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Abstract

This paper presents a detailed study of improving visual

representations for vision language (VL) tasks and devel-

ops an improved object detection model to provide object-

centric representations of images. Compared to the most

widely used bottom-up and top-down model [2], the new

model is bigger, better-designed for VL tasks, and pre-

trained on much larger training corpora that combine mul-

tiple public annotated object detection datasets. There-

fore, it can generate representations of a richer collec-

tion of visual objects and concepts. While previous VL re-

search focuses mainly on improving the vision-language fu-

sion model and leaves the object detection model improve-

ment untouched, we show that visual features matter signif-

icantly in VL models. In our experiments we feed the visual

features generated by the new object detection model into

a Transformer-based VL fusion model OSCAR [20], and

utilize an improved approach OSCAR+ to pre-train the VL

model and fine-tune it on a wide range of downstream VL

tasks. Our results show that the new visual features signif-

icantly improve the performance across all VL tasks, creat-

ing new state-of-the-art results on seven public benchmarks.

Code, models and pre-extracted features are released at

https://github.com/pzzhang/VinVL.

1. Introduction

Vision language pre-training (VLP) has proved effective

for a wide range of vision-language (VL) tasks [25, 35, 4,

33, 19, 18, 44, 20]. VLP typically consists of two stages: (1)

an object detection model is pre-trained to encode an image

and the visual objects in the image to feature vectors, and

(2) a cross-modal fusion model is pre-trained to blend text

and visual features. While existing VLP research focuses

mainly on improving the cross-modal fusion model, this

paper focuses on improving the object-centric visual rep-

resentations and presents a comprehensive empirical study
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to demonstrate that visual features matter in VL models.

Among the aforementioned work, a widely-used object

detection (OD) model [2] is trained on the Visual Genome

dataset [15]. The OD model provides an object-centric rep-

resentation of images, and has been used in many VL mod-

els as a black box. In this work, we pre-train a large-scale

object-attribute detection model based on the ResNeXt-

152 C4 architecture (short as X152-C4). Compared to

the OD model of [2], the new model is better-designed

for VL tasks, and is bigger and trained on much larger

amounts of data, combining multiple public object detec-

tion datasets, including COCO [24], OpenImages (OI) [16],

Objects365 [30] and Visual Genome (VG) [15]. As a result,

our OD model achieves much better results on a wide range

of VL tasks, as shown in Table 1. Compared to other typical

OD models, such as X152-FPN trained on OpenImages, our

new model can encode a more diverse collection of visual

objects and concepts (e.g., producing visual representations

for 1848 object categories and 524 attribute categories), as

illustrated by an example in Figure 1.

To validate the effectiveness of the new OD model, we

pre-train a Transformer-based cross-modal fusion model

OSCAR+ [20] on a public dataset consisting of 8.85 mil-

lion text-image pairs, where the visual representations of

these images are produced by the new OD model and

are fixed during OSCAR+ pre-training. We then fine-

tune the pre-trained OSCAR+ for a wide range of down-

stream tasks, including VL understanding tasks such as

VQA [8], GQA [12], NLVR2 [34], and COCO text-image

retrieval [24], and VL generation tasks such as COCO im-

age captioning [24] and NoCaps [1]. Our results show that

the object-centric representations produced by the new OD

model significantly improve the performance across all the

VL tasks, often by a large margin over strong baselines us-

ing the classical OD model [2], creating new state of the

arts on all these tasks, including GQA on which none of the

published pre-trained models has surpassed the deliberately

designed neural state machine (NSM) [11]. We will release

the new OD model to the research community.

The main contributions of this work can be summarized

as follows: (i) We present a comprehensive empirical study

to demonstrate that visual features matter in VL models. (ii)
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Visual feature
VQA GQA Image Captioning NoCaps Image Retrieval Text Retrieval NLVR2

test-dev test-std test-dev test-std B@4 M C S C S R@1 R@5 R@10 R@1 R@5 R@10 dev test-P

Anderson et al. [2] 73.16 73.44 61.58 61.62 40.5 29.7 137.6 22.8 86.58 12.38 54.0 80.8 88.5 70.0 91.1 95.5 78.07 78.36
Ours 75.95 76.12 65.05 64.65 40.9 30.9 140.6 25.1 92.46 13.07 58.1 83.2 90.1 74.6 92.6 96.3 82.05 83.08

∆ 2.79 ↑ 2.68 ↑ 3.47 ↑ 3.03 ↑ 0.4 ↑ 1.2 ↑ 3.0 ↑ 2.3 ↑ 5.9 ↑ 0.7 ↑ 4.1 ↑ 2.4 ↑ 1.6 ↑ 4.6 ↑ 1.5 ↑ 0.8 ↑ 3.98 ↑ 4.71 ↑

Table 1: Uniform improvements on seven VL tasks by replacing visual features from Anderson et al. [2] with ours. The

NoCaps baseline is from VIVO [9], and our results are obtained by directly replacing the visual features. The baselines

for rest tasks are from OSCAR [20], and our results are obtained by replacing the visual features and performing OSCAR+

pre-training. All models are Bert-Base size. As analyzed in Section 4.2, the new visual features contributes 95% of the gain.

Figure 1: Predictions from an X152-FPN model trained on OpenImages (Left) and our X152-C4 model trained on four

public object detection datasets (Right). Our model contains much richer semantics, such as richer visual concepts and

attribute information, and the detected bounding boxes cover nearly all semantically meaningful regions. Compared with

those from the common object classes in typical OD models (Left), the rich and diverse region features from our model

(Right) are crucial for vision-language tasks. For concepts detected by both models, e.g., “boy”, attributes from our

model offer richer information, e.g., “young barefoot shirtless standing surfing smiling little

playing looking blond boy”. There are object concepts that are detected by our model but not by the OpenIm-

ages model, including fin, wave, foot, shadow, sky, hair, mountain, water, (bare, tan, light, beige)

back, (blue, colorful, floral, multi colored, patterned) trunk, sand, beach, ocean, (yellow,

gold) bracelet, logo, hill, head, (black, wet) swim trunks, black, wet swim trunks. Compared to

the R101-C4 model of [2], our model produces more accurate object-attribute detection results and better visual features for

VL applications; see Appendix A for the full pictures and predictions from [2].

We have developed a new object detection model that can

produce better visual features of images than the classical

OD model [2] and substantially uplifts the state-of-the-art

results on all major VL tasks across multiple public bench-

marks. (iii) We provide a detailed ablation study of our

pre-trained object detection model to investigate the relative

contribution to the performance improvement due to differ-

ent design choices regarding diversity of object categories,

visual attribute training, training data scale, model size, and

model architecture.

2. Improving Vision in Vision Language

Deep learning-based VL models typically consist of two

modules: an image understanding module Vision and a

cross-modal understanding module VL:

(q,v) = Vision(Img), y = VL(w, q,v), (1)

where Img and w are the inputs of the vision and lan-

guage modalities, respectively. The output of the Vision

module consists of q and v. q is the semantic represen-

tation of the image, such as tags or detected objects, and

v the distributional representation of the image in a high-

dimensional latent space represented using e.g., the box

or region1 features produced by a VG-pre-trained Faster-

RCNN model [2]. Most VL models use only the visual

features v, while the recently proposed OSCAR [20] model

shows that q can serve as anchors for learning better vision-

language joint representations and and thus can improve the

performance on various VL tasks. w and y of the VL mod-

ule of Equation (1) vary among different VL tasks. In VQA,

w is a question and y is an answer to be predicted. In text-

image retrieval, w is a sentence and y is the matching score

1We use the terms region and box interchangeably.
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of a sentence-image pair. In image captioning, w is not

given and y is a caption to be generated.

Inspired by the great success of pre-trained language

models to various natural language processing tasks, vision-

language pre-training (VLP) has achieved remarkable suc-

cess in improving the performance of the cross-modal un-

derstanding module VL by (1) unifying vision and lan-

guage modeling VL with Transformer and (2) pre-training

the unified VL with large-scale text-image corpora. How-

ever, most recent works on VLP treat the image understand-

ing module Vision as a black box and leave the visual fea-

ture improvement untouched since the development of the

classical OD model [2] three years ago, despite that there

has been much research progress on improving object de-

tection by 1) developing much more diverse, richer, and

larger training datasets (e.g. OpenImages and Objects 365),

2) gaining new insights in object detection algorithms such

as feature pyramid network [22], one-stage dense predic-

tion [23], and anchor-free detectors [36], and 3) leveraging

more powerful GPUs for training bigger models.

In this work, we focus on improving Vision for better

visual representations. We developed a new OD model by

enriching the visual object and attribute categories, enlarg-

ing the model size and training on a much larger OD daset-

set, and thus advanced the state of the arts on a wide range

of VL tasks. We detail how the new OD model is devel-

oped in the rest of this section and then describe the use of

OSCAR+ for VL pre-training in Section 3.

2.1. Object Detection Pre­training

To improve the OD model for VL tasks, we utilize four

public object detection datasets. As most datasets do not

have attribute annotations, we adopt a pre-training and fine-

tuning strategy to build our OD model. We first pre-train an

OD model on a large-scale corpus consisting of four public

datasets, and then fine-tune the model with an additional

attribute branch on Visual Genome, making it capable of

detecting both objects and attributes.

Data. Table 2 summarizes the statistics of the four pub-

lic datasets used in our object detection pre-training, in-

cluding COCO, OpenImagesV5 (OI), Objects365V1, and

Visual Genome (VG). These datasets have complementary

characters, and are extremely unbalanced in terms of data

size, object vocabulary, and the number of annotations in

each class. For example, the VG dataset has a rich and di-

verse set of annotations for both objects and their attributes

with an open vocabulary. But its annotations are noisy and

suffer from the missing-annotation problem. The COCO

dataset, on the other hand, is very well annotated. But the

coverage of visual objects and attributes is much lower than

that in VG although we use both its 80 object classes and

91 stuff classes to include as diverse visual concepts as pos-

sible. We take the following steps to build a unified corpus

by combining the four datasets.

1. First of all, to enhance visual concepts of tail classes,

we perform class-aware sampling for OpenImages and

Objects365 to get at least 2000 instances per class, re-

sulting in 2.2M and 0.8M images, respectively.

2. To balance the contribution of each dataset, we merge

the four datasets with 8 copies of COCO (8×0.11M), 8

copies of VG (8×0.1M), 2 copies of class-aware sam-

pled Objects365 (2×0.8M) and one copy of the class-

aware sampled OpenImages (2.2M).

3. To unify their object vocabularies, we use the VG vo-

cabulary and its object aliases as the base vocabulary,

merge a class from the other three datasets into a VG

class if their class names or aliases match, and add a

new class if no match is found.

4. Finally, we keep all VG classes that contain at least 30

instances, resulting in 1594 VG classes and 254 classes

from the other three datasets that cannot be mapped to

the VG vocabulary, resulting in a merged object detec-

tion dataset that contains 1848 classes.

Source VG COCO w/ stuff Objects365 OpenImagesV5 Total

Image 97k 111k 609k 1.67M 2.49M

classes 1594 171 365 500 1848

Sampling ×8 ×8 CA-2k, ×2 CA-2k 5.43M

Table 2: The Vision pre-training datasets. In sampling, ×k
means k copies in one epoch and “CA-2k” means class-

aware sampling with at least 2K instances per class.

Model Architecture (FPN vs C4). Although [22] shows

that the FPN model outperforms the C4 model for object

detection, recent studies [13] demonstrate that FPN does

not provide more effective region features for VL tasks than

C4, which is also confirmed by our experimental results 2.

We thus conduct a set of carefully designed experiments, as

to be detailed in Appendix E, and find two main reasons for

this. The first is that all layers in the C4 model used for re-

gion feature extraction are pre-trained using the ImageNet

dataset while the multi-layer-perceptron (MLP) head of the

FPN model are not. It turns out that the VG dataset is still

too small to train a good enough visual features for VL tasks

and using ImageNet-pre-trained weights is beneficial. The

second is due to the different network architectures (CNN

vs. MLP). The convolutional head used in C4 has a bet-

ter inductive bias for encoding visual information than the

MLP head of FPN. Therefore, in this study we use C4 ar-

chitecture for VLP.

2We find in our experiments that using the same training process,

the X152-C4 model even produces better object detection result than the

X152-FPN model. See Appendix E for details.
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Model Pre-Training. Following the common practice in

object detection training, we freeze the first convolution

layer, the first residual block, and all the batch-norm layers.

We also use several data augmentation methods, including

horizontal flipping and multi-scale training. To train a de-

tection model with the X152-C4 architecture, we initialize

the model backbone from an ImageNet-5K checkpoint [39]

and train for 1.8M iterations with a batch size of 16 images.

2.2. Injecting attribute information into the model

Following [2], we add an attribute branch to the pre-

trained OD model, and then fine-tune the OD model on

VG to inject attribute information (524 classes). Since the

object representations are pre-trained in the object detec-

tion pre-training stage, we can focus the VG fine-tuning on

learning attributes by picking a much larger attribute loss

weight 1.25, compared to 0.5 used in [2, 13]. Thus, our

fine-tuned model significantly outperforms previous mod-

els [2, 13] in detecting objects and attributes on VG.

2.3. Efficient region feature extractor for VL tasks

With a richer set of visual objects and attributes, the clas-

sical class-aware non-maximal suppression (NMS) post-

processing takes a significantly larger amount of time to

remove overlapped bounding boxes, making the feature

extraction process extremely slow. To improve the effi-

ciency, we replace the class-aware NMS with the class-

agnostic NMS that only conducts the NMS operation once3.

We also replace the time-consuming conv layers with dila-

tion=2 used in [2] with conv layers without dilation. These

two replacements make the region feature extraction pro-

cess much faster than that in [2] without any accuracy drop

on VL downstream tasks. We report the end-to-end infer-

ence time of VL models with different vision models on a

Titan-X GPU and a CPU with a single thread in Table 22 in

Appendix F.

In summary, the pre-trained OD model serves as the im-

age understanding module, as in Equation (1), to produce

vision presentations (q,v) for downstream VL tasks. Here,

q is the set of detected object names (in text) and v is the set

of region features. Each region feature is denoted as (v̂, z),
where v̂ is a P -dimensional representation from the input of

the last linear classification layer of the detection head ( i.e.

P = 2048) and z is a R-dimensional position encoding of

the region (i.e. R = 6)4.

3. OSCAR+ Pre-training

The success of VLP lies in the use of a unifying model

architecture for a wide range of VL tasks and the large-scale

3Counting the NMS in the RPN module, there are in total 2 NMS op-

erations in our efficient region feature extractor.
4It includes coordinates of the bounding boxes, and height & width.

pre-training of the unified model using objectives that cor-

relate with the performance metrics of these downstream

VL tasks. In this study we pre-train an improved version of

OSCAR [20], known as OSCAR+ models, to learn the joint

image-text representations using image tags as anchors for

image-text alignment.

3.1. Pre­training corpus

We build our pre-training corpus based on three types

of existing vision and VL datasets: (1) image captioning

datasets with human-annotated captions as w and machine-

generated 5 image tags as q, including COCO [24],

Conceptual Captions (CC) [31], SBU captions [27] and

flicker30k [41]; (2) visual QA datasets with questions as w

and human-annotated answers as q, including GQA [12],

VQA [8] and VG-QAs; (3) image tagging datasets with

machine-generated 6 captions as w and human-annotated

tags as q, including a subset of OpenImages (1.67M im-

ages). In total, the corpus contains 5.65 million unique

images, 8.85 million text-tag-image triples. The detailed

statistics are presented in Table 17 in the Appendix. The

size of the pre-training corpus could have been significantly

increased by combining large-scale image tagging datasets,

such as the full set of OpenImages (9M images) and YFCC

(92M images). We leave it to future work to leverage much

larger corpora for model pre-training.

Loss (w, q/q′,v) (w/w′, q,v) 3-way contrastive

w′/q′ All q’s (OSCAR) q’s from QA All w’s All (OSCAR+) q’s from QA

VQA (dev) 69.8±0.08 70.1±0.08 69.5±0.05 69.8±0.06 69.7±0.06

COCO-IR 73.9±0.2 75.0±0.2 75.0±0.7 78.3±0.3 77.7±0.7

Table 3: Effects of different pre-training contrastive losses

on downstream tasks (R50-C4 as Vision module and 4-

layer Transformer as VL module in (1) ). COCO-IR metric

is Image-to-Text retrieval R@1 at COCO 1K test set. Blue

indicates the best result for a task and Black indicates the

runner-up.

3.2. Pre­training Objectives

There are two terms in the OSCAR+ pre-training loss as

in Equation (2).

LPre-training = LMTL + LCL3. (2)

LMTL is the Masked Token Loss defined on the text modal-

ity (w and q), following closely [20]. (See Appendix B.2

for details.) LCL3 is a novel 3-way Contrastive Loss. Differ-

ent from the binary contrastive loss used in OSCAR [20],

the proposed 3-way Contrastive Loss to effectively opti-

mize the training objectives used for VQA [40] and text-

5We use the same model to extract visual features.
6We use the captioning model released by OSCAR [20].
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image matching [6]7. As shown in Equation 3, LCL3 takes

into account two types of training samples x: the {caption,

image-tags, image-features} triplets of the image caption-

ing and image tagging data, and the {question, answer,

image-features} triplets of the VQA data.

x , ( w
︸︷︷︸

caption

, q,v
︸ ︷︷ ︸

tags&image

) or ( w, q
︸ ︷︷ ︸

Q&A

, v
︸︷︷︸

image

) (3)

To compute contrastive losses, negative examples need

to be constructed. We construct two types of negative (un-

matched) triplets for the two types of training samples, re-

spectively. One is the polluted “captions” (w′, q,v) and the

other the polluted “answers” (w, q′,v). To classify whether

a caption-tags-image triplet contains a polluted caption is a

text-image matching task. To classify whether a question-

answer-image triplet contains a polluted answer is an an-

swer selection task for VQA. Since the encoding of [CLS]
can be viewed as a representation of the triplet (w, q,v),
we apply a fully-connected (FC) layer on top of it as a 3-

way classifier f(.) to predict whether the triplet is matched

(c = 0), contains a polluted w (c = 1), or contains a pol-

luted q (c = 2). The 3-way contrastive loss is defined as

LCL3 = −E(w,q,v;c)∼D̃ log p(c|f(w, q,v)), (4)

where the dataset (w, q,v; c) ∈ D̃ contains 50% matched

triples, 25% w-polluted triples, and 25% q-polluted triples.

For efficient implementation, the polluted w′ is uniformly

sampled from all w’s (captions and questions) and q′ is uni-

formly sampled from all q’s (tags and answers) in the cor-

pus. As demonstrated in Table 3, when only the answer-

polluted triplets are used, i.e., (w, q′,v) with q′ sampled

from q’s from QA corpus, the contrastive loss simulates

closely the objective for the VQA task but not the text-

image retrieval task. As a result, the pre-trained model can

be effectively adapted to VQA, but not so to text-image re-

trieval. By contrast, the proposed 3-way contrastive loss

transfers well to both tasks.

3.3. Pre­trained models

We pre-train two model variants, denoted as OSCAR+B

and OSCAR+L, which are initialized with parameters θBERT

of BERT base (L = 12, H = 768, A = 12) and large

(L = 24, H = 1024, A = 16), respectively, where L is

the number of layers, H the hidden size, and A the num-

ber of self-attention heads. To ensure that the image region

features have the same input embedding size as BERT, we

transform the position-augmented region features using a

linear projection via matrix W. The trainable parameters

7[6] uses a deep-learning-based text-image matching model to select

the best caption candidate for a given image.

are θ = {θBERT,W}. OSCAR+B is trained for at least 1M

steps, with learning rate 1e−4 and batch size 1024. OS-

CAR+L is trained for at least 1M steps, with learning rate

3e−5 and batch size 1024. The sequence length of language

tokens [w, q] and region features v are 35 and 50, respec-

tively.

3.4. Adapting to VL Tasks

We adapt the pre-trained models to seven downstream

VL tasks, including five understanding tasks and two gen-

eration tasks. Each task poses different challenges for adap-

tation. We refer to Appendix C for details about the seven

tasks and our fine-tuning strategies.

4. Experiments and Analysis

4.1. Main Results

To account for model parameter efficiency, we group

the SoTA models in three categories: (i) SoTAS indicates

the best performance achieved by small models prior to the

Transformer-based VLP models. (ii) SoTAB indicates the

best performance produced by VLP models of BERT base

size. (iii) SoTAL indicates the best performance yielded by

VLP models of BERT large size.

Table 4 gives an overview of the results of OSCAR+ with

VINVL(short for VINVL) on seven VL tasks, compared to

previous SoTAs8. VINVLoutperforms previous SoTA mod-

els on all tasks9, often by a significantly large margin. The

result demonstrates the effectiveness of the region features

produced by the new OD model.

In Tables 5 to 11, we report the detailed results for

each downstream task, respectively. (i) The VQA re-

sults are shown in Table 5, where our single OSCAR+B

model outperforms the best ensemble model (InterBERT

large [21]) on the VQA leaderboard as of Dec. 12, 2020
10. (ii) The GQA results are shown in Table 6, where OS-

CAR+w/VINVLis the first VLP model that outperforms the

neural state machine (NSM) [11] which contains some so-

phisticated reasoning components deliberately designed for

the task. (iii) The Image Captioning results on the pub-

lic “Karpathy” 5k test split are shown in Table 7. Table 8

shows on a concise version of the COCO image captioning

online leaderboard11. The online testing setting reports the

results on 40K images, with 5 reference captions (c5) and

40 reference captions (c40) per image. At the time of sub-

mitting this paper, our single model achieves No.1 on the

8All the (single-model) SoTAs are from the published results. For all

the tables in this paper, Blue indicates the best result for a task, and gray

background indicates results produced by VINVL.
9The only exception is B@4 on image captioning.

10VQA leaderboard: https://eval.ai/web/challenges/

challenge-page/514/leaderboard/1386
11Image Captioning Leaderboard: https://competitions.

codalab.org/competitions/3221#results
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Task
VQA GQA Image Captioning NoCaps Image Retrieval Text Retrieval NLVR2

test-dev test-std test-dev test-std B@4 M C S C S R@1 R@5 R@10 R@1 R@5 R@10 dev test-P

SoTAS 70.55 70.92 − 63.17 38.9 29.2 129.8 22.4 61.5 9.2 39.2 68.0 81.3 56.6 84.5 92.0 54.10 54.80
SoTAB 73.59 73.67 61.58 61.62 40.5 29.7 137.6 22.8 86.58 12.38 54.0 80.8 88.5 70.0 91.1 95.5 78.39 79.30
SoTAL 74.75 74.93 − − 41.7 30.6 140.0 24.5 − − 57.5 82.8 89.8 73.5 92.3 96.0 79.76 81.47

VINVLB 75.95 76.12 65.05 64.65 40.9 30.9 140.6 25.1 92.46 13.07 58.1 83.2 90.1 74.6 92.6 96.3 82.05 83.08

VINVLL 76.52 76.60 − − 41.0 31.1 140.9 25.2 − − 58.8 83.5 90.3 75.4 92.9 96.2 82.67 83.98

∆ 1.77 ↑ 1.67 ↑ 3.47 ↑ 1.48 ↑ 0.7 ↓ 0.5 ↑ 0.9 ↑ 0.7 ↑ 5.9 ↑ 0.7 ↑ 1.3 ↑ 0.7 ↑ 0.5 ↑ 1.9 ↑ 0.6 ↑ 0.3 ↑ 2.91 ↑ 2.51 ↑

Table 4: An overall comparison with SoTAs on seven tasks. ∆ indicates the improvement over SoTA. SoTA with subscript

S, B, L indicates performance achieved by small models, and models with the model size similar to BERT base and large,

respectively. SoTAs: VQA is from ERNIE-VIL [42], GQA is from NSM [11], NoCaps is from VIVO [9], NLVR2 is from

VILLA [7], the rest tasks are from OSCAR [20].

Method
ViLBERT VL-BERT VisualBERT LXMERT 12-in-1 UNITER OSCAR VILLA ERNIE-VIL InterBERT OSCAR+w/ VINVL

Base Base Base Base Base Base Large Base Large Base Large Base Large Ensemble* Base Large

Test-dev 70.63 70.50 70.80 72.42 73.15 72.27 73.24 73.16 73.61 73.59 73.69 72.62 74.75 - 75.95 76.52
Test-std 70.92 70.83 71.00 72.54 − 72.46 73.40 73.44 73.82 73.67 74.87 72.85 74.93 76.10 76.12 76.60

Table 5: Evaluation results on VQA. * denotes the No.1 ensemble model of InterBERT Large on the VQA leaderboard.

Method LXMERT MMN [3] 12-in-1 OSCARB NSM [11] OSCAR+B w/ VINVL

Test-dev 60.00 − − 61.58 − 65.05
Test-std 60.33 60.83 60.65 61.62 63.17 64.65

Table 6: Evaluation results on GQA.

Method
cross-entropy optimization CIDEr optimization

B@4 M C S B@4 M C S

BUTD [2] 36.2 27.0 113.5 20.3 36.3 27.7 120.1 21.4
VLP [44] 36.5 28.4 117.7 21.3 39.5 29.3 129.3 23.2
AoANet [10] 37.2 28.4 119.8 21.3 38.9 29.2 129.8 22.4
OSCARB [20] 36.5 30.3 123.7 23.1 40.5 29.7 137.6 22.8
OSCARL [20] 37.4 30.7 127.8 23.5 41.7 30.6 140.0 24.5
OSCAR+B w/ VINVL 38.2 30.3 129.3 23.6 40.9 30.9 140.4 25.1
OSCAR+L w/ VINVL 38.5 30.4 130.8 23.4 41.0 31.1 140.9 25.2

Table 7: Image captioning evaluation results (single model)

on COCO “Karpathy” test split. (Note: B@4: BLEU@4,

M: METEOR, C: CIDEr, S: SPICE.)

Method
BLEU@4 METEOR ROUGE-L CIDEr-D

c5 c40 c5 c40 c5 c40 c5 c40

BUTD [2] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet [10] 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
X-Transformer [28] 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
OSCAR+ w/ VINVL 40.4 74.9 30.6 40.8 60.4 76.8 134.7 138.7

Table 8: Leaderboard of the state-of-the-art image caption-

ing models on the COCO online testing.

entire leaderboard, outperforming all 263 models, including

many ensemble (and anonymous) models. (iv) The Novel

Object Captioning (NoCaps) results are shown in Table 9.

Without any VLP, i.e. by directly training a BERT-based

captioning model on COCO, the model with our new visual

features (denoted as VinVL) already surpasses the human

performance in CIDEr12. By adding VIVO [9] pre-training,

our VinVL improves the original VIVO result by 6 CIDEr

points and creates a new SoTA. (v) Overall, on all these

12NoCaps leaderboard: https://eval.ai/web/challenges/

challenge-page/355/leaderboard/1011

Method CIDEr SPICE CIDEr SPICE

Validation Set Test Set

UpDown+ 74.3 11.2 73.1 11.2
OSCARB* 81.1 11.7 78.8 11.7
OSCARL* 83.4 11.4 80.9 11.3
Human [1] 87.1 14.2 85.3 14.6

VIVO* [9] 88.3 12.4 86.6 12.4

VinVL* 90.9 12.8 85.5 12.5
VinVL+VIVO 98.0 13.6 92.5 13.1

Table 9: NoCaps evaluation “overall” results. All the mod-

els are trained on COCO without additional image-caption

pairs following the restriction of NoCaps. (UpDown+ is

UpDown+ELMo+CBS, the models with * is +SCST+CBS,

VinVL+VIVO is with SCST only.) We refer to Table 18 in

Appendix C for results on different subsets.

Method BERT

1K Test Set

Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Unicoder-VL [18] B 84.3 97.3 99.3 69.7 93.5 97.2

OSCAR
B 88.4 99.1 99.8 75.7 95.2 98.3
L 89.8 98.8 99.7 78.2 95.8 98.3

OSCAR+ w/ VINVL
B 89.8 98.8 99.7 78.2 95.6 98.0
L 90.8 99.0 99.8 78.8 96.1 98.5

5K Test Set

Unicoder-VL [18] B 62.3 87.1 92.8 46.7 76.0 85.3

UNITER [4]
B 63.3 87.0 93.1 48.4 76.7 85.9
L 66.6 89.4 94.3 51.7 78.4 86.9

OSCAR
B 70.0 91.1 95.5 54.0 80.8 88.5
L 73.5 92.2 96.0 57.5 82.8 89.8

OSCAR+ w/ VINVL
B 74.6 92.6 96.3 58.1 83.2 90.1

L 75.4 92.9 96.2 58.8 83.5 90.3

Table 10: Text and Image retrieval evaluation on the COCO

1K and 5K test sets. (B for Base, L for Large)

tasks (VQA in Table 5, Image Captioning in Table 7, No-

Caps in Table 9, Image-Text Retrieval in Table 10, NLVR2

in Table 11), we show that OSCAR+B can match or outper-

form previous SoTA large models, and OSCAR+L substan-

tially uplifts the SoTA.
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Method
MAC VisualBERT LXMERT 12-in-1 UNITER OSCAR VILLA OSCAR+w/ VINVL

base base base base large base large base large base large

Dev 50.8 67.40 74.90 − 77.14 78.40 78.07 79.12 78.39 79.76 82.05 82.67

Test-P 51.4 67.00 74.50 78.87 77.87 79.50 78.36 80.37 79.47 81.47 83.08 83.98

Table 11: Evaluation results on NLVR2.

vision

vl
no VLP

OSCARB

[20]

OSCAR+B

(ours)

R101-C4 [2] 68.52 ±0.11 72.38 72.46±0.05

VinVL (ours) 71.34 ±0.17 – 74.90±0.05

Table 12: Effects of vision (V) and vision-language (VL)

pre-training on VQA.

4.2. Ablation Analysis

We select the VQA task for the ablation study because

its evaluation metric is well-defined and the task has been

used as a testbed for all VLP models. To assist our analysis,

we create a local validation set, vqa-dev, out of the stan-

dard validation set to select the best model during training

for evaluation. vqa-dev contains randomly sampled 2K im-

ages and their corresponding questions, amounting to 10.4K

image-QA pairs in total. Except for Table 4 and 5, all our

VQA results are reported on this vqa-dev set. Unless other-

wise specified, the reported STD is half of the difference of

two runs of the VQA training with different random seeds.

In VQA, the VL model y = VL(w, q,v) has w as the

question and y as the answer. We focus on studying the ef-

fect of visual features v produced by different Vision mod-

els Vision(Img) to better understand their relative contri-

bution in the VQA performance. To eliminate the impact

of using different tags q, we use the same tags in the VQA

models of OSCAR [20]. All the ablation experiments are

conducted using models of the BERT-base size.

How much do the V and VL matter to the SoTA? Ta-

ble 12 shows the VQA results with different vision mod-

els, i.e., R101-C4 model from [2] and our X152-C4 model

pre-trained with 4 datasets (VinVL), and with different VLP

methods, i.e., no VLP, OSCAR [20] and our OSCAR+. Tak-

ing the OSCARB model with R101-C4 features as the base-

line, the OSCAR+B model with our X152-C4 features im-

proves the absolute accuracy from 72.38 to 74.90, in which

the OSCAR+ pre-training contributes 5% of the gain (i.e.,

72.38 → 72.46) and the vision pre-training (improved vi-

sual features) 95% (i.e., 72.46 → 74.90). This demon-

strates that vision representations matter significantly in

VLP and downstream tasks.

Taking the “no VLP” model with R101-C4 features

as the baseline, Table 12 shows that the gains of VinVL

(71.34 − 68.52 = 2.82) and VLP (72.46 − 68.52 = 3.94)

are additive (74.90 − 68.52 ≈ 2.82 + 3.94). This is intu-

itive because vision pre-training and VLP improve the Vi-

data

model
R50-FPN R50-C4 R101-C4 [2] X152-C4

VG 67.35±0.26 67.86±0.31 68.52 ±0.11 69.10±0.06

4Sets→VG 68.3±0.11 68.39±0.16 – 71.34 ±0.17

Table 13: Ablation of model size and data size on training

vision models.

Model R50-FPN R50-C4 X152-C4

Pre-training dataset ImageNet 4Sets ImageNet 4Sets ImageNet5k 4Sets

COCO mAP 40.2 [39] 44.78* 38.4 [39] 42.4 42.17 50.51

VG obj mAP 50

attr mAP with gt boxes
9.6
5.4

11.3
5.5

9.6
6.3

12.1
6.1

11.2
6.6

13.8
7.1

* Since our four pre-training datasets contain Objects365, it is not surprising that we obtain

better results than 42.3 mAP 50 in [30], which is obtained by pre-training on Objects365.

Table 14: Effect of vision pre-training on object detection

tasks.

sion model Vision(Img) and VL model VL(w, q,v) sep-

arately. This also indicates that our pre-trained vision model

can be utilized in any VL models by directly replacing their

vision models, such as R101-C4 [2], with ours.

How much do data and model sizes matter to the new vi-

sion model? The improvement of VQA from R101-C4 [2]

to VinVL (ours) in Table 12 is a compound effect of increas-

ing model size (from R101-C4 to X152-C4) and data size

(from VG to our merged four OD datasets). Table 13 shows

the ablation of the two factors without VLP. Although VG’s

large object and attribute vocabulary allows to learn rich se-

mantic concepts, VG does not contain large amounts of an-

notations for effective training of deep models. Vision mod-

els trained using the merged four OD datasets perform much

better than VG-only-trained models, and the improvement

is larger with the increase of the model size.13

How much does OD model architecture matter? The

choice of model architecture affects the VQA performance.

Table 13 shows that R50-FPN under-performs R50-C5

when they are trained only on VG; but the performance

gap diminishes when both are trained on the merged dataset

(4Sets). A detailed comparison between FPN and C4 archi-

tectures is presented in Appendix E.

How much does OD pre-training matter for object de-

tection tasks? Table 14 presents the object detection re-

sults on COCO and the object-attribute detection results on

VG (1594 object classes, 524 attribute classes). The re-

sults show that OD pre-training benefits the object detection

tasks. Note that the mAP on VG is much lower than that on

13The R101-C4 model in Table 13 is exactly the VG-pre-pretrained

model from [2]. We do not train this model on our merged OD dataset

because this model architecture is old-fashioned and is slow to train.
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Dataset name ImageNet VG-obj VG w/o attr VG [2] VG 4Sets→VG

#obj & #attr 1000 & 0 317 & 0 1594 & 0 1600 & 400 1594 & 524 1848 & 524

R50-C4 + BERTB 66.13±0.04 64.25±0.16 66.51±0.11 67.63±0.25 67.86±0.31 68.39±0.16

Table 15: Effect of object-attribute vocabulary. We use all grid features (maximal 273) for the ImageNet classification model

(first column), and maximal 50 region features for OD models (other columns).

typical OD datasets (such as COCO) due to two reasons: (1)

VG contains a large number of object classes with limited

and extremely unbalanced annotations, (2) there are many

missing annotations in the VG evaluation data.14 Although

the mAP numbers are low, the detection result using X152-

C4 is reasonably good; see Appendix A for visualizations.

We also see that FPN models perform consistently worse in

attribute detection than C4 models, neither do FPN models

show any advantage in object detection on VG. This con-

tributes to the inferior performance of FPN, compared to

C4, on downstream VL tasks, as discussed in Section 2.1.

How much does the diversity of visual concepts, i.e.,

object and attribute vocabularies, matter? We directly

train vision models on different datasets, including (1) stan-

dard ImageNet with 1K classes (ImageNet), (2) Visual

Genome with 317 object classes (VG-obj) that are shared

with COCO 80 classes and OpenImagesV5 500 classes, (3)

VG with all 1594 object classes (VG w/o attr), (4) VG with

1594 object classes and 524 attribute classes (VG), and (5)

the merged OD dataset (4Sets) for pre-training and VG for

fine-tuning. For all the OD models (the last four columns in

Table 15), we initialize the OD training with an ImageNet-

pre-trained classification model, and use maximal 50 region

features per image as input to the VL fusion module. For

the ImageNet pre-trained classification model (the second

column in Table 15), we use all the grid features (maximal

273) for each image. The results show that

• In general, vocabularies with richer objects lead to bet-

ter VQA results: VG-obj < ImageNet < VG w/o attr.

The VG-obj vocabulary contains 79 of 80 COCO classes

(only missing potted plant) and 313 of 500 Open-

ImagesV5 classes, and is a good approximation of com-

mon object classes of typical OD tasks. However, our

results show that this vocabulary is not rich enough for

VL tasks because it misses many important visual con-

cepts (e.g., sky, water, mountain, etc.) which are

crucial for VL tasks, as also illustrated by the comparison

of detected regions in Figure 1. 15.

• Attribute information is crucial to VL tasks: models

14As a reference, the R101-C4 model from [2] on VG with 1600 objects

and 400 attributes has mAP of 8.7/7.8 evaluated in our code, whereas it

was reported as 10.2/7.8 due to differences in OD evaluation pipeline.
15Using the same training procedure on VG, we trained an R50-C4

model on the OpenImagesV5 dataset (500 classes). Using the region fea-

tures produced by this model, the VQA performance is 63.55±0.14. The

result is slightly worse than that of VG-obj because both VG and VQA

images are from the COCO dataset but OpenImages images are not.

trained with attributes (VG and 4Sets→VG) are signifi-

cantly better than those without attributes.

• Even for the small vision model R50-C4, vision

pre-training improves visual features for VQA, i.e.,

4Sets→VG is the best performer.

In Table 16, we use different kinds of region propos-

als to extract image features. COCO groundtruth object

regions (GT-Obj, 80 classes) and object-stuff regions (GT-

Obj&Stuff, 171 classes) are perfect in terms of localization,

but their vocabulary sizes are limited. Regions proposed by

VG-trained models ([2] and VinVL) are imperfect in local-

ization but using a larger vocabulary. For the VQA task,

COCO GT boxes are much worse than the proposals gen-

erated by VG-trained models. The result demonstrates the

difference between the typical OD tasks and the OD tasks

in VL: OD in VL requires much richer visual semantics to

align with the rich semantics in the language modality. This

further echoes our claim that an image understanding mod-

ule trained using richer vocabularies performs better for VL

tasks.

model

region
GT-Obj GT-Obj&Stuff

Anderson
et al. [2] VinVL (ours)

Anderson
et al. [2] 63.81 ±0.94 66.68 ±0.16 68.52 ±0.11 69.05 ±0.06

VinVL (ours) 65.60 ±0.21 68.13 ±0.26 70.25 ±0.05 71.34 ±0.17

Table 16: Effect of different region proposals on VQA.

5. Conclusion

In this paper we have presented a new recipe to pre-train

an OD model for VL tasks. Compared to the most widely

used bottom-up and top-down model [2], the new model

is bigger, better-designed for VL tasks, and pre-trained on

much larger text-image corpora, and thus can generate vi-

sual features for a richer collection of visual objects and

concepts that are crucial for VL tasks. We validate the

new model via a comprehensive empirical study where we

feed the visual features to a VL fusion model which is pre-

trained on a large-scale paired text-image corpus and then

fine-tuned on seven VL tasks. Our results show that the

new OD model can substantially uplift the SoTA results

on all seven VL tasks across multiple public benchmarks.

Our ablation study shows that the improvement is mainly

attributed to our design choices regarding diversity of ob-

ject categories, visual attribute training, training data scale,

model size, and model architecture.
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