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Abstract

The ability to segment teeth precisely from digitized 3D

dental models is an essential task in computer-aided or-

thodontic surgical planning. To date, deep learning based

methods have been popularly used to handle this task.

State-of-the-art methods directly concatenate the raw at-

tributes of 3D inputs, namely coordinates and normal vec-

tors of mesh cells, to train a single-stream network for

fully-automated tooth segmentation. This, however, has the

drawback of ignoring the different geometric meanings pro-

vided by those raw attributes. This issue might possibly

confuse the network in learning discriminative geometric

features and result in many isolated false predictions on the

dental model. Against this issue, we propose a two-stream

graph convolutional network (TSGCNet) to learn multi-

view geometric information from different geometric at-

tributes. Our TSGCNet adopts two graph-learning streams,

designed in an input-aware fashion, to extract more dis-

criminative high-level geometric representations from coor-

dinates and normal vectors, respectively. These feature rep-

resentations learned from the designed two different streams

are further fused to integrate the multi-view complemen-

tary information for the cell-wise dense prediction task. We

evaluate our proposed TSGCNet on a real-patient dataset

of dental models acquired by 3D intraoral scanners, and

experimental results demonstrate that our method signifi-

cantly outperforms state-of-the-art methods for 3D shape

segmentation.
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†Corresponding author.
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Figure 1. An illustration of 3D dental model. In the local space

indicated by the blue box, cell A and cell B are spatially close but

with much different normal vectors (indicated by the black arrows

in the zoomed view). In contrast, cell A and cell C have simi-

lar normal vectors but are far from each other. It suggests that

coordinates and normal vectors provide completely different geo-

metric information. Hence, simply concatenating them as a single

feature vector (commonly used in the conventional single-stream

networks) cannot properly integrate such complementary informa-

tion to learn more discriminative geometric representations for cell

classification, which will result in many isolated false predictions

on dental model (as indicated by one of red dotted circle).

1. Introduction

An essential task in computer-aided-design system for

orthodontic treatment is to provide accurate segmentation of

teeth on digitalized 3D dental models reconstructed by in-

traoral scanners (IOS). This segmentation information can

be used for aiding clinical diagnose, providing digital teeth

shape information for personal surgical-orthodontic plan-

ning, quantifying the difference between expected and clin-

ical treatment results to adjust orthodontic treatment plan,

etc. However, segmenting each tooth from the gingiva is
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practically challenging, mainly due to heterogeneous tooth

appearance: i) Although most human teeth have common

geometric characteristics, their shapes are unique and vary

dramatically across individuals. ii) Orthodontic patients

usually have atypical conditions such as missing, crowded

and/or misaligned teeth, all of which may produce indistinct

tooth boundaries. iii) Noise and occlusion during scanning

may result in a partially reconstructed dental surface with

missing parts.

To deal with these challenges, various (semi-) automated

methods have been proposed for tooth segmentation on

3D dental models. Conventional approaches typically per-

form segmentation by using pre-selected geometric prop-

erties (e.g., the 3D coordinates, normal vectors and curva-

ture) [40, 41, 9, 8, 32, 22, 38, 1] or projecting 3D meshes

onto 2D images [23, 31]. Due to the requirement of man-

ual initialization, the efficacy of such semi-automated meth-

ods relies on the professional knowledge and experience.

Furthermore, the robustness of these conventional methods

may be hampered since the exclusive use of low-level ge-

ometric properties would not be able to segment teeth with

extreme appearances accurately.

Recently, deep learning-based methods have been pro-

posed to learn task-oriented feature representations for

fully-automated tooth segmentation. Some of these meth-

ods [25, 36] transformed mesh vertices/cells as ordered 2D

image-like (or volumetric) inputs and then applied general

convolutional neural networks (CNNs) to perform segmen-

tation. Although straightforward, such operations tend to

ignore the unordered nature of geometric data. They also in-

cline to introduce additional computational costs and quan-

tization errors during the potential voxelization stage. To

avoid additional data pre-processing, more recent meth-

ods [5, 14, 13] applied or extended existing point-cloud

segmentation networks to perform vertex/cell-wise seman-

tic labeling of 3D dental meshes. As the network inputs, the

3D coordinates and normal vectors (of mesh vertices/cells)

are typically concatenated in these methods to train a single-

stream network. However, considering that the coordinate

indicates the cell spatial position, while the normal vector

represents the cell morphological structure, directly comb-

ing these two completely different attributes as a single fea-

ture vector tends to weaken their geometric discrimination

(e.g., an example is shown in Fig. 1). Hence, this would

confuse those conventional single-stream networks in learn-

ing discriminative geometric features for cell classification,

potentially resulting in isolated false predictions on the den-

tal model.

To resolve these issues, we propose a two-stream graph

convolutional network (TSGCNet) in this paper to learn

multi-view geometric information for end-to-end tooth seg-

mentation on 3D dental models. In order to eliminate

the mutual confusion caused by mixed geometric inputs,

our TSGCNet starts with two parallel branches, namely C-

stream and N-stream, to learn independently multi-scale

feature representations from coordinates and normal vec-

tors, respectively. Besides, considering different geometric

meanings of those attributes, the two streams are also con-

structed by different graph-learning strategies designed in

an input-aware fashion. That is, C-stream adopts graph-

attention convolutions [27] to learn the coarse structures

of different teeth from coordinates, while the N-stream

adopts graph max-pooling to extract distinctive structural

details [27] from the normal vectors, which can further

help C-stream to distinguish neighboring cells belonging

to different classes (e.g., boundaries between adjacent teeth

or between teeth and gingiva). These multi-scale geomet-

ric representations produced by the two parallel streams

are further fused by the subsequent multi-layer perceptrons

(MLPs) to learn complementary multi-view information for

dense labeling of all cells on the mesh surface.

The main contributions of this paper can be summarized

as follows:

• We propose a novel two-stream graph convolutional

network that can independently process coordinates

and normal vectors to learn more discriminative ge-

ometric features for 3D dental model segmentation.

• We design two different graph-based feature aggrega-

tion modules in an input-aware fashion to consume cell

coordinates and normal vectors, respectively. That is,

the C-stream adopts graph attention convolutions to

capture the coarse structure of teeth from coordinates,

while the N-stream extract distinctive structural details

from normal vectors.

• Our TSGCNet is evaluated on a clinical dataset of 3D

dental models for different orthodontic patients digi-

tized by IOS. The experimental results show that our

TSGCNet significantly outperform state-of-the-art 3D

shape segmentation methods.

2. Related Work

2.1. 3D Shape Segmentation

Diverse deep learning methods have been proposed for

3D shape classification and segmentation. Some of these

approaches voxelized 3D shapes into regular 3D grids [34,

16, 18, 28, 21, 6, 30, 11] or rendered them into multi-view

2D images [17, 2, 10, 3, 39], after which standard CNNs

were applied to extract features. Such kinds of operations

inevitably resulted in spatial information loss and quantiza-

tion artifacts, inclining to hamper 3D shape segmentation

accuracy.

A pioneering network, PointNet [19] consisting of suc-

cessive MLPs and a symmetric function (e.g., global
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Figure 2. Structure of our TSGCNet. The network takes raw mesh data as inputs, and adopts two independent graph convolutional

streams(i.e., C-strean and N-stream) to learn discriminative geometric representations from different features(i.e., 3D coordinates and

normal vectors of meshes). Then, the high level feature produced by each stream are fused for final mesh-wise tooth segmentation.

max-pooling), was proposed to learn directly translation-

invariant geometric features from irregular 3D data (e.g.,

point clouds). However, PointNet ignored the local spa-

tial relationships on 3D shapes as the architecture learns

features for each cell independently. To address this lim-

itation, PointNet++ [20] constructed a hierarchical archi-

tecture with successive sampling layers, grouping layers

and PointNet modules. It explicitly captured and inte-

grated local-to-global spatial information on 3D shapes,

achieving better performance than the original PointNet.

To model spatial dependencies of neighboring points,

PointCNN [12] adopted an encoder-decoder architecture

with χ-transformations of unordered points to perform gen-

eral convolutional operations. More recent works further

extended PointNet++ by integrating attention modules [33,

4], geometry sharing modules [37] and edge branches [7].

Considering that Graph CNNs have shown great suc-

cess and flexibility in learning from data with irregular

structures, some graph-based methods were also proposed

for 3D shape recognition and segmentation. They usu-

ally defined the spatial relations between points/cells as

a graph and then used spectral-based [26, 24] or spatial-

based [29] graph convolutions to aggregate local informa-

tion. To extract more detailed geometric features, some re-

searchers [15, 27, 35] additionally applied attention mecha-

nism during the feature aggregation step.

2.2. 3D Dental Model Segmentation

Conventional tooth segmentation methods using pre-

selected geometric properties can be roughly grouped as

curvature-based methods [40, 41, 9, 8, 32], contour-line-

based methods [22, 38] and harmonic-field-based meth-

ods [1]. Due to the typical requirement of manual steps and

domain knowledge, the efficacy of such semi-automated

methods heavily depends on the operator experience.

In recent years, several deep learning-based methods

have been proposed for fully-automated tooth segmentation

on dental models. Typically, Xu et al. [36] proposed to re-

shape handcrafted geometric features as 2D image patches

to train CNNs for classifying the mesh cells. Tian et al. [25]

proposed to voxelize the dental model with a sparse oc-

tree partitioning [28], after which 3D CNNs are applied for

tooth segmentation. Although those methods using stan-

dard CNNs can learn task-oriented feature representations

for segmentation, converting the original input into grid for-

mat either ignores the unordered nature of the geometric

data [36] or may introduce additional quantization errors

during the voxelization step [25]. To address this limita-

tion, Zanjani et al. [5] proposed an end-to-end network that

integrates PointCNN [12] with a discriminator to directly

segment the raw dental surfaces acquired by IOS. Lian et

al. [14] extended PointNet [19] by adding a multi-scale

graph-constrained module to extract fine-grained local ge-

ometric features from dental mesh data. Instead of using

solely the 3D coordinates (e.g., in [5]), Lian et al. [14] com-

bined 3D coordinates and normal vectors as the network in-

put to improve the segmentation performance.

However, since coordinates and normal vectors are com-

pletely different geometric meanings of a 3D shape, directly

combining these low-level features as a single-stream input
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would confuse the learning of discriminative geometric rep-

resentations. Different from those methods, our TSGCNet

adopts two graph-learning streams, designed in an input-

aware, to independently learn feature representations from

coordinates and normal vectors. This can eliminate the mu-

tual confusion caused by mixed geometric inputs and ex-

tract.

3. The Proposed Method

3.1. Overview

Given a 3D dental model with M mesh cells, we de-

fine the input of our TSGCNet as a M × 24 matrix. That

is, each specific cell is described by a 24-dimensional vec-

tor, including the 3D coordinates (12 elements) and normal

vectors (12 elements) of four points (i.e., the cell’s three ver-

tices and its central point). As illustrated in Fig. 2, our TS-

GCNet starts with a two-stream architecture, which adopts

a C-stream and a N-stream to learn more discriminative ge-

ometric representations from the coordinates and normal

vectors, respectively. Thereafter, the features produced by

these two complementary streams are further fused to learn

higher-level representation for final prediction. The output

of our TSGCNet is an M ×C matrix, with each row denot-

ing the probabilities of the respective cell belonging to C
different classes.

3.2. TwoStream Architecture

C-Stream. Our C-stream is designed to learn the basic

topology of a dental model. As shown in Fig. 2, given the

input of a M × 12 coordinate matrix, a series of graph-

attention layers are successively applied in the forward path

to extract multi-scale geometric features from the coordi-

nate aspect. In each layer of the C-stream, a KNN graph

G is first constructed for the M cells in terms of the input

features. Specifically, for each cell (i.e., a central node), we

find its K nearest cells with the smallest Euclidean distance

in feature space. Let the resulting graph be G(V,E), where

V = {m1,m2, ...,mM} and E ⊆ |V | × |V | represent the

set of nodes (mesh cells) and the set of edges (defined by

KNN connectivity), respectively. For each node mi ∈ V ,

we denote its KNN as N (i).

After building the KNN graph G in each layer, a shared

MLP is applied to learn embedded features on each N (i).
Let f li ∈ R

d (e.g., d = 12 in the first layer) denote the input

feature vector of mi in the l-th layer, and f
l
ij denotes the in-

put feature vector of its j-th nearest neighbor mij ∈ N (i).
We first calibrate local information for each center, by learn-

ing an updated nearest-neighbor representation f̂
l
ij ∈ R

k in

terms of f lij and f
l
i , as:

f̂
l
ij = MLP l

(

f
l
i ⊕ f

l
ij

)

, ∀mij ∈ N (i), (1)

where ⊕ indicates the channel-wise concatenation. In this

way, the information provided by mij (encoded in f̂
l
ij) can

be more consistent with the specific central node mi, given

the fact that mij could be a nearest neighbor of more than

one center, i.e., f lij might be shared by multiple centers.

Additionally, we adopt a graph attention mechanism to

aggregate the calibrated neighborhood information to each

center. Inspired by [15, 27], we choose a learning-based

approach to estimate the attention weights for different

neighbors. Compared with the strategy of using predefined

weights [35], learning the weights in a task-oriented fashion

(e.g., by a lightweight network) can more flexibly capture

local geometric characteristics of the dental model for the

segmentation task. Specifically, we compute the attention

weight αl
ij ∈ R

k of neighbor mij in the l-th layer as:

αl
ij = σ

(

∆f
l
ij ⊕ f

l
ij

)

, ∀mij ∈ N (i), (2)

where the function σ(·) is implemented as a MLP in this

work. It adopts both ∆f
l
ij = f

l
i − f

l
ij and f

l
ij as the input,

where ∆f
l
ij quantifies the dissimilarity between mi,j and

mi while f
l
ij provides detailed neighbor information in the

feature space. Finally, the feature aggregation in the l-th
layer is formulated as:

f
l+1
i =

∑

mij∈N (i)

αl
ij ⊙ f̂

l
ij , (3)

where f
l+1
i indicates the updated feature of center mi, i.e.,

the input feature of the (l+1)-th layer. In Eq. (3), αl
ij and f̂

l
ij

are defined by Eq. (2) and Eq. (1), respectively, and ⊙ per-

forms the element-wise production of two feature vectors.

N-Stream. Although the C-stream can learn the basic

structure of a dental model from the 3D coordinates, it can-

not sensitively distinguish between adjacent cells belonging

to different classes (e.g., boundaries of teeth). Therefore,

as complementary to the C-stream for accurate teeth delin-

eation, we further design a N-stream to extract fine-grained

boundary representations from the aspect of normal vectors

in local areas.

Our N-stream takes the M × 12 matrix of normal vec-

tors as input and consists of a series of graph max-pooling

layers. Notably, we force each layer in the N-steam to share

the same KNN graph with the respective layer in the C-

stream. In this way, the graph max-pooling layers can focus

on the learning of boundary representations in local regions,

thereby avoiding the disturbance of distant cells that have

similar normal vectors (but belonging to different classes).

For simplicity, we still use the symbols f
l
i and f

l
ij to de-

note the input features of a center node mi and its neighbor

mij , respectively. Similar to the C-stream, the l-th layer of
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the N-stream first uses a MLP to learn the calibrated fea-

ture representation f̂
l
ij for each mi,j , i.e., similar to Eq. (1).

Thereafter, we apply the channel-wise max-pooling on all

neighbors’ calibrated features to produce the boundary rep-

resentation for the respective center, which can be formu-

lated as:

f
l+1
i = maxpooling

{

f̂
l
ij , ∀mij ∈ N (i)

}

. (4)

It is worth mentioning that we use max-pooling (rather than

graph attention) in the N-steam since the max operator can

sensitively capture the most distinctive features presented at

the tooth boundaries.

3.3. Feature Fusion

Considering that the C-stream and the N-stream learn

completely different feature representations from two com-

plementary views, fusing their outputs can enable the over-

all network to comprehensively understand the structure

of a dental model. To this end, as shown in Fig. 2, for

each stream, we first use skip connections to concatenate

its multi-scale cell-wise features from different layers (i.e.,

F
l
c or Fl

n, where l denotes the l-th layer), yielding a hierar-

chical feature matrix encoding local-to-global information.

A MLP (i.e., MLPc or MLPn) is then applied on this fea-

ture matrix to learn higher-level representations (i.e., Fc or

Fn) for the corresponding view (i.e, the C-stream or the N-

stream), which can be formulated as follows:

Fc = MLPc

(

F
1
c ⊕ F

2
c ⊕ F

2
c

)

, (5)

Fn = MLPn

(

F
1
n ⊕ F

2
n ⊕ F

2
n

)

. (6)

Finally, the feature matrices from two complementary

views are concatenated, which is followed by another MLP

(i.e., MLPpred) to output an M × C matrix P, with each

row denoting the probabilities of a specific cell belonging

to C different classes, which can be formulated as:

P = MLPpred

(

Fc ⊕ Fn

)

. (7)

We train TSGCNet with cross-entropy segmentation loss,

which can be formulated as:

loss = −
M
∑

i=1

C
∑

c=1

pic log yic, (8)

where pic and yic denote the predicted and the ground-truth

labeling probability for c-th class, respectively.

3.4. Implementation Details

Network Details. As shown in Fig. 2, the TSGCNet ar-

chitecture consists of a C-stream, a N-stream, and a feature-

fusion part. For each branch of the two streams, the MLPs

in the first to the third layer contain one 1D Conv with 64

channels, 128 channels, and 256 channels, respectively. The

number K of each KNN graph is set as 32. We use MLP to

implement the graph attention function σ(·), which is fol-

lowed by the channel-wise softmax to normalize the output

weights. In the feature fusion part, both MLPc and MLPn

contain a 1D Conv with 512 channels, and MLPpred con-

tains four successive 1D Convs, each with 512, 256, 128,

and C channels, respectively. All 1D Convs are followed by

batch normalization and LeakyReLU, except the last one in

MLPpred, which is followed by a tensor-reshape operation

to output the M × C probability matrix.

Training Details. Our TSGCNet was trained by minimiz-

ing the cross-entropy segmentation loss on two NVIDIA

GTX 1080 GPUs for 200 epochs. We use the Adam op-

timizer with the mini-batch size setting as 4. The initial

learning rate was 1e-3, which was reduced by 0.5 decay for

every 20 epochs.

T1 T1
T2T2

T3 T3

T4
T4

T5
T5

T6T6

T7 T7

BG

T1 : Central incisor

T2 : Lateral incisor

T3 : Canine/cuspid

T4 :1𝑠𝑡 premolar

T5 :2𝑠𝑡 premolar

T6 :1𝑠𝑡 molar

T7 :2𝑠𝑡 molar

BG : gingiva

Figure 3. An illustration of a manually labeled 3D dental model.

Each dental model includes 8 classes, i.e., the symmetric central

incisor, lateral incisor, canine, 1st premolar, 2st premolar, 1st mo-

lar, 2st molar, and the gingiva.

4. Experimental Results

4.1. Dataset

The studied dataset consists of 80 3D dental models ac-

quired by an IOS for different orthodontic patients. Each

raw dental model roughly contains more than 100,000

meshes, which were downsampled to 16,000 (e.g. M =
16, 000) meshes through the reduction of redundant infor-

mation, while preserving the original topology. The dataset

was randomly split as a training set with 64 subjects, and a

testing set with 16 subjects. Our target is to automatically

segment each dental model as C = 8 different semantic

parts, including the central incisor (T1), lateral incisor (T2),

canine/cuspid (T3), 1st premolar (T4), 2nd premolar (T5), 1st

molar (T6), 2nd molar (T7), and background/gingiva (BG).

The ground-truth annotations of all dental models follow

the clinical requirement and professional dentists’ advice,

with a typical example shown in Fig. 3.
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Table 1. The segmentation results for five competing methods and our method on OA and mIoU.

Method OA mIoU T1 T2 T3 T4 T5 T6 T7 BG

PointNet[19] 84.95 66.86 55.31 65.31 69.35 75.47 72.21 66.18 74.71 84.86

PointCNN[12] 88.61 72.86 61.72 66.45 68.10 78.98 78.57 70.51 72.15 86.39

PointNet++[20] 90.25 78.14 67.82 74.61 78.10 82.73 80.70 74.67 78.94 87.52

DGCNN[29] 91.93 84.30 82.18 79.95 82.09 87.88 86.24 80.14 84.26 91.65

MeshSegNet[14] 93.11 84.47 81.31 83.65 82.15 82.87 84.81 81.93 87.10 91.94

Ours 95.25 88.99 86.01 87.48 89.38 90.44 89.54 85.99 89.32 93.76

4.2. Experimental Setup

Data Augmentation. We augment the training set by the

combination of 1) random translation, and 2) random rota-

tion of each 3D dental model. Specifically, each training

dental model is translated with a displacement randomly

sampled between [−10, 10] and rotated along the y-axis

with an angle randomly sampled between [−π
6 ,

π
6 ]. In this

way, we generate 64 new samples from the original dental

models to enrich the diversity of the training set.

Competing Methods. Our TSGCNet was compared with

five state-of-the-art methods for both 3D shape segmenta-

tion (i.e., PointNet [19], PointNet++ [20], PointCNN [12],

DGCNN [29]) and 3D dental model segmentation (i.e.,

MeshSegNet [14]). For the grouping operations of Point-

Net++ [20], we deployed the 3D coordinates of the central

point of each cell to compute the spatial distance. The over-

all segmentation performance (averaged over all classes)

was quantitatively evaluated by two metrics, i.e., 1) Overall

Accuracy (OA), which is calculated as: Mc (number of cor-

rectly segmented cells) / M (number of all cells). 2) mean

Intersection-over-Union (mIoU). Besides, we also quantify

the detailed IoU of each class.

4.3. Comparison with Competing Methods

The overall segmentation results are presented in Table

1. Results show that our method achieves the best perfor-

mance in terms of both OA and mIoU metrics. In particu-

lar, when compared with the competing method in this spe-

cific task, MeshSegNet [27], which directly consumes the

combination of coordinates and normal vectors, the pro-

posed TSGCNet still increases the segmentation accuracy

by 2.14% and 4.52% on the OA and mIoU, respectively.

Additionally, our method also significantly outperforms the

graph based network DGCNN [29], demonstrating the ef-

fectiveness of the proposed two-stream mechanism that can

learn more discriminative geometric feature representations

for accurate tooth segmentation. Furthermore, despite the

varying shape appearances of different types of teeth, our

method is able to present consistent superior segmentation

performance over other approaches by a large margin.

We also visualize the segmentation results (obtained by

different methods) for four representative dental models in

Fig. 4. In consistency with the quantitative evaluations, we

can observe from Fig. 4 that our TSGCNet also qualitatively

outperforms all the competing methods, especially for the

challenging areas marked by the blue arrows and green dot-

ted circles. Specifically, in the area of teeth misalignment

(indicated by the blue arrows in the first two rows), Point-

Net [19], PointNet++ [20] and PointCNN [12] either re-

sult in under-segmentation or over-segmentation. Graph-

based competing methods (i.e., DGCNN [29] and Mesh-

SegNet [14]) achieve better performance based on the ex-

traction of detailed local spatial information. However, they

still fail to capture the complete teeth structure. In contrast,

due to the use of complementary information from the C-

stream and N-stream, our TSGCNet achieves more accurate

results than all the competing methods in these misaligned

areas. Besides, from the third and fourth rows of Fig. 4,

we can see that our proposed method can also better distin-

guish the boundaries between adjacent teeth, especially for

the two adjacent incisors (indicated by the green dotted cir-

cles). Finally, when comparing our method with MeshSeg-

Net [14] in the fourth row, we can see that MeshSegNet [14]

produces many isolated false predictions on gingiva, even

those mislabeled mesh cells are relatively far away from the

real tooth area. This further suggests that the direct concate-

nation of normal vectors and coordinates as a single feature

vector (e.g., in MeshSegNet) may confuse the learning of

discriminative geometric features in some cases, while the

two-stream structure (i.e., in our TSGCNet) is a more ap-

propriate design.

5. Ablation Study

In this section, we conduct detailed ablation studies to

evaluate the efficacy of the critical components of our TS-

GCNet.

5.1. Effectiveness of the TwoStream Structure

In this series of experiments, we first evaluate the effec-

tiveness of our two-stream structure. Specifically, we re-

move the N-stream (i.e., only adopting the C-stream with

the coordinates as input) or the C-stream (i.e., only adopting

the N-stream with the normal vectors as input) to generate

two different variants of TSGCNet, which are denoted as

TSGCNet-C and TSGCNet-N, respectively. In addition,

we also build another single-stream variant of TSCGNet

(denoted as TSGCNet-S) that directly learns from the com-
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Raw models PointNet PointNet++ PointCNN DGCNN MeshSegNet Ours Ground truth

Figure 4. Visualization of representative segmentation results produced by five competing methods and our method, along with the respec-

tive ground-truth annotations.

bination of the coordinates and normal vectors. Note that

TSGCNet-S has a similar structure to TSGCNet-C but with

different input. We compare these three variants with the

final TSGCNet, with the quantitative results listed in Ta-

ble 2. It can been seen that TSGCNet-N and TSGCNet-C

lead to worse results than both TSGCNet-S and TSGCNet.

This justifies the complementarity between the geometric

information provided by the coordinates and normal vec-

tors in delineating teeth on dental models. On the other

hand, when compared with TSGCNet-S, the original TS-

GCNet further improves the segmentation accuracy, which

suggests the effectiveness of our two-stream structure in ex-

tracting the complementary geometric information from the

two different views.

Table 2. The segmentation results for the original TSGCNet and

three variants. TSGCNet-C and TSGCNet-N stand for the sole

use of the C-stream and N-stream, respectively. TSGCNet-S de-

notes the single-stream version of TSGCNet, which directly con-

catenates the coordinates and normal vectors as input.

Structure OA mIoU

TSGCNet-C 83.23 63.79

TSGCNet-N 55.42 20.77

TSGCNet-S 87.25 73.44

TSGCNet 95.25 88.99

5.2. Effectiveness of FeatureAggregation Strategy

As described in Section 3.2, we use two different fea-

ture aggregation strategies in the C-stream and N-stream of

our TSGCNet. Specifically, the graph attention aggregation

is used in the C-stream, while the graph max-pooling ag-

gregation in the N-stream. To evaluate the effectiveness of

our design, we implement three variants of TSGCNet by

changing the feature aggregation strategy in each stream,

including 1) both streams use max-pooling, 2) both streams

use attention, and 3) C-stream uses max-pooling while N-

stream uses attention. For simplicity, we denote those three

variants and the original TSGCNet as M+M, A+A, M+A,

and A+M, respectively. We then compare the segmentation

results of these variants in Table 3. From Table 3, we can see

that using attention mechanisms in the C-stream can achieve

better performance (please refer to A+M vs. M+M) when

compares with the use of max-pooling, which suggests that

graph attention aggregation can extract finer details of the

tooth shape from coordinates. Besides, using max-pooling

in the N-stream can further refine the segmentation results

(please refer to A+M vs. A+A). This can be rationally ex-

plained by that max-pooling can extract more distinctive

morphological features, which in return helps the network

to capture difference between neighboring cells, especially

at the tooth boundaries.

Table 3. The segmentation results by using different feature aggre-

gation strategies. M+M (or A+A) stands for using max-pooling

(or attention) in both two streams. M+A stands for using max-

pooling and attention in the C-stream and N-stream, respectively.

A+M denotes the original TSGCNet.

Structure OA mIoU

M+M 94.56 86.24

A+A 95.01 87.35

M+A 93.93 85.67

A+M 95.25 88.99

We also show the segmentation results of a typical ex-

ample obtained by these variants in Fig. 5. In consistency

with quantitative evaluations in Table 3, we can see that both

M+A and M+M have more outliers than A+A and A+M,
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which further confirms that graph attention aggregation is

more suitable for the C-stream. Besides, when comparing

A+A with A+M, we also observe that A+M generates more

precise segmentation on boundaries, which further confirms

that graph max-pooling aggregation is more suitable for the

N-stream.

M+M

A+A A+M

M+A

Ground truthRaw models

Figure 5. A segmentation example for TSGCNet by using different

feature aggregation strategies.

5.3. Effectiveness of FeatureFusion Strategy

As described in Section 3.3, the multi-scale high-level

feature produced by C-stream and N-stream (i.e., Fc and

Fn) are fused to learn complementary information in our

TSGCNet. To evaluate the effectiveness of this high-level

feature fusion strategy, we compare the TSGCNet with an-

other variant that is implemented by applying a low-level

feature fusion strategy. Specifically, during the two-stream

feature extraction stage, the output of the l-th layer in both

streams are concatenated (i.e., Fl
c and F

l
n are concatenated)

as the input of the (l + 1)-th layer. This means that the C-

stream and N-stream have the same input in the (l + 1)-th
layer. We denote our original feature fusion strategy and the

variant as H-fusion and L-fusion, respectively.

Table 4. The segmentation results for two different feature fusion

strategies. The L-fusion denotes low-level feature fusion strategy,

and the H-fusion stands for our adopted feature fusion strategy.

Strategy OA mIoU

L-fusion 93.28 85.49

H-fusion 95.25 88.99

We further compare the segmentation results of H-fusion

and L-fusion, as shown in Table 4. From this table, it can be

seen that the OA and mIoU of H-fusion is 1.97% and 3.50%

higher than L-fusion, respectively. It is potentially because

the premature feature fusion also confuses the learning of

discriminative features. Besides, due to different properties

between coordinates and normal vectors, the KNN graph

built on the concatenated features may result in a random

distribution of neighbors in real space, which tends to ham-

per the network to learn local-to-global information.

5.4. Limitations

Although our TSGCNet has achieved the leading perfor-

mance in the task of 3D dental segmentation, it still has cer-

tain limitations. Most typically, TSGCNet cannot robustly

handle special cases with 12 teeth. For example, we showed

the segmentation result of one dental model with 12 teeth

in Fig. 6, which can be seen that our TSGCNet generates

many false predictions on T6 (indicated by the blue dotted

circles). This can be possibly interpreted by the fact that the

outermost tooth of 12-teeth dental models is annotated as

T6, which is usually annotated as T7 in the normal dental

models. To address this problem, including more 12-teeth

cases as training samples would be considered in our future

research.

Our TSGCNetGround truthRaw model

Figure 6. A segmentation example for the 12-teeth dental model

produced by our TSGCNet.

6. Conclusion

A two-stream network, called TSGCNet, has been pro-

posed in this paper to automatically segment individual

tooth from 3D dental models acquired by intra-oral scan-

ners. To eliminate the mutual confusion caused by mixed

geometric inputs, the proposed TSGCNet apply two input-

aware graph-learning streams to independently extract dis-

criminative geometric features from coordinates and normal

vectors, respectively. Feature representations produced by

two different streams are then fused to learn complementary

multi-view information for the end-to-end cell-wise predic-

tion. An extensive comparison has been performed between

our TSGCNet and other five state-of-the-art methods on a

real-patient dataset, and the corresponding results demon-

strate the superiority of our proposed method, especially for

practically challenging cases.
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