown data distributions of unseen

classes and the scarce amount of labeled data make few-

Dataset Approach Backbone
BN SWBN-KL SWBN-Fro IterNorm

5W1S 5W5S 5W1S 5W5S 5W1S 5W5S 5W1S 5W5S

mini-
Imagenet

MN [30]

Resnet12

57.37 68.22 57.79 68.88 57.55 68.47 57.49 68.64

PN [28] 55.29 73.63 55.44 73.74 56.55 74.5 55.66 73.26

CAN [13] 62.58 78.64 64.37 79.19 64.97 79.22 64.12 79.64

CIFAR-FS

MN [30]

Resnet20

61.28 72.8 62.32 73.98 62.73 74.26 62.35 74.21

PN [28] 55.73 73.47 56.76 74.51 57.38 75.02 56.61 74.48

CAN [13] 65.28 79.39 65.71 79.84 66.08 80.45 65.95 80.76

Table 6: Results of mini-Imagenet and CIFAR-FS datasets. Best test

accuracies are highlighted in bold face. The abbreviations in the

Approach column stand for: matching network (MN), prototypical

network (PN), and cross attention network (CAN). cWkS stands

for c-way k-shot.

shot classification particularly difficult. In terminology of

the few-shot classification, if the few-shot training (a.k.a

support) dataset contains K labeled samples for each of C

categories, the target few-shot task is called a C-way K-shot

task. Metric learning, which stands for approaches designed

to learn transferable data representations, is commonly used

to tackle this task. Siamese networks [20], matching net-

works [30], and prototypical networks [28] are examples

of metric learning models. Recently proposed cross atten-

tion networks [13] shows the-state-of-the-art performance

on benchmark datasets. Most of these approaches require

training backbone networks for extracting representations

from input data. We choose matching networks, prototypical

networks, and cross attention networks with small back-

bone networks to compare the performance of BN, SWBN,

and IterNorm layers. Experimental details are included in

Appendix D. Table 6 shows results on two few-shot clas-

sification benchmark datasets, namely mini-Imagenet and

CIFAR-FS. We choose Resnet12 and Resnet20 as the back-

bone networks for mini-Imagenet and CIFAR-FS, respec-

tively. As shown in Table 6, all the whitening layers out-

perform the BN layer, and SWBN-Fro is generally better

than IterNorm while having lower memory consumption and

better computational efficiency.

5. Conclusions

In this paper, we propose the Stochastic Whitening Batch

Normalization (SWBN) technique with two whitening cri-

teria CKL and CFro. SWBN is a new extension to Batch

Normalization (BN), which further whitens data in an online

fashion. The proposed data whitening algorithm outperforms

the newly proposed IterNorm in terms of computational effi-

ciency. The SWBN layers accelerate training convergence

of deep neural networks and enable them to have better

generalization performance by incrementally whitening and

rescaling activations. Ablation experiments demonstrate that

SWBN is capable of efficiently whitening data in a stochastic

way. The wall-clock time records show that SWBN is more

efficient than IterNorm. We also show the performance im-

provement by replacing BN layers inside the state-of-the-art

CNN models with SWBN layers on CIFAR-10/100 and the

ImageNet dataset, as well as few-shot classification bench-

mark datasets mini-Imagenet and CIFAR-FS.

10985

References

[1] J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.

ArXiv, abs/1607.06450, 2016.

[2] A. J. Bell and T. J. Sejnowski. The “independent com-

ponents” of natural scenes are edge filters. Vision re-

search, 37(23):3327–3338, 1997.

[3] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi.

Meta-learning with differentiable closed-form solvers.

arXiv preprint arXiv:1805.08136, 2018.

[4] J.-F. Cardoso and B. H. Laheld. Equivariant adaptive

source separation. IEEE Transactions on signal pro-

cessing, 44(12):3017–3030, 1996.

[5] V. Chiley, I. Sharapov, A. Kosson, U. Koster, R. Reece,

S. Samaniego de la Fuente, V. Subbiah, and M. James.

Online normalization for training neural networks.

Advances in Neural Information Processing Systems,

32:8433–8443, 2019.

[6] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick,

and D. Batra. Reducing overfitting in deep networks

by decorrelating representations. In 4th International

Conference on Learning Representations, ICLR 2016,

San Juan, Puerto Rico, May 2-4, 2016, Conference

Track Proceedings, 2016.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Im-

age Database. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2009.

[8] G. Desjardins, K. Simonyan, R. Pascanu, and

k. kavukcuoglu. Natural neural networks. In C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-

nett, editors, Advances in Neural Information Process-

ing Systems 28, pages 2071–2079. Curran Associates,

Inc., 2015.

[9] Y. C. Eldar and A. V. Oppenheim. Mmse whitening and

subspace whitening. IEEE Transactions on Information

Theory, 49(7):1846–1851, 2003.

[10] K. He, R. S. Zhang, Xiangyu, and J. Sun. Deep Resid-

ual Networks.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-

ual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings

in deep residual networks. In European conference on

computer vision, pages 630–645. Springer, 2016.

[13] R. Hou, H. Chang, M. Bingpeng, S. Shan, and X. Chen.

Cross attention network for few-shot classification. In

Advances in Neural Information Processing Systems,

pages 4003–4014, 2019.

[14] L. Huang, D. Yang, B. Lang, and J. Deng. Decorrelated

batch normalization. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 791–800, 2018.

[15] L. Huang, Y. Zhou, F. Zhu, Y. Liu, and L. Shao. Iter-

ative normalization: Beyond standardization towards

efficient whitening. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 4874–4883, 2019.

[16] S. Ioffe. Batch renormalization: Towards reducing

minibatch dependence in batch-normalized models.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems

30, pages 1945–1953. Curran Associates, Inc., 2017.

[17] S. Ioffe and C. Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal

covariate shift. pages 448–456, 2015.

[18] I. Jolliffe. Principal Component Analysis. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011.

[19] A. Kessy, A. Lewin, and K. Strimmer. Optimal whiten-

ing and decorrelation. The American Statistician,

72(4):309–314, 2018.

[20] G. Koch. Siamese neural networks for one-shot image

recognition. 2015.

[21] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (cana-

dian institute for advanced research).

[22] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Ef-

ficient backprop. In Neural Networks: Tricks of the

Trade, This Book is an Outgrowth of a 1996 NIPS Work-

shop, pages 9–50, London, UK, UK, 1998. Springer-

Verlag.

[23] Q. Liao, K. Kawaguchi, and T. A. Poggio. Streaming

normalization: Towards simpler and more biologically-

plausible normalizations for online and recurrent learn-

ing. ArXiv, abs/1610.06160, 2016.

[24] P. Luo. Learning deep architectures via generalized

whitened neural networks. In D. Precup and Y. W. Teh,

editors, Proceedings of the 34th International Confer-

ence on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 2238–2246, In-

ternational Convention Centre, Sydney, Australia, 06–

11 Aug 2017. PMLR.

10986

[25] T. Raiko, H. Valpola, and Y. Lecun. Deep learning

made easier by linear transformations in perceptrons. In

N. D. Lawrence and M. Girolami, editors, Proceedings

of the Fifteenth International Conference on Artificial

Intelligence and Statistics, volume 22 of Proceedings

of Machine Learning Research, pages 924–932, La

Palma, Canary Islands, 21–23 Apr 2012. PMLR.

[26] T. Salimans and D. P. Kingma. Weight normalization:

A simple reparameterization to accelerate training of

deep neural networks. In D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages

901–909. Curran Associates, Inc., 2016.

[27] S. Shen, Z. Yao, A. Gholami, M. Mahoney, and

K. Keutzer. Powernorm: Rethinking batch normal-

ization in transformers. In International Conference on

Machine Learning, pages 8741–8751. PMLR, 2020.

[28] J. Snell, K. Swersky, and R. Zemel. Prototypical

networks for few-shot learning. In Advances in neu-

ral information processing systems, pages 4077–4087,

2017.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov. Dropout: a simple way to pre-

vent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958, 2014.

[30] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al.

Matching networks for one shot learning. In Advances

in neural information processing systems, pages 3630–

3638, 2016.

[31] W. Wang, Z. Dang, Y. Hu, P. Fua, and M. Salz-

mann. Backpropagation-friendly eigendecomposition.

In Advances in Neural Information Processing Systems,

pages 3162–3170, 2019.

[32] Y. Wu and K. He. Group normalization. In Proceed-

ings of the European Conference on Computer Vision

(ECCV), pages 3–19, 2018.

[33] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural net-

works. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 1492–1500,

2017.

[34] W. Xiong, B. Du, L. Zhang, R. Hu, and D. Tao. Reg-

ularizing deep convolutional neural networks with a

structured decorrelation constraint. 2016 IEEE 16th In-

ternational Conference on Data Mining (ICDM), pages

519–528, 2016.

[35] Y. Yoshida and T. Miyato. Spectral norm regularization

for improving the generalizability of deep learning.

arXiv preprint arXiv:1705.10941, 2017.

[36] S. Zagoruyko and N. Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.

10987

