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Abstract

The main difficulty of person re-identification (ReID) lies

in collecting annotated data and transferring the model

across different domains. This paper presents UnrealPer-

son, a novel pipeline that makes full use of unreal image

data to decrease the costs in both the training and deploy-

ment stages. Its fundamental part is a system that can gen-

erate synthesized images of high-quality and from control-

lable distributions. Instance-level annotation goes with the

synthesized data and is almost free. We point out some de-

tails in image synthesis that largely impact the data quality.

With 3,000 IDs and 120,000 instances, our method achieves

a 38.5% rank-1 accuracy when being directly transferred to

MSMT17. It almost doubles the former record using syn-

thesized data and even surpasses previous direct transfer

records using real data. This offers a good basis for un-

supervised domain adaption, where our pre-trained model

is easily plugged into the state-of-the-art algorithms to-

wards higher accuracy. In addition, the data distribution

can be flexibly adjusted to fit some corner ReID scenarios,

which widens the application of our pipeline. We publish

our data synthesis toolkit and synthesized data in https:

//github.com/FlyHighest/UnrealPerson.

1. Introduction

Person re-identification aims to retrieve the same pedes-

trian (i.e., an identity) from the images captured by a cam-

era network. As a fundamental task of intelligent surveil-

lance, ReID has attracted increasing attention in the com-
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puter vision community. Recently, with the emergence of

large-scale ReID datasets [59, 60, 46], effective algorithms

have been proposed and achieved satisfying performance in

these benchmarks. However, there is still a significant gap

in deploying the ReID algorithms to real-world scenarios,

arguably because (i) the trained models are often vulnera-

ble to domain changes, yet (ii) annotating identities in new

scenarios requires exhausting human labors. We attribute

such an application gap to the fact that the current pipeline

is hindered by the data limitation and thus not optimized for

generalizing across different scenarios.

To alleviate this problem and pave a new path for the

community, we propose UnrealPerson, a new pipeline that

makes full use of unreal (synthesized) image data towards

a powerful ReID algorithm that easily and costlessly de-

ploys to a wide range of scenarios. The key observation is

that the synthesized pedestrian data sampled from a virtual

world comes naturally with free and perfect annotations.

From the perspective of the generalization ability, the syn-

thesized data enjoys two-fold benefits. First, compared to

the manually collected data from restricted real scenarios,

the synthesized data from infinite virtual scenes is more di-

verse, making it less prone to domain-specific patterns. Sec-

ond, the parameters of data synthesis can be freely adjusted

to fit the domains in which collecting real data is difficult

(e.g., the low-illumination scenario). To fully utilize these

characteristics, our entire pipeline consists of pre-training

the model using abundant synthesized data and then fine-

tuning it with off-the-shelf domain adaptation algorithms.

This pipeline has broad applications since it fits both the

fully-supervised and unsupervised setting and transfers well

to a few corner scenarios.

The quality and richness of our synthesized pedestrian

data is the cornerstone of our UnrealPerson pipeline. To

synthesize abundant and authentic samples, we first create

a set of scenarios (e.g., street, plaza, etc.) in the virtual 3D

world with changeable environmental parameters (e.g., illu-

mination, lighting, etc.). Then, we place an arbitrary num-
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ber of pedestrians with configurable appearance (e.g., gen-

der, height, clothing, etc.) into the scenarios, and they move

according to the pre-defined paths. Finally, the images are

captured by the virtual cameras in the scenes. With this data

synthesis system, UnrealPerson is flexible to assemble suit-

able training data and learning approaches to achieve the

best performance for different ReID tasks. We verify its ef-

fectiveness through two groups of experiments. First, we

verify the effectiveness of the synthesized data on improv-

ing the generalization ability. We train the ReID model only

on the synthesized data and test it directly on conventional

ReID benchmarks. Quantitatively, our vanilla baseline [62]

achieves a rank-1 accuracy of 38.5% on the MSMT17

dataset, which almost doubles the previous synthesis-based

record: 20.0% by RandPerson [45]. Second, we adapt our

pipeline for specialized ReID scenarios, e.g., all pedestrians

are in black, or the illumination is very low. In these tough

scenarios, UnrealPerson achieves competitive performance,

even surpassing the models that are pre-trained in manually

labeled datasets with real-world images. Our major contri-

bution is summarized as follows.

• We propose a novel pipeline that largely reduces the

deployment costs of ReID. For the first time, the model

pre-trained purely on synthesized data outperforms

that pre-trained on real, annotated data.

• We verify the usefulness of our pipeline in a wide

range of downstream tasks, including direct transfer,

supervised domain adaptation, and unsupervised do-

main adaptation settings.

• We provide a detailed analysis of the factors in data

synthesis, which offers practical guidelines for reusing

our toolkit for future research.

2. Related Work

2.1. ReID: Full Supervision and Direct Transfer

A typical ReID framework for supervised learning re-

quires annotating identities, and hence deep networks can

be optimized by learning to separate different persons. The

methods can be roughly classified into two categories, i.e.,

improving feature extraction and designing better objective

functions. To make the feature more robust to pose vari-

ations, part-based methods [41, 35, 47, 58, 57] are pro-

posed. Some methods target to enhance person-related fea-

ture extraction by eliminating the background via seman-

tic parsing [42] or attention mechanism [37, 22]. Also,

some works [21, 44, 34] contribute to more effective net-

work architecture for person feature extraction. Moreover,

powerful objective functions are introduced to ReID, in-

cluding triplet loss [17, 53], contrastive loss [43], center

loss [28, 48], circle loss [40], and so on. These methods

achieve good performance on the same domain evaluation

but report unsatisfactory results when directly transferred

to other domains. Some methods aim to overcome over-

fitting on the training domain. For example, Liao et al. [23]

conduct pairwise matching to find explainable local similar

regions. Song et al. [38] follow meta-learning pipelines and

extract domain-invariant features via sampled sub-domains.

Zhuang et al. [62] propose to align the feature distribution

of all cameras. However, the domain gap limits the perfor-

mance of these methods.

2.2. Domain Adaptation for Person ReID

Domain adaptation on the target domain usually boosts

the performance by shrinking the huge domain gap. Fine-

tuning with annotated data can be regarded as a basic su-

pervised domain adaptation method [15]. Further, Xiao et

al. [49] propose to fine-tune the pre-trained model with

domain-guided dropout to filter out useless neurons. On the

other hand, unsupervised domain adaptation (UDA) attracts

more attention because it requires cheaper unlabeled data

of the target domain. The means of UDA include data aug-

mentation [46, 11, 61, 27], distribution alignment [31, 19],

predicting pseudo labels [20, 13, 3, 25, 52, 12], spatial-

temporal consistency mining [29, 20], model ensemble [54,

56], and so on. The final performance of UDA also relies on

the transferability of pre-training data. For example, pseudo

label based methods rely on the pre-trained model to pro-

vide the initial labels, and the accuracy of pseudo labels

directly influences the model convergence and the final per-

formance. Therefore, the quality of pre-training data is the

basis for domain adaptation.

2.3. Synthesized ReID Data

Recently, some researchers adopt data synthesis tech-

niques in ReID tasks. SOMAset [2] is proposed to as-

sist deep CNNs training. It contains only 50 persons.

SyRI [1] has 100 persons under 140 different lighting con-

ditions. These two datasets are rather small, and the di-

versity of backgrounds and human appearance is limited.

PersonX [39] is a large-scale synthesized dataset, contain-

ing 1,266 persons of multiple viewpoints. This dataset

aims to explore how viewpoints affect ReID systems. Per-

sonX adopts ready-made human models from a 3D human

dataset. RandPerson [45] is a recent dataset proposed to

generalize current ReID models. It contains a maximum of

8,000 pedestrians of 19 cameras. By combining RandPer-

son and other real-world data as the training set, the ReID

models achieve better supervised learning results. Although

RandPerson is diverse and flexible for its human generation

pipeline, it is still weaker than real-world datasets in terms

of generalization ability. In what follows, we will discuss

how to improve the quality of synthesized data. Our in-

sights make the synthesized data surpass real-world datasets

and achieve the best performance on multiple ReID tasks.
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(a) Real data preparation in typical ReID pipelines

(b) Unreal data generation for our UnrealPerson pipeline (c) Downstream adaptation on Market-1501

Unreal Data Generation

Labeled Data

CNN
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Real Data Ours

rank-1 74.4 rank-1 79.0

mAP 45.4 mAP 54.3

rank-1 90.5 rank-1 93.0

mAP 76.2 mAP 80.2

rank-1 93.7 rank-1 94.0

mAP 82.5 mAP 84.7

Figure 1. The UnrealPerson pipeline. The pre-training stage of our pipeline utilizes data synthesis, while conventional pipelines usually

need annotated real-world data. We compare the best performance achieved by real data on the Market-1501 dataset. On all three tasks,

our unreal data surpasses real data.

3. The UnrealPerson Pipeline

3.1. Problem: Person Re­identification

Given an annotated image dataset S =
{(I1,y1), (I2,y2), ..., (IN ,yN )}, where each Ii rep-

resents the image, and yi is the ground truth label of

the identity, the goal of ReID is to learn a proper feature

embedding function f(θ; Ii) that maps images into a

feature space X = {xi|xi = f(θ; Ii), 1 ≤ i ≤ N}, where

the distances of the same identity are smaller than those of

different identities. A straight-forward way to achieve this

is to minimize the identity prediction error on S:

min E(Ii,yi
)∈S [yi − g(f(Ii)], (1)

where g is the classifier. In this formulation, the quality

of the learnt mapping relies on the data distribution of S .

The data distribution can be disassembled into two parts,

the identity appearance distribution and background dis-

tribution. Hence, we denote the data distribution of S as

DS(FG,BG), where FG and BG represent foreground and

background, respectively.

In the above formulation, two drawbacks are revealed.

First, a major difficulty lies in collecting and annotating the

training dataset S . A large-scale dataset often takes much

time and labor to construct. For instance, MSMT17 is a

large-scale ReID dataset, consisting of 4,101 identities cap-

tured from 15 cameras. Researchers collected 180 hours of

high-resolution videos and three labelers annotated for two

months. Such costs are unbearable in application scenarios.

Second, the data distribution DS is easily interfered with

by foreground and background changes. Thus, ReID data

collected in one scene often fails to transfer well to other

scenes. For example, a ReID model trained on Market-1501

reports 91.4% rank-1 accuracy when evaluating on Market-

1501 testing set, where cameras are the same as the training

set, but only obtains 25.7% rank-1 accuracy on MSMT17.

This dramatic accuracy drop implies the huge domain gap

and also reveals the weakness of the current ReID pipeline.

3.2. Towards a Generalized and Costless Pipeline

In the current ReID pipeline that involves data annota-

tion from real scenes (as shown in Fig. 1(a)), the two draw-

backs mentioned above are inevitable. Usually, the costs of

annotating a lot of cross-camera pedestrians are unbearable

in applications. To say the least, even if we do not con-

sider the annotation costs, there is still a dilemma in real

data preparation. On the one hand, to offer sufficient cover-

age of different scenarios, the dataset should contain a large

amount of labeled data. On the other hand, a large amount

of data may scatter data distribution, leading to an unsatis-

fying performance in some corner scenarios. We owe such

a dilemma to the real data lacking flexibility and turn to

generating unreal data for training stronger ReID systems.

Unlike real data, synthesized data enjoys the benefits of

free annotation and flexible data distribution. Based on the

toolkit of synthesizing data, we can easily pre-train a ReID

model on an arbitrary distribution and, if needed, fine-tune it

to adjust various downstream tasks. As shown in Fig. 1, our

proposed pipeline involves three components: unreal data

generation, model pre-training, and downstream adaptation,

of which the unreal data is the fundamental part of the whole

pipeline.

Our UnrealPerson pipeline liberates ReID systems from

the manual annotation. In terms of time cost for data

preparation, we are able to construct a labeled unreal

dataset of 3,000 identities within 48 CPU-hours, in com-

parison to the real dataset MSMT17 of 4,101 identities,

which took 180 person-days. This unreal dataset also sur-

passes MSMT17 on several downstream adaptation tasks,

as shown in Fig. 1(c). Moreover, our pipeline is flexible
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Datasets #Identities #Cameras #BBoxes Clothing Accessories Hard samples
Surveillance

Simulation
Scalable

Rank-1 on

MSMT17 (%)

SOMAset [2] 50 - 100,000 Real No No No No 3.1

SyRI [1] 100 - 56,000 Real No No No No 21.8

PersonX [39] 1,266 6 273,456 Real No No No Yes 22.2

RandPerson [45] 8,000 19 228,655 Generated+Real No No Yes Yes 20.0

Our synthesized data 3,000 34 120,000 Real Various Many Yes Yes 38.5

Table 1. Detailed comparisons of synthesized datasets. Note that SOMAset and SyRI do not have a camera network, so numbers of cameras

are left blank. The rank-1 accuracy on MSMT17 is the direct transfer performance of ReID models trained on these synthesized datasets.

compared to the typical ReID pipeline because the data dis-

tribution of synthesized data is fully controllable. The flex-

ibility of data synthesis empowers our pipeline to transfer

well to many corner scenarios, like night-time ReID, indoor

ReID, and so on, where annotated real data is hard to col-

lect. With our pipeline, we can easily fit these scenarios

using unreal data.

In this paper, we mainly focus on dataset preparation

and show that with a better-annotated dataset, the demands

for pre-training methods and fine-tuning algorithms will be

lowered greatly. The details of our synthesized data will be

discussed in the next subsection.

3.3. Data Synthesis: The Devil Lies in Details

We use synthesized data for our new ReID pipeline. A

data synthesis system is developed to generate costless and

flexible ReID image data. There are four major differences

between our data synthesis system and others. (i) More

realistic. In foregrounds, we use real clothing images on

generated 3D humans that comply with biological struc-

tures; in backgrounds, we mimic real surveillance systems

in high-quality virtual environments. Compared to PersonX

or RandPerson that use low-poly assets in their generation

systems, our assets are more realistic. (ii) More details.

We add more details to 3D human models. A total of 248
types of clothes are used in our generated 3D humans. In

addition, our 3D humans randomly carry accessories, in-

cluding masks, glasses, hats, earphones, scarves, bags, and

backpacks. These things are commonly seen in real scenes

but hardly used in previous synthesis systems. (iii) Hard

samples. Apart from increasing diversity, we also consider

the difficulty of the training set. Adding more details in-

evitably makes humans easy to recognize. Therefore, we

deliberately add pedestrians with similar appearances in our

synthesized data as hard samples. Persons that look quite

similar but differs in small discriminative regions play an

important role in guiding ReID models to focus on local ar-

eas. (iv) Scalability. Different from SyRI and PersonX, our

synthesis system supports arbitrary numbers of pedestrians

and cameras because we have a 3D human production tool

and a universal program that fits almost all virtual scenes in

Unreal Engine 4. The summarized comparisons are shown

in Tab. 1. We will validate the advantages mentioned above

in Sec. 4.2. In the rest of this subsection, we briefly intro-

duce the steps to generate the synthesized ReID data.

3D Human Mass Production. The 3D human models are

produced in MakeHuman [9], an open-source program that

generates realistic human models. We overwrite a com-

munity plugin, massproduce [8], to generate a large num-

ber of models in one click. To increase the diversity of

human models, we use real-world clothing images of two

datasets, Clothing-co-parsing [51] and DeepFashion [26],

as the clothing texture images for the generated humans.

Surveillance Simulation. We simulate real surveillance

scenes in Unreal Engine 4 (UE4) [18], a mature platform

for high-quality video games and VR applications. The

resources for UE4 are sufficient to generate various ReID

datasets. We choose 4 scenes from UE4 marketplace,

namely Scene 1, ..., Scene 4, among which three are out-

door city environments, and one is an indoor scene. For

our virtual humans, we provide 4 walking animations and

2 idling animations. They are given pre-defined paths to

walk along in the unreal scenes. Humans may occlude each

other, just like in real-world scenes. The occlusion level can

also be controlled. If needed, more serious occluded scenar-

ios can be achieved by putting more obstacles or increas-

ing pedestrians with different walking speeds. For cameras,

we set virtual cameras in the unreal environments of differ-

ent viewpoints and different distances to humans. Multiple

views of pedestrians can be obtained. We also make sky-

light change during data collection.

Data Annotation. Data annotation is conducted automat-

ically by our annotating scripts. We adopt UnrealCV [32,

33] to collect pixel-level instance segmentation annotations

for every image the virtual cameras capture. Then, we

crop every pedestrian in the images after filtering out small

bounding boxes on the edge and discarding seriously oc-

cluded pedestrians. To simulate detection bounding boxes

or manually cropped boxes, the bounding boxes are ran-

domly enlarged by a factor of 0.1.

Summary. Our synthesized dataset sets up a better platform

for downstream tasks, and even the pre-trained model itself

achieves good results on many datasets. The UnrealPerson

pipeline lowers the needs for annotated real data and boosts

transferring performance across different domains, which

will be presented in the next section. More technical details

about data synthesis and visualizations of our synthesized

data are shown in supplementary materials.

11509



#IDs #Cameras
Clothing Textures

Accessories Hard Samples
Market Duke MSMT17

Random Generated Real rank-1 mAP rank-1 mAP rank-1 mAP

800 6

X 52.0 26.2 41.4 22.4 18.5 6.1

X 61.0 34.4 49.8 29.8 19.6 6.6

X 64.5 37.9 54.3 33.8 20.7 6.9

X X 65.3 38.1 57.0 36.3 21.6 7.4

X X X 65.2 38.8 56.7 36.6 21.9 7.6

800

16 X X X 69.9 42.5 61.0 38.4 26.3 9.0

22 X X X 71.1 43.9 61.9 41.1 30.3 10.7

28 X X X 73.7 46.5 62.9 41.6 33.4 12.6

34 X X X 74.9 48.2 64.9 42.9 35.4 13.3

1,500

34

X X X 75.7 50.7 67.3 46.6 36.3 13.9

2,000 X X X 76.8 52.0 69.0 48.0 37.9 14.7

3,000 X X X 79.0 54.3 69.7 49.4 38.5 15.3

Table 2. Direct transfer performance of Unreal to three real datasets. We control several parameters in our synthesized data, i.e., clothing

textures, accessories, hard samples and numbers of identities and cameras, towards better performance.

4. Experiments

4.1. Implementation Details

We adopt ResNet-50 [16], which is pre-trained on Ima-

geNet [10], as our backbone for all experiments. We also

replace all batch normalization layers with camera-based

batch normalization (CBN) [62] layers in the network. An

extra CBN layer is added after global average pooling on

the last residual block of ResNet-50, followed by a linear

layer as the classifier. To train with labeled data, the softmax

cross-entropy loss is used. For unlabeled data, we use the

joint visual and temporal consistency (JVTC) [20] frame-

work for unsupervised domain adaptation (UDA). The im-

ages are resized to 256 × 128. For direct transfer experi-

ments, we set batch size as 64; for UDA experiments, we

sample 128 images from the source domain and 128 im-

ages from the target domain to form a mini-batch. In each

mini-batch, for annotated data, we adopt a balanced sam-

pling strategy proposed in [55]. For unlabeled data, we

randomly sample images. We adopt the SGD optimizer

for training, with a momentum of 0.9 and weight decay of

5 × 10−4. The initial learning rate is 0.01 and decays to

0.001 after 40 epochs. The training stops at the 60th epoch.

Besides, as synthesized datasets contain more images, we

observe convergence with fewer iterations. Therefore, for

synthesized datasets, in direct transfer experiments, we de-

cay the learning rate at the 10th epoch and stop training at

the 15th epoch; in UDA experiments, we only sample 300
mini-batches from the source domain in each epoch.

4.2. Direct Transfer Evaluation

The synthesized ReID data is the fundamental part of the

UnrealPerson pipeline. Here, we adopt direct transfer per-

formance on real datasets as the indicator to show the qual-

ity of synthesized data because direct transfer is the basis

for all other tasks. Three real datasets, Market-1501 [59],

(a) Generated textures

(d) Two groups of similar pedestrians.

(b) Real textures (c) Accessories

Figure 2. Visualizations of our synthesized data. (a) Regular gen-

erated clothing textures. (b) Real textures. (c) 3D humans with

accessories (handbag, backpack, and umbrella). (d) Pedestrians

with similar appearance.

DukeMTMC-reID [60], and MSMT17 [46], are used as

the testing sets. For short, we refer to Market-1501 and

DukeMTMC-reID as Market and Duke, respectively. For

our synthesized data, we refer to as Unreal. We sample 40
images for each pedestrian to form our Unreal dataset. We

first explore how to synthesize high-quality virtual humans

and then scale up the number of cameras and identities. A

summarized report is presented in Tab. 2.

Clothing Textures. The appearance of clothes is a main

part of the foreground and provides much discriminative in-

formation. In synthesized data, we randomly replace the

clothing textures to enrich clothing appearance. We com-

pare three different ways of enriching clothing textures.

Random images are from universal image datasets, like

ImageNet [10] or COCO [24]. Generated color textures

(Fig. 2(a)) are proposed in RandPerson [45], with a few pre-

defined patterns applied to generated color palettes. Real

textures are cropped clothing image patches from clothing

segmentation datasets. From the top 3 lines in Tab. 2, we

can conclude that the textures of real clothes are more suit-

able for enriching 3D human models. Random images or
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Query images

Top-1 images

Training without

hard samples

Top-1 images

Training with

hard samples

Figure 3. Top-1 results on MSMT17. The ReID models are trained

using our unreal data with or without hard samples, i.e., similar

pedestrians. Images in the same column are interrelated. Red:

false matches; Green: correct matches.

generated patterns may vary from real clothes largely and

decay the reality of unreal data.

Accessories. The accessories of pedestrians are important

clues to recognize their identities. Adding accessories to

3D humans makes the synthesized data more realistic. As

shown in Fig. 2(c), our data synthesis system supports vari-

ous accessories on human models. From Tab. 2, we can see

that the synthesized datasets with accessories achieve better

performance on all three testing sets.

Hard Samples. In real-world scenarios, some persons may

look quite similar. They are hard samples for ReID algo-

rithms and are important for efficient learning. As shown in

Fig. 2(d), we also synthesize hard samples in unreal data.

Specifically, we generate human models by group. The five

human models in one group share similar appearances, but

everyone is a little different from the others. Note that hard

samples are better provided with a rather larger number of

identities and cameras because in a small dataset, hard sam-

ples may heavily interfere learning from normal cases. As

shown in Tab. 2, when we have 800 identities in 6 cameras,

the hard samples slightly improve mAP on the three testing

sets. From Fig. 4, with more cameras and more identities,

adding hard samples significantly improves the rank-1 ac-

curacy. We also show some query results on MSMT17 in

Fig. 3. The ReID model trained with synthesized data with-

out hard samples tends to ignore the obvious differences in

backpacks and handbags. After adding hard samples, we

empower ReID methods to focus on local regions.

Number of cameras. We prepare 4 scenes for the 3D hu-

man models to walk around, where 34 virtual cameras are

deployed to capture images. We construct several synthe-

sized datasets containing 800 humans with the number of

cameras increasing from 6 to 34 and involving scenes from

1 to 4. The direct transfer evaluation results are shown in the

middle part of Tab. 2. Virtual environments differ from each

other in many aspects, such as illumination, styles of build-

ings and roads, and crowdedness. By recognizing persons

Training set
Market Duke MSMT

rank-1 mAP rank-1 mAP rank-1 mAP

Market 91.4 76.8 56.7 36.5 25.7 9.6

Duke 72.4 41.9 82.1 67.5 35.8 13.1

MSMT17 74.4 45.4 67.1 46.8 72.5 42.4

SyRI 48.5 22.6 38.9 18.2 21.8 5.7

PersonX 58.7 32.7 49.4 28.9 22.2 7.9

RandPerson 64.7 39.3 59.4 38.4 20.0 6.8

Unreal 79.0 54.3 69.7 49.4 38.5 15.3

Table 3. Direct transfer results with the CBN method [62]. The

fully-supervised learning results are in italics.

Training set
Market Duke MSMT

rank-1 mAP rank-1 mAP rank-1 mAP

Market 94.6 86.3 29.0 15.6 9.2 3.0

Duke 49.7 23.7 86.5 76.5 14.3 4.5

MSMT 56.2 29.8 51.8 34.3 73.9 49.9

SyRI 15.2 4.9 16.6 5.9 7.8 1.6

PersonX 27.6 11.0 15.9 7.1 4.1 1.2

RandPerson 53.4 27.9 44.0 26.4 14.0 4.8

Unreal 64.0 37.2 58.0 37.5 26.8 9.9

Table 4. Direct transfer results (the BN variant of Tab. 3). The

baseline is BoT [28], and the fully-supervised results are in italics.

across virtual environments, ReID models are more robust

to person-unrelated variations of different scenes.

Number of pedestrians. Apart from the results shown in

the bottom part of Tab. 2, we also conduct fine-grained ex-

periments to explore how many pedestrians are suitable for

training models. The accessories and hard samples are also

validated in these experiments. From Fig. 4, we can see

that generally, more pedestrians lead to better performance.

The results also demonstrate the effectiveness of our pro-

posed additional components for foreground synthesis, i.e.,

accessories and hard samples. Note that we achieve the best

direct transfer performance using 3,000 identities, much

fewer than RandPerson. We also observe that, when adding

more pedestrians (larger than 3,000), the performance is

hardly promoted. This issue will be discussed in Sec. 5.

Summary. In the above analysis, we explore the key fac-

tors of how to improve synthesized ReID datasets. In fore-

ground synthesis, we generate 3D human models with ac-

cessories to introduce more diversity and produce similar

humans as hard samples. In background synthesis, we

validate the importance of cross-scene pedestrians. Based

on these conclusions, we take a representative synthesized

dataset that exploits all the advantages we find. This dataset

contains 120,000 images of 3,000 pedestrians collected

from 34 cameras deployed in 4 different virtual scenes. For

convenience, we refer to this dataset as Unreal. The direct

transfer performance of Unreal and other datasets is com-

pared in Tab. 3 and Tab. 4. On both the CBN baseline [62]

and BN baseline [28], our Unreal dataset surpasses other

datasets in direct transfer evaluation.
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Figure 4. Results of direct transfer evaluation on Market, Duke and MSMT17, with the number of pedestrians in synthesized datasets

increasing from 600 to 3,000. The number of cameras in all the experiments shown in this figure is 34.

Pre-training

Dataset

Fine-tuning

Dataset

Market Duke MSMT

rank-1 mAP rank-1 mAP rank-1 mAP

ImageNet

Market

91.4 76.8 56.7 36.5 25.7 9.6

MSMT17 93.7 82.5 68.5 50.1 47.3 21.4

Unreal 94.0 84.7 72.8 54.7 35.6 14.8

ImageNet

Duke

72.4 41.9 82.1 67.5 35.8 13.1

MSMT17 76.5 47.6 85.7 72.1 48.5 20.6

Unreal 82.5 57.9 86.8 74.2 40.5 16.3

ImageNet

MSMT17

74.4 45.4 67.1 46.8 72.5 42.4

Duke+Market 80.0 53.6 70.5 52.6 73.7 44.7

Unreal 80.1 53.8 71.5 52.8 74.5 46.0

Table 5. Results of supervised fine-tuning on the pre-trained mod-

els. The fully-supervised learning results are in italics. Direct

transfer performance is also shown in this table conveniently.

Source Domain Methods
Market Duke MSMT17

rank-1 mAP rank-1 mAP rank-1 mAP

Market

JVTC

- - 76.5 59.6 46.1 20.4

Duke 89.0 73.1 - - 52.5 23.5

MSMT17 89.9 74.5 79.0 63.5 - -

Unreal 90.8 78.3 81.2 66.1 53.7 25.0

Market

JVTC+

- - 84.6 68.8 63.7 30.1

Duke 89.3 74.6 - - 66.8 32.5

MSMT17 90.5 76.2 85.2 72.1 - -

Unreal 93.0 80.2 88.3 75.2 68.2 34.8

Table 6. Unsupervised domain adaptation performance on three

benchmark datasets.

4.3. Domain Adaptation

Supervised Fine-tuning. When abundant labeled data in

the target domain is accessible, domain adaptation can be

simply done by supervised fine-tuning on the pre-trained

model. From Tab. 5, we see that the results of fully-

supervised learning are promoted by using Unreal as the

pre-training data. For example, when training and testing on

Market with ImageNet pre-trained model, the rank-1 accu-

racy is 91.4%, while our Unreal pre-trained model reaches

94.0%. Our Unreal dataset also surpasses other real-world

ReID datasets, showing its universality and transferability.

Unsupervised Domain Adaptation. Unsupervised domain

adaptation (UDA) is a popular direction to leverage unla-

beled data from the target domain. The training sets include

labeled data of the source domain and unlabeled data from

the target domain. In UDA experiments, we implement

JVTC [20] as the off-the-shelf algorithm in the network

with CBN [62] layers. JVTC+ denotes using joint simi-

larity of visual and spatial-temporal features in the testing

stage. The results are shown in Tab. 6. With the assistance

of our unreal data, the UDA performance is largely boosted.

On Duke, JVTC+ further promotes the rank-1 accuracy to

88.3%, not only setting up a state-of-the-art record but also

surpassing the fully-supervised learning results shown in

Tab. 5. Note that these results are obtained without any

manual annotation. It demonstrates the application values

of our UnrealPerson pipeline.

4.4. Task­specific Adaptation for Corner Scenarios

Our UnrealPerson pipeline enjoys the benefits of flexi-

ble data synthesis. The distribution of synthesized data can

be adaptively adjusted by modifying parameters of synthe-

sis, and the process can be done easily in our UnrealPerson

pipeline. This advantage makes our pipeline more suitable

for corner scenarios of ReID, where labeled data is hard to

obtain. We present three examples, i.e., indoor ReID, low

illumination ReID and black ReID. Previously little atten-

tion has been paid to these scenarios for the lack of abun-

dant training data. For evaluation on indoor ReID and low

illumination ReID tasks, we use GRID [7] and LIPS [30]

dataset, respectively. GRID is a dataset collected in an un-

derground station, where the cameras are located at high an-

gles of view. LIPS is constructed with two night cameras,

and thus the illumination is extremely low. We take 250

persons in GRID and 50 persons in LIPS for testing. Black

ReID problem was first defined in [50]. In some scenes,

most pedestrians wear similar clothes,e.g., many wear dark

clothes in winter. We prepare two datasets, Market-black

and Duke-black, according to the annotations provided by

the Black-reID dataset [50]. All persons in Duke-black

and Market-black wear black clothes. Duke-black contains

1,216 images of 145 persons, among which 436 images are

used as queries and the rest as gallery images. Market-black

contains 41 persons. It has 174 images as queries and 251

images as the gallery.
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Figure 5. Direct transfer performance on various corner scenarios. Un denotes the unreal data are used for training.

In Fig. 5, we show the direct transfer performance on

these datasets. The compared training sets include Market,

Duke, and MSMT17. For the indoor dataset GRID, we use

the Unreal dataset with 6 extra indoor cameras, achieving

36.4% rank-1 accuracy. On the low illumination dataset, we

adjust our virtual scenes to night time, and train the network

with low illumination (LI) unreal data, surpassing real data

by 3.0%. For black ReID, we apply dark clothing textures

to 3D humans to construct our Unreal-w/ BL. This dataset

gets significant promotions on the two black datasets.

5. Open Problems

Our research leaves a few open problems for the com-

munity. We summarize them as follows, and hence suggest

the community pays more attention to this new pipeline that

is potentially the future trend of ReID.

• The quality of synthesized data. It is easy to rec-

ognize the synthesized images from the real images,

because the realness of 3D human models, the rich-

ness of facial expressions and contexts, the illumina-

tion changes, etc., are still far from perfect. We guess

that there is a saturation point for synthesized data (be-

yond it, continuing improving reality brings marginal

gains), but we are not sure when it will be reached and

whether the domain transfer methods can relieve the

burden of image synthesis. Within a short period, we

believe that continuing mimicking the real-world data

property can bring us non-trivial benefits.

• The quantity of synthesized identities. Currently, our

algorithm reaches a plateau in direct transfer at 3,000
pedestrians. Surprisingly, this number is even smaller

than MSMT17, the real-world ReID dataset. There is

no doubt about the potential of introducing more data,

but there are problems to solve, including the quality

issue (described above) and the data distribution issue

(e.g., the number of identities to be placed in one sce-

nario, the function that samples the details for each

identity, etc.). Clues may be found by analyzing some

meta-information (e.g., the distribution of identity sim-

ilarity) and compare it to real-world datasets.

• The efficiency of learning from infinite data. Prior

works [36, 4] have shown that active learning or hard

example mining are potentially more efficient strate-

gies when there is an infinite amount of data. We hope

to validate these techniques in our pipeline and thus

decrease the complexity, in particular when the data

quantity becomes much larger.

• The relationship with other problems. The flexibil-

ity of data synthesis allows us to augment the scope

of ReID, or investigate the relationship between ReID

and other vision problems. To name a few, (i) one

can generalize ReID from image-based to video-based,

where our pipeline enjoys a larger advantage over the

public benchmarks; (ii) one can generate high-quality

segmentation mask for other objects in the virtual sce-

narios, allowing the researchers to consider the con-

texts for more accurate ReID; (iii) one can also study

the self-supervised learning methods [14, 5, 6], which

often require more data and are believed stronger in

domain transfer.

6. Conclusions

This paper presents UnrealPerson, a novel pipeline for

person re-identification (ReID). It aims to relieve the bur-

den of costly data annotation and alleviate the difficulty of

domain transfer. Synthesized data plays an important role

in this research. We reveal that there is still much room of

improvement by synthesizing data from more virtual sce-

narios/cameras as with richer details. With our pre-trained

ReID model, the direct transfer accuracy to MSMT17, the

largest publicly available dataset, is almost doubled com-

pared to the previous best pipeline that uses synthesized

training data. UnrealPerson enjoys stronger transferabil-

ity to real-world ReID datasets because (i) the pre-trained

model is specialized in and better at processing ReID data,

and (ii) the synthesized environment can be flexibly ad-

justed to the corner scenarios in which collecting real-world

data is difficult.
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