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Figure 1: We represent the body in motion with a set of 3D markers on the body surface. Given a time sequence of markers

from the past (white), MOJO predicts diverse marker sequences in the future (orange) with 3D bodies they represent (gray).

Abstract

A key step towards understanding human behavior is the

prediction of 3D human motion. Successful solutions have

many applications in human tracking, HCI, and graphics.

Most previous work focuses on predicting a time series of

future 3D joint locations given a sequence 3D joints from

the past. This Euclidean formulation generally works bet-

ter than predicting pose in terms of joint rotations. Body

joint locations, however, do not fully constrain 3D human

pose, leaving degrees of freedom (like rotation about a

limb) undefined. Note that 3D joints can be viewed as a

sparse point cloud. Thus the problem of human motion

prediction can be seen as a problem of point cloud pre-

diction. With this observation, we instead predict a sparse

set of locations on the body surface that correspond to mo-

tion capture markers. Given such markers, we fit a para-

metric body model to recover the 3D body of the person.

These sparse surface markers also carry detailed informa-

tion about human movement that is not present in the joints,

increasing the naturalness of the predicted motions. Us-

ing the AMASS dataset, we train MOJO (More than Our

JOints), which is a novel variational autoencoder with a la-

tent DCT space that generates motions from latent frequen-

cies. MOJO preserves the full temporal resolution of the

input motion, and sampling from the latent frequencies ex-

plicitly introduces high-frequency components into the gen-

erated motion. We note that motion prediction methods ac-

cumulate errors over time, resulting in joints or markers

that diverge from true human bodies. To address this, we

fit the SMPL-X body model to the predictions at each time

step, projecting the solution back onto the space of valid

bodies, before propagating the new markers in time. Quan-

titative and qualitative experiments show that our approach

produces state-of-the-art results and realistic 3D body an-

imations. The code is available for research purposes at

https://yz-cnsdqz.github.io/MOJO/MOJO.html.

1. Introduction

Human motion prediction has been extensively studied

as a way to understand and model human behavior. Pro-

vided the recent past motion of a person, the goal is to pre-

dict either a deterministic or diverse set of plausible motions

in the near future. While useful for animation, AR, and

VR, predicting human movement is much more valuable be-
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cause it means we have a model of how people move. Such

a model is useful for applications in sports [59], pedestrian

tracking [46], smart user interfaces [53], robotics [31] and

more. While this is a variant of the well-studied time-series

prediction problem, most existing methods are still not able

to produce realistic 3D body motion.

To address the gap in realism, we make several novel

contributions but start with a few observations. First, most

existing methods for 3D motion prediction treat the body as

a skeleton and predict a small set of 3D joints. While some

methods represent the skeleton in terms of joint angles, the

most accurate methods simply predict the 3D joint locations

in Euclidean space. Second, given a sparse set of joint loca-

tions, animating a full 3D body is ambiguous because im-

portant degrees of freedom are not modeled, e.g. rotation

about limb axes. Third, most papers show qualitative re-

sults by rendering skeletons and these often look fine to the

human eye. We show, however, that, as time progresses,

the skeletons can become less and less human in proportion

so that, at the end of the sequence, the skeleton rarely corre-

sponds to a valid human body. Fourth, the joints of the body

cannot capture the nuanced details of how the surface of the

body moves, limiting realism of any resulting animation.

We address these issues with a solution, called MOJO

(More than Our JOints) the predicts realistic 3D body mo-

tion. MOJO incorporates a novel representation of the body

in motion, a novel motion generative network, and a novel

scheme for 3D body mesh recovery.

First, the set of 3D joints predicted by existing methods

can be viewed as a sparse point cloud. In this light, existing

human motion prediction methods preform point cloud pre-

diction. Thus, we are free to choose a different point cloud

that better satisfies the ultimate goal of animating bodies.

Specifically, we model the body with a sparse set of sur-

face markers corresponding to those used in motion capture

(mocap) systems. We simply swap one type of sparse point

cloud for another, but, as we will show, predicting surface

markers has key advantages. For example, there exist meth-

ods to fit a SMPL body model [33] to such makers, produc-

ing realistic animations [32, 34]. Consequently this shift

to predicting makers enables us to (1) leverage a powerful

statistical body shape model to improve results, (2) imme-

diately gives us realistic animations, (3) provides an output

representation that can be used in many applications.

Second, to model fine-grained and high-frequency in-

teractions between markers, we design a conditional vari-

ational autoencoder (CVAE) with a latent cosine space. It

not only performs stochastic motion prediction, but also im-

proves motion realism by incorporating high-frequency mo-

tion details. Compared to most existing methods that en-

code motion with a single vector (e.g. the last hidden state

of an RNN), our model preserves full temporal resolution of

the sequence, and decomposes motion into independent fre-

quency bands in the latent space via a discrete cosine trans-

form (DCT). Based on the energy compaction property of

the DCT [3, 44]1, we train our CVAE with a robust Kull-

back–Leibler divergence (KLD) term [60], creating an im-

plicit latent prior that carries most of the information at low

frequency bands. To sample from this implicit latent prior,

we employ diversifying latent flows (DLows) [56] in low-

frequency bands to produce informative features, and from

the standard normal distribution in high-frequency bands to

produce white noise. Pieces of information from various

frequencies are then fused to compose the output motion.

Third, in the inference phase, we propose a recursive pro-

jection scheme supported by our marker-based representa-

tion, in order to retain natural body shape and pose through-

out the sequence. We regard the valid body space as a low-

dimensional manifold in the Euclidean space of markers.

When the CVAE decoder makes a prediction step, the pre-

dicted markers tend to leave this manifold because of error

accumulation. Therefore, after each step we project the pre-

dicted markers back to the valid body manifold, by fitting

an expressive SMPL-X [40] body mesh to the markers. On

the fitted body, we know the true marker locations and pass

these to the next stage of the RNN, effectively denoising the

markers at each time instant. Besides keeping the solution

valid, the recursive projection scheme directly yields body

model parameters and hence realistic body meshes.

We exploit the AMASS [34] dataset for evaluation, as

well as Human3.6M [25] and HumanEva-I [47] to com-

pare our methods with the state-of-the-art in stochastic mo-

tion prediction. We show that our models with the latent

DCT space outperform the state-of-the-art, and that the re-

cursive projection scheme effectively eliminates unrealistic

body deformation. We also evaluate realism of the gener-

ated motion with a foot skating measure and a perceptual

study. Finally, we compare different body representations,

in particular our solution with a traditional pipeline, which

first predicts 3D joints and then fits a body to the joints.

We find that they are comparable w.r.t. prediction diversity

and accuracy, but the traditional pipeline can produce in-

valid body shapes.

Contributions. In summary, our contributions are: (1) We

propose a marker-based representation for bodies in mo-

tion, which provides more constraints than the body skele-

ton and hence benefits 3D body recovery. (2) We design

a new CVAE with a latent DCT space to improve motion

modelling. (3) We propose a recursive projection scheme to

preserve valid bodies at test time.

2. Related Work

Deterministic human motion prediction. Given an in-

put human motion sequence, the goal is to forecast a de-

1Most information will be concentrated at low frequency bands.
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terministic future motion, which is expected to be close

to the ground truth. This task has been extensively stud-

ied [5, 6, 10, 13, 15, 16, 17, 18, 28, 29, 35, 36, 41, 42, 48,

50, 62]. Martinez et al. [36] propose an RNN with resid-

ual connections linking the input and the output, and design

a sampling-based loss to compensate for prediction errors

during training. Cai et al. [10] and Mao et al. [35] use the

discrete cosine transform (DCT) to convert the motion into

the frequency domain. Then Mao et al. [35] employ graph

convolutions to process the frequency components, whereas

Cai et al. [10] use a transformer-based architecture.

Stochastic 3D human motion prediction. In contrast

to deterministic motion prediction, stochastic motion pre-

diction produces diverse plausible future motions, given a

single motion from the past [7, 8, 14, 19, 30, 49, 55, 56, 60].

Yan et al. [55] propose a motion transformation VAE to

jointly learn the motion mode feature and transition be-

tween motion modes. Barsoum et al. [7] propose a proba-

bilistic sequence-to-sequence model, which is trained with a

Wasserstein generative adversarial network. Bhattacharyya

et al. [8] design a ‘best-of-many’ sampling objective to

boost the performance of conditional VAEs. Gurumurthy et

al. [19] propose a GAN-based network and parameterize the

latent generative space as a mixture model. Yuan et al. [56]

propose diversifying latent flows (DLow) to exploit the la-

tent space of an RNN-based VAE, which generates highly

diverse but accurate future motions.

Frequency-based motion analysis. Earlier studies like

[38, 43] adopt a Fourier transform for motion synthesis and

tracking. Akhter et al. [4] propose a linear basis model

for spatiotemporal motion regularization, and discover that

the optimal PCA basis of a large set of facial motion con-

verges to the DCT basis. Huang et al. [24] employ low-

frequency DCT bands to regularize motion of body meshes

recovered from 2D body joints and silhouettes. The studies

of [10, 35, 50] use deep neural networks to process DCT fre-

quency components for motion prediction. Yumer et al. [58]

and Holden et al. [23] handle human motions in the Fourier

domain to conduct motion style transfer.

Representing human bodies in motion. 3D joint loca-

tions are widely used, e.g. [29, 36, 56]. To improve predic-

tion accuracy, Mao et al. [35], Cui et al. [13], Li et al. [29]

and others use a graph to capture interaction between joints.

Askan et al. [6] propose a structured network layer to repre-

sent the body joints according to a kinematic tree. Despite

their effectiveness, the skeletal bone lengths can vary dur-

ing motion. To alleviate this issue, Hernandez et al. [22]

use a training loss to penalize bone length variations. Gui

et al. [17] design a geodesic loss and two discriminators

to keep the predicted motion human-like over time. To re-

move the influence of body shape, Pavllo et al. [41, 42] use

quaternion-based joint rotations to represent the body pose.

When predicting the global motion, a walking path is first

produced and the pose sequence is then generated. Zhang

et al. [60] represent the body in motion by the 3D global

translation and the joint rotations following the SMPL kine-

matic tree [33]. When animating a body mesh, a constant

body shape is added during testing. Although a constant

body shape is preserved, foot skating frequently occurs due

to the inconsistent relation between the body pose, the body

shape and the global translation.

MOJO in context. Our solution not only improves

stochastic motion prediction over the state-of-the-art, but

also directly produces diverse future motions of realistic 3D

bodies. Specifically, our latent DCT space represents mo-

tion with different frequencies, rather than a single vector

in the latent space. We find that generating motions from

different frequency bands significantly improves diversity

while retaining accuracy. Additionally, compared to previ-

ous skeleton-based body representations, we propose to use

markers on the body surface to provide more constraints on

the body shape and DoFs. This marker-based representation

enables us to design an efficient recursive projection scheme

by fitting SMPL-X [40] at each prediction step. Recently,

in the context of autonomous driving, Weng et al. [51, 52]

forecast future LiDAR point clouds and then detect-and-

track 3D objects in the predicted clouds. While this has

similarities to MOJO, they do not address articulated hu-

man movements.

3. Method

3.1. Preliminaries

SMPL-X body mesh model [40]. Given a compact set of

body parameters, SMPL-X produces a realistic body mesh

including face and hand details. In our work, the body pa-

rameter set Θ includes the global translation t ∈ R
3, the

global orientation R ∈ R
6 w.r.t. the continuous repre-

sentation [61], the body shape β ∈ R
10, the body pose

θ ∈ R
32 in the VPoser latent space [40], and the hand pose

θh ∈ R
24 in the MANO [45] PCA space. We denote a

SMPL-X mesh as M(Θ), which has a fixed topology with

10,475 vertices. MOJO is implemented using SMPL-X in

our work, but any other parametric 3D body model could be

used, e.g. [39, 54].

Diversifying latent flows (DLow) [56]. The entire DLow

method comprises a CVAE to predict future motions, and

a network Q that takes the condition sequence as input and

transforms a sample ε ∼ N (0, I) to K diverse places in

the latent space. To train the CVAE, the loss consists of a

frame-wise reconstruction term, a term to penalize the dif-

ference between the last input frame and the first predicted

frame, and a KLD term. Training the network Q requires a

pre-trained CVAE decoder, their training loss encourages

diverse generated motion samples in which, at least one

sample is close to the ground truth motion.
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Figure 2: Illustration of our CVAE architecture. The red

arrows denote sampling from the inference posterior. The

circles with ‘c’ and ‘+’ denote feature concatenation and

addition, respectively. The blocks with ‘fc’ denote a stack

of fully-connected layers.

3.2. Human Motion Representation

Most existing methods use 3D joint locations or rotations

to represent the body in motion. This results in ambiguities

in recovering the full shape and pose [9, 40]. To obtain

more constraints on the body, while preserving efficiency,

we represent bodies in motion with markers on the body

surface. Inspired by modern mocap systems, we follow the

marker placements of either the CMU mocap dataset [1] or

the SSM2 dataset [34], and select V vertices on the SMPL-

X body mesh, which are illustrated in the Appendix.

The 3D markers are simply points in Euclidean space.

Compared to representing the body with the global transla-

tion and the local pose, like in [42, 60], such a location-

based representation naturally couples the global body

translation and the local pose variation, and hence is less

prone to motion artifacts like foot skating, which are caused

by the mismatch between the global movement, the pose

variation, and the body shape.

Therefore, in each frame the body is represented by a

V-dimensional feature vector, i.e. the concatenation of the

3D locations of the markers, and the motion is represented

by a time sequence of such vectors. We denote the in-

put sequence to the model as X := {xt}
M
t=0, and a pre-

dicted future sequence from the model as Y := {yt}
N
t=0,

where y0 = xM+1. With fitting algorithms like MoSh and

MoSh++ [32, 34], it is much easier to recover 3D bodies

from markers than from joints.

3.3. Motion Generator with Latent Frequencies

For a real human body, the motion granularity usually

corresponds to the motion frequency because of the un-

derlying locomotor system. For example, the frequency of

waving hands is usually much higher than the frequency of a

jogging gait. Therefore, we design a network with multiple

frequency bands in the latent space, so as to better repre-

sent interactions between markers on the body surface and

to model motions at different granularity levels.

Architectures. Our model is visualized in Fig. 2, which is

designed according to the CVAE in the DLow method [56].

The encoder with a GRU [12] preserves full temporal reso-

lution of the input. Then, the motion information is decom-

posed onto multiple frequency bands via DCT. At individual

frequency bands, we use the re-parameterization trick [26]

to introduce randomness, and then use inverse DCT to con-

vert the motion back to the temporal domain. To improve

temporal smoothness and eliminate the first-frame jump re-

ported in [36], we use residual connections at the output.

We note that the CVAE in the DLow method, which does

not have residual connections but has a loss to penalize the

jump artifact, does not produce smooth and realistic marker

motions. A visualization of this latent DCT space is shown

in the Appendix.

Training with robust Kullback-Leibler divergence. Our

training loss comprises three terms for frame-wise recon-

struction, frame-wise velocity reconstruction, and latent

distribution regularization, respectively;

L = EY [|Y − Y rec|] + αEY [|∆ Y −∆ Y rec|]

+Ψ (KLD(q(Z|X,Y )||N (0, I)))) ,
(1)

where the operation ∆ computes the time difference, q(·|·)
denotes the inference posterior (the encoder), Z denotes the

latent frequency components, and α is a loss weight. We

find the velocity reconstruction term can further improve

temporal smoothness.

Noticeably, our distribution regularization term is given

by the robust KLD [60] with Ψ(s) =
√
1 + s2 − 1 [11],

which defines an implicit latent prior different from the

standard normal distribution. During optimization, the gra-

dients to update the entire KLD term become smaller when

the divergence from N (0, I) becomes smaller. Thus, it

expects the inference posterior to carry information, and

prevents posterior collapse. More importantly, this term

is highly suitable for our latent DCT space. According to

the energy compaction property of DCT [3, 44], we expect

that the latent prior deviates from N (0, I) at low-frequency

bands to carry information, but equals N (0, I) at high-

frequency bands to produce white noise. We let this robust

KLD term determine which frequency bands to carry infor-

mation automatically.

Sampling from the latent DCT space. Since our latent

prior is implicit, sampling from the latent space is not as

straightforward as sampling from the standard normal dis-

tribution, like for most VAEs. Due to the DCT nature,

we are aware that motion information is concentrated at

low-frequency bands, and hence we directly explore these

informative low-frequency bands using the network Q in

DLow [56].

Specifically, we use {Qw}
L
w=1 to sample from the lowest

L frequency bands, and sample from N (0, I) from L + 1
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K different sequences. Qw denotes the network to produce
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red arrows denote the sampling operation.
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Figure 4: Illustration of our prediction scheme with projec-

tion. The notation has the same meaning as before.

to the highest frequency bands. Since the cosine basis is or-

thogonal and individual frequency bands carry independent

information, these L DLow models do not share parame-

ters, but are jointly trained with the same losses as in [56],

as well as the decoder of our CVAE with the latent DCT

space. Our sampling approach is illustrated in Fig. 3. The

influence of the threshold L is investigated in Sec. 4 and in

the Appendix.

3.4. Recursive Projection to the Valid Body Space

Our generative model produces diverse motions in terms

of marker location variations. Due to RNN error accu-

mulation, predicted markers can gradually deviate from a

valid 3D body, resulting in, e.g., flattened heads and twisted

torsos. Existing methods with new losses or discrimina-

tors [17, 22, 27] can alleviate this problem, but may unpre-

dictably fail due to the train-test domain gap.

Instead, we exploit the fact that valid bodies lie on a low-

dimensional manifold in the Euclidean space of markers.

Whenever the RNN performs a prediction step, the solution

tends to leave this manifold. Therefore, at each prediction

step, we project the predicted markers back to that manifold,

by fitting a SMPL-X body mesh to the predicted markers.

Since markers provide rich body constraints, and we start

close to the solution, the fitting process is efficiently. Our

recursive projection scheme is illustrated in Fig. 4. Note that

we only apply recursive projection at the inference stage.

Following the work of MoSh [32] and MoSh++ [34], the

fitting is optimization-based, and consists of three stages:

(1) optimizing the global configurations t and R, (2) ad-

ditionally optimizing the body pose θ, and (3) additionally

optimizing the hand pose θh. At each time t, we use the

previous fitted result to initialize the current optimization

process, so that the optimum can be reached with a small

number of iterations. The loss of our optimization-based

fitting at time t is given by

Lf (Θt) := |VM(Θt) − y
pred
t |2 + λ1|θt|

2 + λ2|θ
h
t |

2, (2)

in which λs are the loss weights, V denotes the correspond-

ing markers on the SMPL-X body mesh, and y
pred
t denotes

the markers predicted by the CVAE decoder. The recursive

projection uses the body shape from the input sequence, and

runs at 2.27sec/frame on average in our trials, which is com-

parable to the pose stage of MoSh++. From our recursive

projection scheme, we not only obtain regularized markers,

but also realistic 3D bodies as well as their characteristic

parameters.

4. Experiment

MOJO has several components that we evaluate. First,

to test the effectiveness of the MOJO CVAE architecture,

in particular the benefits of the latent DCT spcae, we eval-

uate stochastic motion prediction in Sec. 4.3. Second, to

test the effectiveness of MOJO with recursive projection,

we evaluate the performance of MOJO w.r.t. realism of 3D

body movements in Sec. 4.4. Finally, to test the advantage

of the marker-based representation, we systematically com-

pare different body representations in Sec. 4.5. We find that

MOJO produces diverse realistic 3D body motions and out-

performs the state-of-the-art.

4.1. Datasets

For training, we use the AMASS [34] dataset. Specif-

ically, we train the models on CMU [1] and MPI

HDM05 [37], and test models on ACCAD [2] and BML-

handball [21, 20]. This gives 696.1 minutes of training

motion from 110 subjects and 128.72 minutes of test mo-

tion from 30 subjects. The test sequences include a wide

range of actions. To unify the sequence length and world

coordinates, we canonicalize AMASS sequences as a pre-

processing step. Details are in the Appendix.

To compare our method with SOTA stochastic mo-

tion prediction methods, we additionally perform skeleton-

based motion prediction on the Human3.6M dataset [25]

and the HumanEva-I dataset [47], following the experi-

mental setting of Yuan et al. [56].

4.2. Baselines

MOJO predicts surface markers, and has several com-

ponents. Unless mentioned, we use the CMU layout with

41 markers. ‘MOJO-DCT’ is the model without DCT, but
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with the same latent space as the CVAE in DLow. ‘MOJO-

proj’ is the model without recursive projection. Note that

the suffixes can be concatenated; e.g. ‘MOJO-DCT-proj’ is

the model without the latent DCT space and without the re-

cursive projection scheme.

4.3. Evaluation of Stochastic Motion Prediction

4.3.1 Metrics

Diversity. We use the same diversity measure as [56],

which is the average pair-wise distance between all gener-

ated sequences.

Prediction accuracy. As in [56], we use the average dis-

tance error (ADE) and the final distance error (FDE) to

measure the minimum distance between the generated mo-

tion and the ground truth, w.r.t. frame-wise difference and

the final frame difference, respectively. Additionally, we

use MMADE and MMFED to evaluate prediction accuracy

when the input sequence slightly changes; see Appendix.

Motion Frequency. Similar to [22], we compute the fre-

quency spectra entropy (FSE) to measure motion frequency

in the Fourier domain, which is given by the averaged spec-

tra entropy minus the ground truth. A higher value indicates

the generated motions contain more motion detail. Note that

high frequency can also indicate noise, and hence this met-

ric is jointly considered with the prediction accuracy.

4.3.2 Results

We generate 50 different future sequences based on each

input sequence, as in [56]. Here we focus only on evalu-

ating performance on motion prediction, and hence do not

incorporate the body re-projection scheme. The results are

shown in Tab. 1, in which we employ DLow on the 20%

(i.e. the first 9) lowest frequency bands in ‘MOJO-proj’.

We find that DCT consistently leads to better performance.

Noticeably, higher motion frequency indicates that the gen-

erated motions contain more details, and hence are more

realistic.

To further investigate the benefits of our latent DCT

space, we add the latent DCT space into the DLow CVAE

model [56] and train it with the robust KLD term. For sam-

pling, we apply a set of DLow models {Qw} on the lowest

L bands, as in Sec. 3.3. We denote this modified model as

‘VAE+DCT+L’. Absence of the suffix ‘+L’ indicates sam-

pling from N (0, I) in all frequency bands.

A comparison with existing methods is shown in Tab. 2.

Overall, our latent DCT space effectively improves on the

state-of-the-art. The diversity is improved by a large mar-

gin, while the prediction accuracies are comparable to the

baseline. The performance w.r.t. MMADE and MMFDE is

slightly inferior. A probable reason is VAE+DCT uses high-

frequency components to generate motions, which makes

motion prediction sensitive to slight changes of the input.

Moreover, by comparing ‘VAE+DCT’ and ‘VAE+DCT+L’,

we can see that sampling from N (0, I) yields much worse

results. This indicates that sampling from the standard nor-

mal distribution, which treats all frequency bands equally,

cannot effectively exploit the advantage of the latent DCT

space. Note that most information is in the low-frequency

bands (see Appendix), and hence our proposed sampling

method utilizes the latent frequency space in a more rea-

sonable way and produces better results.

4.4. Evaluation of Motion Realism

4.4.1 Metrics

The motion prediction metrics cannot indicate whether a

motion is realistic or not. Here, we employ MOJO with re-

cursive projection to obtain 3D body meshes, and evaluate

the body deformation, foot skating, and perceptual quality.

Body deformation. Body shape can be described by the

pairwise distances between markers. As a body moves,

there is natural variation in these distances. Large varia-

tions, however, indicate a deformed body that no longer cor-

responds to any real person. We use variations in pairwise

marker distances for the head, upper torso, and lower torso

as a measure of how distorted the predicted body is. See

Appendix for the metric details.

Foot skating ratio. Foot skating is measured based on the

two markers on the lef and right foot calcaneus (‘LHEE’

and ‘RHEE’ in CMU [1]). We consider foot skating to

have occurred, when both foot markers are close enough to

the ground (within 5cm) and simultaneously exceed a speed

limit (5mm between two consecutive frames or 75mm/s).

We report the averaged ratio of frames with foot skating.

Perceptual score. We render the generated body meshes as

well as the ground truth, and perform a perceptual study on

Amazon Mechanical Turk. Subjects see a motion sequence

and the statement “The human motion is natural and real-

istic.” They evaluate this on a six-point Likert scale from

‘strongly disagree‘ (1) to ‘strongly agree’ (6). Each individ-

ual video is rated by three subjects. We report mean values

and standard deviations for each method and each dataset.

4.4.2 Results

We randomly choose 60 different sequences from ACCAD

and BMLhandball, respectively. Based on each sequence,

we generate 15 future sequences. Figure 5 shows some gen-

erated 3D body motions. The motions generated by MOJO

contain finer-grained body movements.

Body deformation. The results are shown in Tab. 3. With

the recursive projection scheme, the body shape is pre-

served by construction and is close to the ground truth.

Without the projection scheme, the shape of body parts can
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ACCAD [2] BMLHandball [21, 20]

Method Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ FSE↑ Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ FSE↑

MOJO-DCT-proj 25.349 1.991 3.216 2.059 3.254 0.4 21.504 1.608 1.914 1.628 1.919 0.0

MOJO-proj 28.886 1.993 3.141 2.042 3.202 1.2 23.660 1.528 1.848 1.550 1.847 0.4

Table 1: Comparison between generative models for predicting marker-based motions. The symbol ↓ (or ↑) denotes whether

results that are lower (or higher) are better, respectively. Best results of each model are in boldface. The FSE scores are on

the scale of 10−3.

Human3.6M [25] HumanEva-I [47]

Method Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

Pose-Knows [49] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375

MT-VAE [55] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577

HP-GAN [7] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769

Best-of-Many [8] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351

GMVAE [14] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410

DeLiGAN [19] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371

DSF [57] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340

DLow [56] 11.730 0.425 0.518 0.495 0.532 4.849 0.246 0.265 0.360 0.340

VAE+DCT 3.462 0.429 0.545 0.525 0.581 0.966 0.249 0.296 0.412 0.445

VAE+DCT+5 12.579 0.412 0.514 0.497 0.538 4.181 0.234 0.244 0.369 0.347

VAE+DCT+20 15.920 0.416 0.522 0.502 0.546 6.266 0.239 0.253 0.371 0.345

Table 2: Comparison between a baseline with our latent DCT space and the state-of-the-art. Best results are in boldface.

Figure 5: Visualization of 3D body motions. Bodies in

gray-green and red denote the input and the generated mo-

tion, respectively. The solid and dash image borders denote

the results from MOJO-DCT and MOJO, respectively.

ACCAD [2] BMLHandball [21, 20]

Method Head Up. T. Low. T. Head Up. T. Low. T.

MOJO-DCT-proj 76.3 102.2 99.4 86.0 105.3 83.3

MOJO-proj 70.3 80.7 76.7 68.3 77.7 63.2

MOJO-DCT 1.32 34.0 6.97 1.32 43.1 6.97

MOJO 1.30 32.7 6.76 1.40 44.3 7.64

Ground truth 2.17 36.4 9.78 2.52 59.1 12.5

Table 3: Deformations of body parts (head, Upper Torso,

Lower Torso). Scores are in millimeter. High values indi-

cate distorted bodies.

ACCAD [2] BMLHandball [21, 20]

Method foot skate percep. score foot skate percep. score

MOJO-DCT 0.341 4.15±1.38 0.077 4.00±1.26

MOJO 0.278 4.07±1.31 0.066 4.17±1.23

Ground truth 0.067 4.82±1.08 0.002 4.83±1.05

Table 4: Comparison between methods w.r.t. foot skating

and the perceptual score, which is given by mean±std. Best

results are in boldface.

drift significantly from the true shape, indicated here by

high deformation numbers. MOJO is close to the ground

truth but exhibits less deformation suggesting that some nu-

ance is smoothed out by the VAE.

Foot skating and perceptual score. The results are pre-

sented in Tab. 4. The model with DCT produces fewer

foot skating artifacts, indicating that high-frequency com-

ponents in the DCT space can better model the foot move-

ments. In the perceptual study, MOJO performs slightly

worse than MOJO-DCT on ACCAD, but outperforms it on

BMLhandball. A probable reason is that most actions in

ACCAD are coarse-grained, whereas most actions in BML-

handball are fine-grained. The advantage of modelling

finer-grained motion of the DCT latent space is more easily

perceived in BMLhandball.

4.5. Comparison between Body Representations

The body in motion can be represented by locations of

joints, markers with different placements, and their com-

binations. Here we perform a systematic comparison be-

tween them. For the joint-based representation, we use the
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ACCAD [2] BMLHandball [21, 20]

Method Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ BDF↓ Diversity↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ BDF↓

joints w/o proj. 21.363 1.184 2.010 1.291 2.067 0.185 19.091 0.930 1.132 1.000 1.156 0.205

joints 21.106 1.192 2.022 1.299 2.076 0 18.954 0.934 1.138 1.003 1.157 0

CMU 41 20.676 1.214 1.919 1.306 2.080 0 16.806 0.949 1.139 1.001 1.172 0

SSM2 67 24.373 1.124 1.699 1.227 1.838 0 18.778 0.924 1.099 0.975 1.149 0

joints + CMU 41 20.988 1.187 1.841 1.308 1.967 0 13.982 0.943 1.190 0.990 1.194 0

joints + SSM2 67 23.504 1.166 1.892 1.276 1.953 0 16.483 0.950 1.146 0.999 1.189 0

Table 5: Comparison between marker-based and joint-based representations. Evaluations are based on the joint locations.

BDF denotes the bone deformation w.r.t. meter. The best results are in boldface.

SMPL [33] joint locations from CMU and MPI HDM05 to

train a CVAE as in MOJO. A traditional pipeline is to first

predict all joints in the future, and then fit the body mesh.

Here we also test the performance when applying the re-

cursive body re-projection scheme based on joints. For fair

quantitative evaluation, the metrics are calculated based on

the joints of the fitted body meshes. We re-calculate the di-

versity, the prediction accuracy metrics, and the eight limb

bone deformation (BDF) (according to Eq. (6) in Appendix)

w.r.t. the joint locations.

We randomly choose 60 sequences from each test set and

generate 50 future motions based on each sequence. Re-

sults are presented in Tab. 5. The first two rows show that

the motion naturalness is improved by the recursive pro-

jection, which eliminates the bone deformation. Although

the result without projection is slightly better on other mea-

sures, the projection scheme completely removes bone de-

formation and does not produce false poses as in Fig. 6.

Additionally, using more markers (SSM2 placement with

67 markers) significantly improves performance across the

board. This shows that the marker distribution is impor-

tant for motion prediction and that more markers is better.

While MOJO works with markers, joints, or the combina-

tion of both, the combination of joints and markers does not

produce better performance. Note that the joints are never

directly observed, but rather are inferred from the markers

by commercial mocap systems. Hence, we argue that the

joints do not add independent information.

Figure 6 shows the risk of the traditional joint-based

pipeline. While the skeletons may look fine to the eye, in

the last frame the character cannot be fit to the joints due to

unrealistic bone lengths.

5. Conclusion

In this paper, we propose MOJO, a new method to pre-

dict diverse plausible motions of 3D bodies. Instead of us-

ing joints to represent the body, MOJO uses a sparse set

of markers on the body surface, which better constrain 3D

body shape and pose recovery. In contrast to most existing

methods that encode a motion into a single feature vector,

we represent motion with latent frequencies, which can de-

scribe fine-grained body movements and improve motion

prediction consistently. To produce valid 3D bodies in mo-

Figure 6: Fitting a character to predicted joints. The top

row and the bottom row show the predicted skeletons and

the fitted bodies, respectively. From left to right: The first

predicted frame, the middle frame, and the last frame.

tion, MOJO uses a recursive projection scheme at test time.

By fitting a SMPL-X body to the predicted markers at each

frame, the 3D bodies stay valid over time and motion real-

ism is improved. Compared to a traditional pipeline based

on joints, MOJO thoroughly eliminates implausible body

deformations and produces realistic 3D body movements.

Nevertheless, MOJO has some limitations to improve in

the future. For example, the recursive projection scheme

slows down the inference process. Also, the motion realism

is still not comparable with the ground truth (see Tab. 4),

indicating room to improve. Moreover, we will explore the

performance of MOJO on other marker settings, or even real

markers from mocap data.
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José MF Moura. Adversarial geometry-aware human mo-

tion prediction. In European Conference on Computer Vi-

sion, pages 786–803, 2018. 3, 5

[18] Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, and
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