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Abstract

The ability to segment teeth precisely from digitized 3D
dental models is an essential task in computer-aided or-
thodontic surgical planning. To date, deep learning based
methods have been popularly used to handle this task.
State-of-the-art methods directly concatenate the raw at-
tributes of 3D inputs, namely coordinates and normal vec-
tors of mesh cells, to train a single-stream network for
Sfully-automated tooth segmentation. This, however, has the
drawback of ignoring the different geometric meanings pro-
vided by those raw attributes. This issue might possibly
confuse the network in learning discriminative geometric
features and result in many isolated false predictions on the
dental model. Against this issue, we propose a two-stream
graph convolutional network (TSGCNet) to learn multi-
view geometric information from different geometric at-
tributes. Our TSGCNet adopts two graph-learning streams,
designed in an input-aware fashion, to extract more dis-
criminative high-level geometric representations from coor-
dinates and normal vectors, respectively. These feature rep-
resentations learned from the designed two different streams
are further fused to integrate the multi-view complemen-
tary information for the cell-wise dense prediction task. We
evaluate our proposed TSGCNet on a real-patient dataset
of dental models acquired by 3D intraoral scanners, and
experimental results demonstrate that our method signifi-
cantly outperforms state-of-the-art methods for 3D shape
segmentation.

*Equal contribution.
T Corresponding author.
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Figure 1. An illustration of 3D dental model. In the local space
indicated by the blue box, cell A and cell B are spatially close but
with much different normal vectors (indicated by the black arrows
in the zoomed view). In contrast, cell A and cell C have simi-
lar normal vectors but are far from each other. It suggests that
coordinates and normal vectors provide completely different geo-
metric information. Hence, simply concatenating them as a single
feature vector (commonly used in the conventional single-stream
networks) cannot properly integrate such complementary informa-
tion to learn more discriminative geometric representations for cell
classification, which will result in many isolated false predictions
on dental model (as indicated by one of red dotted circle).

1. Introduction

An essential task in computer-aided-design system for
orthodontic treatment is to provide accurate segmentation of
teeth on digitalized 3D dental models reconstructed by in-
traoral scanners (IOS). This segmentation information can
be used for aiding clinical diagnose, providing digital teeth
shape information for personal surgical-orthodontic plan-
ning, quantifying the difference between expected and clin-
ical treatment results to adjust orthodontic treatment plan,
etc. However, segmenting each tooth from the gingiva is
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practically challenging, mainly due to heterogeneous tooth
appearance: i) Although most human teeth have common
geometric characteristics, their shapes are unique and vary
dramatically across individuals. ii) Orthodontic patients
usually have atypical conditions such as missing, crowded
and/or misaligned teeth, all of which may produce indistinct
tooth boundaries. iii) Noise and occlusion during scanning
may result in a partially reconstructed dental surface with
missing parts.

To deal with these challenges, various (semi-) automated
methods have been proposed for tooth segmentation on
3D dental models. Conventional approaches typically per-
form segmentation by using pre-selected geometric prop-
erties (e.g., the 3D coordinates, normal vectors and curva-
ture) [40, 41, 9, 8, 32, 22, 38, 1] or projecting 3D meshes
onto 2D images [23, 31]. Due to the requirement of man-
ual initialization, the efficacy of such semi-automated meth-
ods relies on the professional knowledge and experience.
Furthermore, the robustness of these conventional methods
may be hampered since the exclusive use of low-level ge-
ometric properties would not be able to segment teeth with
extreme appearances accurately.

Recently, deep learning-based methods have been pro-
posed to learn task-oriented feature representations for
fully-automated tooth segmentation. Some of these meth-
ods [25, 36] transformed mesh vertices/cells as ordered 2D
image-like (or volumetric) inputs and then applied general
convolutional neural networks (CNNs) to perform segmen-
tation. Although straightforward, such operations tend to
ignore the unordered nature of geometric data. They also in-
cline to introduce additional computational costs and quan-
tization errors during the potential voxelization stage. To
avoid additional data pre-processing, more recent meth-
ods [5, 14, 13] applied or extended existing point-cloud
segmentation networks to perform vertex/cell-wise seman-
tic labeling of 3D dental meshes. As the network inputs, the
3D coordinates and normal vectors (of mesh vertices/cells)
are typically concatenated in these methods to train a single-
stream network. However, considering that the coordinate
indicates the cell spatial position, while the normal vector
represents the cell morphological structure, directly comb-
ing these two completely different attributes as a single fea-
ture vector tends to weaken their geometric discrimination
(e.g., an example is shown in Fig. 1). Hence, this would
confuse those conventional single-stream networks in learn-
ing discriminative geometric features for cell classification,
potentially resulting in isolated false predictions on the den-
tal model.

To resolve these issues, we propose a two-stream graph
convolutional network (TSGCNet) in this paper to learn
multi-view geometric information for end-to-end tooth seg-
mentation on 3D dental models. In order to eliminate
the mutual confusion caused by mixed geometric inputs,

our TSGCNet starts with two parallel branches, namely C-
stream and N-stream, to learn independently multi-scale
feature representations from coordinates and normal vec-
tors, respectively. Besides, considering different geometric
meanings of those attributes, the two streams are also con-
structed by different graph-learning strategies designed in
an input-aware fashion. That is, C-stream adopts graph-
attention convolutions [27] to learn the coarse structures
of different teeth from coordinates, while the N-stream
adopts graph max-pooling to extract distinctive structural
details [27] from the normal vectors, which can further
help C-stream to distinguish neighboring cells belonging
to different classes (e.g., boundaries between adjacent teeth
or between teeth and gingiva). These multi-scale geomet-
ric representations produced by the two parallel streams
are further fused by the subsequent multi-layer perceptrons
(MLPs) to learn complementary multi-view information for
dense labeling of all cells on the mesh surface.

The main contributions of this paper can be summarized
as follows:

e We propose a novel two-stream graph convolutional
network that can independently process coordinates
and normal vectors to learn more discriminative ge-
ometric features for 3D dental model segmentation.

e We design two different graph-based feature aggrega-
tion modules in an input-aware fashion to consume cell
coordinates and normal vectors, respectively. That is,
the C-stream adopts graph attention convolutions to
capture the coarse structure of teeth from coordinates,
while the N-stream extract distinctive structural details
from normal vectors.

e Our TSGCNet is evaluated on a clinical dataset of 3D
dental models for different orthodontic patients digi-
tized by IOS. The experimental results show that our
TSGCNet significantly outperform state-of-the-art 3D
shape segmentation methods.

2. Related Work
2.1. 3D Shape Segmentation

Diverse deep learning methods have been proposed for
3D shape classification and segmentation. Some of these
approaches voxelized 3D shapes into regular 3D grids [34,

, 18, 28,21, 6,30, 11] or rendered them into multi-view
2D images [17, 2, 10, 3, 39], after which standard CNNs
were applied to extract features. Such kinds of operations
inevitably resulted in spatial information loss and quantiza-
tion artifacts, inclining to hamper 3D shape segmentation
accuracy.

A pioneering network, PointNet [19] consisting of suc-
cessive MLPs and a symmetric function (e.g., global
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Figure 2. Structure of our TSGCNet.
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The network takes raw mesh data as inputs, and adopts two independent graph convolutional

streams(i.e., C-strean and N-stream) to learn discriminative geometric representations from different features(i.e., 3D coordinates and
normal vectors of meshes). Then, the high level feature produced by each stream are fused for final mesh-wise tooth segmentation.

max-pooling), was proposed to learn directly translation-
invariant geometric features from irregular 3D data (e.g.,
point clouds). However, PointNet ignored the local spa-
tial relationships on 3D shapes as the architecture learns
features for each cell independently. To address this lim-
itation, PointNet++ [20] constructed a hierarchical archi-
tecture with successive sampling layers, grouping layers
and PointNet modules. It explicitly captured and inte-
grated local-to-global spatial information on 3D shapes,
achieving better performance than the original PointNet.
To model spatial dependencies of neighboring points,
PointCNN [12] adopted an encoder-decoder architecture
with x-transformations of unordered points to perform gen-
eral convolutional operations. More recent works further
extended PointNet++ by integrating attention modules [33,
], geometry sharing modules [37] and edge branches [7].

Considering that Graph CNNs have shown great suc-
cess and flexibility in learning from data with irregular
structures, some graph-based methods were also proposed
for 3D shape recognition and segmentation. They usu-
ally defined the spatial relations between points/cells as
a graph and then used spectral-based [26, 24] or spatial-
based [29] graph convolutions to aggregate local informa-
tion. To extract more detailed geometric features, some re-
searchers [ 15, 27, 35] additionally applied attention mecha-
nism during the feature aggregation step.

2.2. 3D Dental Model Segmentation

Conventional tooth segmentation methods using pre-
selected geometric properties can be roughly grouped as

curvature-based methods [40, 41, 9, 8, 32], contour-line-
based methods [22, 38] and harmonic-field-based meth-
ods [1]. Due to the typical requirement of manual steps and
domain knowledge, the efficacy of such semi-automated
methods heavily depends on the operator experience.

In recent years, several deep learning-based methods
have been proposed for fully-automated tooth segmentation
on dental models. Typically, Xu et al. [36] proposed to re-
shape handcrafted geometric features as 2D image patches
to train CNNss for classifying the mesh cells. Tian ez al. [25]
proposed to voxelize the dental model with a sparse oc-
tree partitioning [28], after which 3D CNNs are applied for
tooth segmentation. Although those methods using stan-
dard CNNs can learn task-oriented feature representations
for segmentation, converting the original input into grid for-
mat either ignores the unordered nature of the geometric
data [36] or may introduce additional quantization errors
during the voxelization step [25]. To address this limita-
tion, Zanjani et al. [5] proposed an end-to-end network that
integrates PointCNN [12] with a discriminator to directly
segment the raw dental surfaces acquired by IOS. Lian et
al. [14] extended PointNet [19] by adding a multi-scale
graph-constrained module to extract fine-grained local ge-
ometric features from dental mesh data. Instead of using
solely the 3D coordinates (e.g., in [5]), Lian et al. [ 14] com-
bined 3D coordinates and normal vectors as the network in-
put to improve the segmentation performance.

However, since coordinates and normal vectors are com-
pletely different geometric meanings of a 3D shape, directly
combining these low-level features as a single-stream input
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would confuse the learning of discriminative geometric rep-
resentations. Different from those methods, our TSGCNet
adopts two graph-learning streams, designed in an input-
aware, to independently learn feature representations from
coordinates and normal vectors. This can eliminate the mu-
tual confusion caused by mixed geometric inputs and ex-
tract.

3. The Proposed Method
3.1. Overview

Given a 3D dental model with M mesh cells, we de-
fine the input of our TSGCNet as a M x 24 matrix. That
is, each specific cell is described by a 24-dimensional vec-
tor, including the 3D coordinates (12 elements) and normal
vectors (12 elements) of four points (i.e., the cell’s three ver-
tices and its central point). As illustrated in Fig. 2, our TS-
GCNet starts with a two-stream architecture, which adopts
a C-stream and a N-stream to learn more discriminative ge-
ometric representations from the coordinates and normal
vectors, respectively. Thereafter, the features produced by
these two complementary streams are further fused to learn
higher-level representation for final prediction. The output
of our TSGCNet is an M x C matrix, with each row denot-
ing the probabilities of the respective cell belonging to C'
different classes.

3.2. Two-Stream Architecture

C-Stream. Our C-stream is designed to learn the basic
topology of a dental model. As shown in Fig. 2, given the
input of a M x 12 coordinate matrix, a series of graph-
attention layers are successively applied in the forward path
to extract multi-scale geometric features from the coordi-
nate aspect. In each layer of the C-stream, a KNN graph
G is first constructed for the M cells in terms of the input
features. Specifically, for each cell (i.e., a central node), we
find its K nearest cells with the smallest Euclidean distance
in feature space. Let the resulting graph be G(V, E'), where
V = {mi,ma,...,my}and E C |V| x |V| represent the
set of nodes (mesh cells) and the set of edges (defined by
KNN connectivity), respectively. For each node m; € V,
we denote its KNN as A/ (7).

After building the KNN graph G in each layer, a shared
MLP is applied to learn embedded features on each N (7).
Let f! € R? (e.g., d = 12 in the first layer) denote the input
feature vector of m; in the [-th layer, and filj denotes the in-
put feature vector of its j-th nearest neighbor m;; € N (i).
We first calibrate local information for each center, by learn-
ing an updated nearest-neighbor representation ffj € R¥in

terms of filj and f!, as:

i, = MLP'(fl o)), Ymy e NG), ()

where @ indicates the channel-wise concatenation. In this
way, the information provided by m;; (encoded in f'}j) can
be more consistent with the specific central node m;, given
the fact that m;; could be a nearest neighbor of more than
one center, i.e., filj might be shared by multiple centers.
Additionally, we adopt a graph attention mechanism to
aggregate the calibrated neighborhood information to each
center. Inspired by [15, 27], we choose a learning-based
approach to estimate the attention weights for different
neighbors. Compared with the strategy of using predefined
weights [35], learning the weights in a task-oriented fashion
(e.g., by a lightweight network) can more flexibly capture
local geometric characteristics of the dental model for the
segmentation task. Specifically, we compute the attention
weight a}; € R¥ of neighbor m; in the I-th layer as:

ol = U(Affj ® f}j), Vmi; € N(i), 2)
where the function o(-) is implemented as a MLP in this
work. It adopts both Af]; = f/ — f/; and £/, as the input,
where Afilj quantifies the dissimilarity between m; ; and
m; while filj provides detailed neighbor information in the
feature space. Finally, the feature aggregation in the [-th
layer is formulated as:

£t = )" o, of, 3)
mUGN(Z)

where £/ 1 indicates the updated feature of center m;, i.e.,
the input feature of the (I+1)-th layer. In Eq. (3), a}; and filj
are defined by Eq. (2) and Eq. (1), respectively, and ® per-
forms the element-wise production of two feature vectors.

N-Stream. Although the C-stream can learn the basic
structure of a dental model from the 3D coordinates, it can-
not sensitively distinguish between adjacent cells belonging
to different classes (e.g., boundaries of teeth). Therefore,
as complementary to the C-stream for accurate teeth delin-
eation, we further design a N-stream to extract fine-grained
boundary representations from the aspect of normal vectors
in local areas.

Our N-stream takes the M x 12 matrix of normal vec-
tors as input and consists of a series of graph max-pooling
layers. Notably, we force each layer in the N-steam to share
the same KNN graph with the respective layer in the C-
stream. In this way, the graph max-pooling layers can focus
on the learning of boundary representations in local regions,
thereby avoiding the disturbance of distant cells that have
similar normal vectors (but belonging to different classes).
For simplicity, we still use the symbols f! and filj to de-
note the input features of a center node m,; and its neighbor
m;;, respectively. Similar to the C-stream, the [-th layer of
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the N-stream first uses a MLP to learn the calibrated fea-
ture representation f'ilj for each m; ;, i.e., similar to Eq. (1).
Thereafter, we apply the channel-wise max-pooling on all
neighbors’ calibrated features to produce the boundary rep-
resentation for the respective center, which can be formu-
lated as:

fiH'1 = maxpoolmg{

L ¥my eNG) @)
It is worth mentioning that we use max-pooling (rather than
graph attention) in the N-steam since the max operator can
sensitively capture the most distinctive features presented at
the tooth boundaries.

3.3. Feature Fusion

Considering that the C-stream and the N-stream learn
completely different feature representations from two com-
plementary views, fusing their outputs can enable the over-
all network to comprehensively understand the structure
of a dental model. To this end, as shown in Fig. 2, for
each stream, we first use skip connections to concatenate
its multi-scale cell-wise features from different layers (i.e.,
FL or FL, where [ denotes the I-th layer), yielding a hierar-
chical feature matrix encoding local-to-global information.
A MLP (i.e., MLP. or MLP,,) is then applied on this fea-
ture matrix to learn higher-level representations (i.e., F¢ or
F,,) for the corresponding view (i.e, the C-stream or the N-
stream), which can be formulated as follows:

F. = MLP, (Fi OF2 @ FQ) (5

F,. = MLP, (F,ll SF2 @ Ff,) ©6)

Finally, the feature matrices from two complementary
views are concatenated, which is followed by another MLLP
(i.e., MLPpyeq) to output an M x C matrix P, with each
row denoting the probabilities of a specific cell belonging
to C' different classes, which can be formulated as:

P = MLPyreq (Fc @ Fn). (7

We train TSGCNet with cross-entropy segmentation loss,
which can be formulated as:

M C
loss == > piclogyic, ®)

i=1 =1
where p;. and y;. denote the predicted and the ground-truth
labeling probability for c-th class, respectively.
3.4. Implementation Details

Network Details. As shown in Fig. 2, the TSGCNet ar-
chitecture consists of a C-stream, a N-stream, and a feature-
fusion part. For each branch of the two streams, the MLPs

in the first to the third layer contain one 1D Conv with 64
channels, 128 channels, and 256 channels, respectively. The
number K of each KNN graph is set as 32. We use MLP to
implement the graph attention function o (-), which is fol-
lowed by the channel-wise softmax to normalize the output
weights. In the feature fusion part, both MLP. and MLP,,
contain a 1D Conv with 512 channels, and MLPpeq con-
tains four successive 1D Convs, each with 512, 256, 128,
and C' channels, respectively. All 1D Convs are followed by
batch normalization and LeakyReL U, except the last one in
MLPpcq, which is followed by a tensor-reshape operation
to output the M x C probability matrix.

Training Details. Our TSGCNet was trained by minimiz-
ing the cross-entropy segmentation loss on two NVIDIA
GTX 1080 GPUs for 200 epochs. We use the Adam op-
timizer with the mini-batch size setting as 4. The initial
learning rate was le-3, which was reduced by 0.5 decay for
every 20 epochs.

™ T1 Ti T1 : Central incisor

T3 M} T2 : Lateral incisor

T4 (L8 T3 : Canine/cuspid
\ T4 T4 :15¢ premolar

B

T5 T5 :25¢ premolar
T6 :15¢ molar
T7 ‘ . T7 :2“. molar
/ \ BG : gingiva

Figure 3. An illustration of a manually labeled 3D dental model.
Each dental model includes 8 classes, i.e., the symmetric central
incisor, lateral incisor, canine, 1°* premolar, 2°¢ premolar, 1% mo-
lar, 25¢ molar, and the gingiva.

4. Experimental Results
4.1. Dataset

The studied dataset consists of 80 3D dental models ac-
quired by an IOS for different orthodontic patients. Each
raw dental model roughly contains more than 100,000
meshes, which were downsampled to 16,000 (e.g. M =
16, 000) meshes through the reduction of redundant infor-
mation, while preserving the original topology. The dataset
was randomly split as a training set with 64 subjects, and a
testing set with 16 subjects. Our target is to automatically
segment each dental model as C' = 8 different semantic
parts, including the central incisor (T1), lateral incisor (T2),
canine/cuspid (T3), 1 premolar (T4), 2" premolar (T5), 1%
molar (T6), 2" molar (T7), and background/gingiva (BG).
The ground-truth annotations of all dental models follow
the clinical requirement and professional dentists’ advice,
with a typical example shown in Fig. 3.
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Table 1. The segmentation results for five competing methods and our method on OA and mloU.

Method OA mloU TI T2 T3 T4 T5 T6 T7 BG
PointNet[19] 8495 66.86 5531 6531 69.35 7547 7221 66.18 74771 84.86
PointCNN[12]  88.61 72.86 61.72 6645 68.10 7898 7857 70.51 72.15 86.39

PointNet++[20]  90.25 78.14 67.82 74.61 78.10 82773 80.70 74.67 7894 87.52
DGCNNI[29] 91.93 8430 82.18 7995 82.09 &87.88 86.24 80.14 84.26 91.65
MeshSegNet[14] 93.11 84.47 8131 83.65 82.15 82.87 84.81 8193 87.10 9194
Ours 95.25 88.99 86.01 8748 89.38 90.44 89.54 8599 89.32 93.76

4.2. Experimental Setup

Data Augmentation. We augment the training set by the
combination of 1) random translation, and 2) random rota-
tion of each 3D dental model. Specifically, each training
dental model is translated with a displacement randomly
sampled between [—10,10] and rotated along the y-axis
with an angle randomly sampled between [—%, £]. In this
way, we generate 64 new samples from the original dental

models to enrich the diversity of the training set.

Competing Methods. Our TSGCNet was compared with
five state-of-the-art methods for both 3D shape segmenta-
tion (i.e., PointNet [19], PointNet++ [20], PointCNN [12],
DGCNN [29]) and 3D dental model segmentation (i.e.,
MeshSegNet [14]). For the grouping operations of Point-
Net++ [20], we deployed the 3D coordinates of the central
point of each cell to compute the spatial distance. The over-
all segmentation performance (averaged over all classes)
was quantitatively evaluated by two metrics, i.e., 1) Overall
Accuracy (OA), which is calculated as: M. (number of cor-
rectly segmented cells) / M (number of all cells). 2) mean
Intersection-over-Union (mloU). Besides, we also quantify
the detailed IoU of each class.

4.3. Comparison with Competing Methods

The overall segmentation results are presented in Table
1. Results show that our method achieves the best perfor-
mance in terms of both OA and mlIoU metrics. In particu-
lar, when compared with the competing method in this spe-
cific task, MeshSegNet [27], which directly consumes the
combination of coordinates and normal vectors, the pro-
posed TSGCNet still increases the segmentation accuracy
by 2.14% and 4.52% on the OA and mloU, respectively.
Additionally, our method also significantly outperforms the
graph based network DGCNN [29], demonstrating the ef-
fectiveness of the proposed two-stream mechanism that can
learn more discriminative geometric feature representations
for accurate tooth segmentation. Furthermore, despite the
varying shape appearances of different types of teeth, our
method is able to present consistent superior segmentation
performance over other approaches by a large margin.

We also visualize the segmentation results (obtained by
different methods) for four representative dental models in
Fig. 4. In consistency with the quantitative evaluations, we

can observe from Fig. 4 that our TSGCNet also qualitatively
outperforms all the competing methods, especially for the
challenging areas marked by the blue arrows and green dot-
ted circles. Specifically, in the area of teeth misalignment
(indicated by the blue arrows in the first two rows), Point-
Net [19], PointNet++ [20] and PointCNN [12] either re-
sult in under-segmentation or over-segmentation. Graph-
based competing methods (i.e., DGCNN [29] and Mesh-
SegNet [14]) achieve better performance based on the ex-
traction of detailed local spatial information. However, they
still fail to capture the complete teeth structure. In contrast,
due to the use of complementary information from the C-
stream and N-stream, our TSGCNet achieves more accurate
results than all the competing methods in these misaligned
areas. Besides, from the third and fourth rows of Fig. 4,
we can see that our proposed method can also better distin-
guish the boundaries between adjacent teeth, especially for
the two adjacent incisors (indicated by the green dotted cir-
cles). Finally, when comparing our method with MeshSeg-
Net [14] in the fourth row, we can see that MeshSegNet [ 14]
produces many isolated false predictions on gingiva, even
those mislabeled mesh cells are relatively far away from the
real tooth area. This further suggests that the direct concate-
nation of normal vectors and coordinates as a single feature
vector (e.g., in MeshSegNet) may confuse the learning of
discriminative geometric features in some cases, while the
two-stream structure (i.e., in our TSGCNet) is a more ap-
propriate design.

5. Ablation Study

In this section, we conduct detailed ablation studies to
evaluate the efficacy of the critical components of our TS-
GCNet.

5.1. Effectiveness of the Two-Stream Structure

In this series of experiments, we first evaluate the effec-
tiveness of our two-stream structure. Specifically, we re-
move the N-stream (i.e., only adopting the C-stream with
the coordinates as input) or the C-stream (i.e., only adopting
the N-stream with the normal vectors as input) to generate
two different variants of TSGCNet, which are denoted as
TSGCNet-C and TSGCNet-N, respectively. In addition,
we also build another single-stream variant of TSCGNet
(denoted as TSGCNet-S) that directly learns from the com-
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Figure 4. Visualization of representative segmentation results produced by five competing methods and our method, along with the respec-

tive ground-truth annotations.

bination of the coordinates and normal vectors. Note that
TSGCNet-S has a similar structure to TSGCNet-C but with
different input. We compare these three variants with the
final TSGCNet, with the quantitative results listed in Ta-
ble 2. It can been seen that TSGCNet-N and TSGCNet-C
lead to worse results than both TSGCNet-S and TSGCNet.
This justifies the complementarity between the geometric
information provided by the coordinates and normal vec-
tors in delineating teeth on dental models. On the other
hand, when compared with TSGCNet-S, the original TS-
GCNet further improves the segmentation accuracy, which
suggests the effectiveness of our two-stream structure in ex-
tracting the complementary geometric information from the
two different views.

Table 2. The segmentation results for the original TSGCNet and
three variants. TSGCNet-C and TSGCNet-N stand for the sole
use of the C-stream and N-stream, respectively. TSGCNet-S de-
notes the single-stream version of TSGCNet, which directly con-
catenates the coordinates and normal vectors as input.

Structure OA mloU
TSGCNet-C  83.23 63.79
TSGCNet-N 5542 20.77
TSGCNet-S 87.25 73.44
TSGCNet 95.25 88.99

5.2. Effectiveness of Feature-Aggregation Strategy

As described in Section 3.2, we use two different fea-
ture aggregation strategies in the C-stream and N-stream of
our TSGCNet. Specifically, the graph attention aggregation
is used in the C-stream, while the graph max-pooling ag-
gregation in the N-stream. To evaluate the effectiveness of
our design, we implement three variants of TSGCNet by

changing the feature aggregation strategy in each stream,
including 1) both streams use max-pooling, 2) both streams
use attention, and 3) C-stream uses max-pooling while N-
stream uses attention. For simplicity, we denote those three
variants and the original TSGCNet as M+M, A+A, M+A,
and A+M, respectively. We then compare the segmentation
results of these variants in Table 3. From Table 3, we can see
that using attention mechanisms in the C-stream can achieve
better performance (please refer to A+M vs. M+M) when
compares with the use of max-pooling, which suggests that
graph attention aggregation can extract finer details of the
tooth shape from coordinates. Besides, using max-pooling
in the N-stream can further refine the segmentation results
(please refer to A+M vs. A+A). This can be rationally ex-
plained by that max-pooling can extract more distinctive
morphological features, which in return helps the network
to capture difference between neighboring cells, especially
at the tooth boundaries.

Table 3. The segmentation results by using different feature aggre-
gation strategies. M+M (or A+A) stands for using max-pooling
(or attention) in both two streams. M+A stands for using max-
pooling and attention in the C-stream and N-stream, respectively.
A+M denotes the original TSGCNet.

Structure  OA mloU
M+M 94.56 86.24
A+A 95.01 87.35
M+A 93.93 85.67
A+M 95.25 88.99

We also show the segmentation results of a typical ex-
ample obtained by these variants in Fig. 5. In consistency
with quantitative evaluations in Table 3, we can see that both
M+A and M+M have more outliers than A+A and A+M,
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which further confirms that graph attention aggregation is
more suitable for the C-stream. Besides, when comparing
A+A with A+M, we also observe that A+M generates more
precise segmentation on boundaries, which further confirms
that graph max-pooling aggregation is more suitable for the
N-stream.

AT A9RReR
’Q A ) / ‘ I ﬂ / a\;‘,

Raw models Ground truth
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8 4o DO L A

A+A A+M

Figure 5. A segmentation example for TSGCNet by using different
feature aggregation strategies.

5.3. Effectiveness of Feature-Fusion Strategy

As described in Section 3.3, the multi-scale high-level
feature produced by C-stream and N-stream (i.e., F and
F,,) are fused to learn complementary information in our
TSGCNet. To evaluate the effectiveness of this high-level
feature fusion strategy, we compare the TSGCNet with an-
other variant that is implemented by applying a low-level
feature fusion strategy. Specifically, during the two-stream
feature extraction stage, the output of the [-th layer in both
streams are concatenated (i.e., F1. and F), are concatenated)
as the input of the (I 4+ 1)-th layer. This means that the C-
stream and N-stream have the same input in the (I + 1)-th
layer. We denote our original feature fusion strategy and the
variant as H-fusion and L-fusion, respectively.

Table 4. The segmentation results for two different feature fusion
strategies. The L-fusion denotes low-level feature fusion strategy,
and the H-fusion stands for our adopted feature fusion strategy.

Strategy  OA mloU
L-fusion 93.28 85.49
H-fusion 95.25 88.99

We further compare the segmentation results of H-fusion
and L-fusion, as shown in Table 4. From this table, it can be
seen that the OA and mloU of H-fusion is 1.97% and 3.50%
higher than L-fusion, respectively. It is potentially because
the premature feature fusion also confuses the learning of
discriminative features. Besides, due to different properties
between coordinates and normal vectors, the KNN graph
built on the concatenated features may result in a random
distribution of neighbors in real space, which tends to ham-
per the network to learn local-to-global information.

5.4. Limitations

Although our TSGCNet has achieved the leading perfor-
mance in the task of 3D dental segmentation, it still has cer-
tain limitations. Most typically, TSGCNet cannot robustly
handle special cases with 12 teeth. For example, we showed
the segmentation result of one dental model with 12 teeth
in Fig. 6, which can be seen that our TSGCNet generates
many false predictions on T6 (indicated by the blue dotted
circles). This can be possibly interpreted by the fact that the
outermost tooth of 12-teeth dental models is annotated as
T6, which is usually annotated as T7 in the normal dental
models. To address this problem, including more 12-teeth
cases as training samples would be considered in our future
research.

NCA 5 1
‘ 3 $J] Y
5 F6 2o y
A/) . \
Raw model Ground truth Our TSGCNet

Figure 6. A segmentation example for the 12-teeth dental model
produced by our TSGCNet.

6. Conclusion

A two-stream network, called TSGCNet, has been pro-
posed in this paper to automatically segment individual
tooth from 3D dental models acquired by intra-oral scan-
ners. To eliminate the mutual confusion caused by mixed
geometric inputs, the proposed TSGCNet apply two input-
aware graph-learning streams to independently extract dis-
criminative geometric features from coordinates and normal
vectors, respectively. Feature representations produced by
two different streams are then fused to learn complementary
multi-view information for the end-to-end cell-wise predic-
tion. An extensive comparison has been performed between
our TSGCNet and other five state-of-the-art methods on a
real-patient dataset, and the corresponding results demon-
strate the superiority of our proposed method, especially for
practically challenging cases.
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