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Abstract

The pancreatic disease taxonomy includes ten types of

masses (tumors or cysts) [20, 8]. Previous work focuses on

developing segmentation or classification methods only for

certain mass types. Differential diagnosis of all mass types

is clinically highly desirable [20] but has not been investi-

gated using an automated image understanding approach.

We exploit the feasibility to distinguish pancreatic duc-

tal adenocarcinoma (PDAC) from the nine other nonPDAC

masses using multi-phase CT imaging. Both image ap-

pearance and the 3D organ-mass geometry relationship

are critical. We propose a holistic segmentation-mesh-

classification network (SMCN) to provide patient-level di-

agnosis, by fully utilizing the geometry and location infor-

mation, which is accomplished by combining the anatom-

ical structure and the semantic detection-by-segmentation

network. SMCN learns the pancreas and mass segmentation

task and builds an anatomical correspondence-aware organ

mesh model by progressively deforming a pancreas proto-

type on the raw segmentation mask (i.e., mask-to-mesh). A

new graph-based residual convolutional network (Graph-

ResNet), whose nodes fuse the information of the mesh

model and feature vectors extracted from the segmentation

network, is developed to produce the patient-level differen-

tial classification results. Extensive experiments on 661 pa-

tients’ CT scans (five phases per patient) show that SMCN

can improve the mass segmentation and detection accuracy

compared to the strong baseline method nnUNet (e.g., for

nonPDAC, Dice: 0.611 vs. 0.478; detection rate: 89% vs.

70%), achieve similar sensitivity and specificity in differ-

entiating PDAC and nonPDAC as expert radiologists (i.e.,

94% and 90%), and obtain results comparable to a mul-

timodality test [20] that combines clinical, imaging, and

molecular testing for clinical management of patients.

1. Introduction

Pancreatic cancer is the third leading cause of cancer-

related deaths in the United States [7]. Furthermore, it
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Figure 1. Disease taxonomy of the ten types of pancreatic masses

(tumors, cysts). Mass type diagnosis determines the clinical ma-

lignancy indications that lead to the proper patient risk stratifica-

tion and management. The purple histogram bars represent their

relative frequencies. All images are in the arterial-late CT phase.

has the poorest prognosis among all solid malignancies,

with a 5-year survival rate ∼ 10% [7, 2]. Early diagno-

sis is crucial, as it can potentially increase the five-year

survival rate to ∼ 50% [5]. The clinical management of

patients with pancreatic disease is based on the potential

of the mass to become an invasive cancer. Unlike masses

in other organs, pancreatic masses often cannot be reached

precisely via needle biopsy due to the pancreas’s deep loca-

tion in the abdomen and the complex network of surround-

ing organs and vessels. Therefore, reliable imaging-based

diagnosis is critical to identifying patients who truly re-

quire cancer treatment (e.g., surgery) in a timely fashion,

while avoiding unnecessary iatrogenic morbidity. Develop-

ing deep learning methods to detect masses, identify ma-

113743



lignancies, provide diagnoses and predict cancer prognosis

has the potential to revolutionize pancreatic cancer imaging

[4, 2, 8, 36, 27, 32, 30].

Multi-phase computed tomography (CT) is the first-line

imaging modality for the diagnosis of pancreatic diseases.

Differential diagnosis of pancreatic masses is challenging

for several reasons. (1) The same type of mass may ap-

pear in different textures, shapes, contrasts, and different

enhancement patterns across CT phases. (2) Pancreatic

ductal adenocarcinoma (PDAC) accounts for most cases in

pancreatic cancer specialized hospitals, causing a long-tail

problem. (3) Masses, at times, are surrounded by inflamed

tissues and thus cannot be easily identified. The pancre-

atic diseases in our database encompass ten types of masses

(Fig. 1): PDAC, ampullary cancer (AC), bile duct cancer

(DC), pancreatic neuroendocrine tumor (PNET), rare neo-

plasm (RARE), solid pseudopapillary tumor (SPT), chronic

pancreatitis (CP), intraductal papillary mucinous neoplasm

(IPMN), mucinous cystic neoplasm (MCN), and serous cys-

tic neoplasm (SCN). To this end, we develop anatomy-

aware 3D deep graph networks to automatically segment,

detect, and perform differential diagnosis of the underlying

diseases.

We tackle two main problems with strong clinical in-

dications: 1) PDAC versus nonPDAC differentiation and

2) clinical management of patients. PDAC is a unique

group with the most dismal prognosis. Distinguishing

PDAC from nonPDACs is always the primary question to

answer. Patient management includes three recommenda-

tions: surgery, monitoring, and discharge (lower pannel in

Fig. 1) [20]. Patients with malignant masses require cancer

treatment (e.g., surgery). Those with potentially malignant

masses require surgery if they are invasive or high-grade

dysplasias, or monitoring otherwise. Those with nonmalig-

nant masses could be safely discharged. Fine-grained clas-

sification of ten classes of masses using multi-phase CT is

a very difficult long-tail problem.

Existing automatic pancreatic mass image analysis

methods [34, 36, 33, 35, 27, 32] focus on segmentation

of certain types of tumors or cysts and thus cannot exploit

the full-spectrum taxonomy of pancreatic mass/disease di-

agnoses. For pancreatic disease diagnosis, both texture and

geometry cues are clinically useful. For instance, some

types of masses appear at specific locations of the pan-

creas: AC and DC appear only at the pancreas head while

MCN rarely appears at the head. Others spread over the

entire pancreas, such as CP and IPMN. Additionally, some

secondary signs of diseases are informative for diagnosis.

Parenchymal atrophy and pseudocyst are observed in CP,

causing a significant change in the shape of the pancreas.

Most pancreatic cancers lead to dilatation of the pancreatic

duct, with IPMN in particular abruptly modifying its cal-

iber.

To integrate such prior knowledge/correspondence into

the model, (1) we propose a segmentation based detec-

tion network which can segment and identify pancreatic

disease regions simultaneously. Our segmentation network

takes multi-phase CT scans as input and outputs segmenta-

tion masks of the pancreas (as the studied organ) and mass.

We also develop a weak-supervised segmentation method

for cases when we have all pixel-level PDAC annotations

but only nonPDAC labels. (2) A mask-to-mesh algorithm

is used to build a 3D correspondence-aware mesh from the

pancreas segmentation output. The geometry of the pan-

creas, as well as the location, shape, and distributions of

the detected mass can all be captured/encoded by the mesh

model. We present a mesh-based feature pooling method

that extracts features from the segmentation network and

preserve the anatomic structure (each vertex of the mesh

has its anatomic meaning). Based on a fixed vertex index

list, the pancreas can be automatically divided or parsed into

four major sections: head, ventral body, dorsal body, and

tail. (3) A geometry-integrated graph classification net-

work utilizes the 3D anatomy correspondence-aware mesh

based deep feature pooling to predict the pancreatic mass

type. The network consists of graph-based residual convo-

lutional blocks and an anatomy-based graph pooling layer.

All the networks can be trained end-to-end via gradient-

based optimization based on a loss function combining the

segmentation loss, mesh vertex classification loss, and

global graph classification loss.

Our main contributions are three-fold. (1) To the best of

our knowledge, this is the first work to propose a multi-

phase CT imaging analysis method for the full-spectrum

taxonomy of pancreatic mass/disease diagnosis. (2) We are

the first to integrate the 3D geometry-aware mesh model for

effective pancreatic mass (tumor or cyst) imaging analysis

(Sec. 3.2, Sec. 3.3), explicitly capturing the anatomy-mass

integrated geometry and texture cues. (3) We have exten-

sively evaluated our models on 661 patients (five-phase CT

scans per patient). We achieve a new state-of-the-art PDAC

segmentation accuracy (Dice: 0.738) and a substantially

better nonPDAC segmentation (Dice: 0.611 vs. 0.478) and

detection accuracy (detection rate: 89% vs. 70%) compared

to the strong baseline method nnUNet. Our imaging-only

automated approach demonstrates comparable performance

levels with (a) expert radiologists in the differentiation of

PDAC versus nonPDAC who combine the analysis on clin-

ical factors, imaging, and blood tests, and (b) a state-of-

the-art machine learning-based clinical patient management

system (i.e., surgery, monitoring, discharge) using the mul-

timodality tests [20].

2. Related Work

Deep Mesh Learning. Deep 3D reconstruction has

been extensively studied in the computer vision and graph-
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Figure 2. Flowchart of our proposed Segmentation-Mesh-Classification Network (SMCN). SMCN has three components: the pancreas-

mass segmentation network, the mask-to-mesh 3D anatomy modeling, and the global mass classification network. The mesh model is the

bridge between the segmentation network and the classification network, who pools the features from the segmentation network into the

vertex feature vectors in the graph classification network.

ics fields [1, 12, 22, 25], and various methods have been

proposed to learn 3D shapes of organs from medical im-

ages [17, 29, 26]. The key component of mesh learn-

ing methods is the graph convolutional neural network

(GCN) [15], typically used for graph-structured data pro-

cessing. A liver mesh modeling method, inspired by the

Pixel2Mesh algorithm [22], is proposed in [29], which si-

multaneously generates the mesh model and segmentation

mask with improved geometry and segmentation accura-

cies. Voxel2Mesh [26] learns the mesh of the liver directly

from 3D image volumes with a new mesh unpooling oper-

ation for better mesh reconstruction. However, all of these

methods are designed specifically for organ segmentation,

and it is not clear how their segmentation and mesh results

could be used for diagnosis.

Pancreatic Image Analysis. When manual segmenta-

tions of masses are available, radiomics schemes are com-

monly used to classify disease types [3, 6, 4]. How-

ever, heavy reliance on hand-annotated masks can make

radiomics models less reproducible and scalable. To

achieve automation, researchers have used detection-by-

segmentation networks [35, 36, 27, 33] with U-Net as a

common backbone network [18]. More recently, nnU-

Net [13] (a self-adapting framework based on vanilla U-

Nets) and its self-learning version have achieved compet-

itive accuracy on PDAC segmentation [19, 23, 32]. Shape-

induced information, e.g., tubular structure of dilated duct,

has been exploited along with the PDAC segmentation task

[16, 27, 23] to improve diagnosis. Existing studies mainly

focus on PDAC [36, 27, 27, 33, 3, 24] or PNET [35], which

cannot fully meet routine clinical needs on the full taxon-

omy of pancreatic tumor diagnosis. A comprehensive tax-

onomy for pancreatic diseases has been clinically defined

to help managing/treating patients [20] where a machine

learning model is built on top of clinical factors, imaging

characteristics, and molecular biomarkers. These complex

measurements require intensive labor costs and manual in-

tervention, with reduced generalization and reproducibility.

3. Methods

Our segmentation-mesh-classification framework is il-

lustrated in Fig. 2, with three main components as below.

3.1. Anatomy­Mass Segmentation Network

The inputs X of the segmentation network are multi(5)-

phase 3D CT scans, which are concatenated into a 4D

input, X ∈ R5×W×H×D. The input Y is the la-

bel/annotation including the auto-segmented pancreas (by

an ensemble nnUNet [13] model trained on a public pan-

creas dataset [19]) and radiologist-segmented PDAC and

nonPDAC masses. It is represented by the one hot encoding

Y ∈ RK×W×H×D. The numbers of labels K can differ by

task, i.e. PDAC vs. nonPDAC or patient management. Our

backbone network is nnUNet.The pixel-level segmentation

loss combines the cross-entropy and Dice losses:

LCE = −
∑

w,h,d

K∑

k

yk,w,h,d log(F (x)k,w,h,d),

LDC = −2
K∑

k

∑
w,h,d F (x)k,w,h,dyk,w,h,d∑

w,h,d F (x)k,w,h,d +
∑

w,h,d yk,w,h,d

,

LSeg = LCE + LDC .

(1)
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Figure 3. The 3D mesh deformation process. The mesh is initialized as the pancreas prototype (a). Given the pancreas-mass segmentation

mask (e), the geometry of the mesh is deformed gradually to fit the surface of the segmentation mask, as in (b-d). Red: the head of pancreas;

Blue: the ventral body of pancreas; Yellow: the dorsal body of pancreas; Green: the tail of pancreas.

where F (x) is the softmax output of the network, F (x) ∈
RK×W×H×D.

NonPDAC labels are usually more difficult to obtain than

PDAC due to their diversified appearance in a long-tail dis-

tribution. As such, we can perform the PDAC vs. non-

PDAC task using only the PDAC mask annotations (when

nonPDAC ones unavailable) as follows. First, we train a

segmentation model on the PDAC data alone, focusing on

PDAC segmentation. Next, we apply the final PDAC seg-

mentation model to the nonPDAC data. A large portion

of the nonPDAC masses are solid tumors that can possi-

bly be misdetected as PDAC. All raw detections from the

nonPDAC dataset by the PDAC segmentation model are

collected as pseudo nonPDAC labels. Finally, we train a

new segmentation network by using both original PDAC

and pseudo nonPDAC labels.

3.2. 3D Mesh­based Anatomy Representation

Unlike existing mesh learning methods [22, 26] that are

initialized by a randomized ellipsoid mesh, we encode the

prior knowledge into our initial anatomy mesh by fitting it

to the pancreas shape with anatomical meanings.

Pancreas Anatomy. We first create a prototype mesh

based on the average pancreas shape from the training fold.

Afterwards, we place 156 vertices that are equally dis-

tributed on the surface of the prototype to build an anatomic

structure. In particular, we separate them among the four

anatomical regions of the pancreas, namely the pancreas

head, ventral body, dorsal body and pancreas tail. The first

48 vertices belong to the pancreas head, denoted as red dots

in Fig. 3. The 49-90th vertices belong to the ventral body

of the pancreas, depicted by blue dots. The 91-135th ver-

tices correspond to the dorsal body of the pancreas, shown

in yellow dots. The last 21 vertices compose the tail of the

pancreas, illustrated by green dots.

Mask-to-mesh Process. The next step is to deform the

mesh to pancreas mask of each patient as the target (Fig.

3-(e)). The geometry of the mesh can be deformed gradu-

ally to fit the surface of the segmentation mask, as in Fig.

3(a-d), so as to preserve the true anatomy of the pancreas.

In this way, our mesh could maintain the anatomical mean-

ing after deformation. To guide this deformation process,

we define a loss function composed of three terms: point

loss and two edge regularization terms. We define p to be

the vertex in the mesh and q the voxels of the surface in

the segmentation mask. Point loss, intuitively, measures

the distance of each point to the nearest point at the surface

of the segmentation. Lpt =
∑

p minq||p − q||22. With the

point loss, the pancreas mesh can be driven to fit the seg-

mentation mask. Then we propose the first edge regular-

ization term in order to preserve the geometry of the mesh:

Le1 =
∑

e ||e − mean(e)||22, e = ||p − p′||2, p′ ∈ N(p)
where N(p) is the neighboring vertices of p. Next, to penal-

ize the flying vertices (i.e. abnormal vertices randomly up-

dated during the deformation process, resulting in structure

flaws), we propose the second edge regularization loss to

simply minimize the edge length: Le2 =
∑

e e. Finally, the

overall loss is

Lmeshfit = Lpt + λ1Le1 + λ2Le2 (2)

Note that mesh vertices can keep their anatomic meaning

even after the deformation process. The mesh fitting pro-

cess can automatically parse the head, ventral body, dorsal

body, and tail of the pancreas and could better preserve the

anatomical-aware information in the mesh deformation.

Rendering. Based on the coordinates of the mesh ver-

tices, we divide the pancreas into zones Z(p). Each voxel

of the segmented pancreas volume is defined in a zone by its

nearest vertex, as shown in Fig. 2(b). The rendering method

to define the zones from the each vertex includes the fol-

lowing steps: 1) The vertex in a 3D volume A ∈ RW,H,D is

labeled by its index, i.e., the ith vertex at (w, h, d) is labeled

as i, Aw,h,d = i. All the other voxels of A are set to zero. 2)

The 3D volume A is dilated by one voxel as A′. Each zero-

voxel in A with a corresponding non-zero voxel in A′ that

belongs to the pancreas in the segmentation output F (x) is

substituted with the corresponding voxel in A′. 3) Repeat

the step 2) until all voxels have been updated.

3.3. Global Mass Classification Network

Vertex Feature Pooling. Given a deformed mesh and its

representative vertex zones, we integrate them into the deep

network for shape-constrained detection and segmentation.

We encode the anatomical structure of the pancreas, as well

as the tumor’s texture and geometry into the feature vector.

As such, the feature vector can be viewed as an anatomical
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Figure 4. Illustration of the feature vector hi for the ith vertex.

xi, yi, zi represents the location of the ith vertex. ei is the average

of all edge lengths eij (i.e., the distance from every neighboring

vertex j of to i). di denotes the shortest distance from the ith

vertex to the tumor surface.

representation of the pancreas and tumor of interest. We de-

fine h0
p as the initialized feature vector attached to vertex p

of the pancreas mesh, as shown in Fig. 4(a,c). The anatom-

ical feature representation contains the vertex coordinates

(xp, yp, zp), the average edge length to its neighbours ep,

the distance from p to the nearest tumor surface point dp,

and the local and global feature vectors pooled from predic-

tion probability maps of the segmentation network. More

specifically, ep =
∑

p′∈N(p) epp′/|N(p)| (Fig. 4(d)) and

dp = minr||p − r||22, where r is the point at the surface of

the mass (Fig. 4(e)). The zone Z(p) then acts as the recep-

tive field within which we pool the prediction probability

maps of the 3D segmentation network (F (x)) to obtain a

local feature vector, as shown in Fig. 4(b). The probability

maps within the receptive field can be represented as a list of

feature vectors F (x)w,h,d ∈ RK , where (w, h, d) ∈ Z(p).

In addition to Mesh-based Feature Pooling, we also per-

form global average pooling to get a global feature vector

from the probability map of the 3D segmentation Network

in Fig. 4 (b). We then concatenate the meta information,

the local feature vectors of each individual vertex, and the

global feature vector of the entire mesh to create the fea-

ture vector h0
p. We explicitly encode the pancreas-to-tumor

geometry, the tumor’s location in the pancreas, and its tex-

ture in the mesh-based anatomy representation. This im-

proves the model’s ability to learn anatomy-aware features,

which will ultimately improve its performance in pancreatic

mass/disease diagnosis based on the full-spectrum pancre-

atic disease taxonomy.

Graph-ResNet. After obtaining feature vectors hi for

each vertex, we feed them into the graph-based residual

convolutional network (Graph-ResNet) which has proven

to be successful in a recent deep mesh learning applica-

tion [22]. We reduced the original Graph-ResNet to a

smaller network containing six graph convolutional layers

and shortcut connections between every two layers to per-

form the tumor classification task under three granularity

levels. Each graph-based convolutional layer is defined as:

hl+1
p = w0h

l
p +

∑

p′∈N(p)

w1h
l
p′ (3)

where hl
p is the feature vector attached on vertex p at layer

l of the Graph-ResNet. w0 and w1 are learned parameters,

with w1 being shared by all edges. The graph-based convo-

lutional layer accounts for the way in which vertices neigh-

boring a given vertex regularize the vertex-to-neighbor ex-

change of information. We use two classification training

losses: the vertex-level classification loss and the global

classification loss. The vertex classification loss is defined

as the cross-entropy loss and is applied to each vertex as

LV ertex = −
∑

p

K∑

k

yvk,p log(G(h0)k,p), (4)

where G(h0) denotes the softmax output of the graph net-

work at every vertex. The vertex label yv is inferred from

the labeled mask. Background voxels are labeled as 0,

pancreas voxels as 1, and voxels for all mass types with

labels greater than 1. The vertex q is labeled using the

maximum value of the voxels in its corresponding zone

Z(p), ŷvp = max(w,h,d)∈Z(p)ŷw,h,d. yv is the one-hot

encoding of ŷv . Considering that some mass types may

have blurry boundaries and the mass neighbor Z(p) may

also contain relevant cancer-related information, this label-

ing strategy and the propagation/smoothing property of the

Graph-ResNet makes our approach robust to the quality of

segmentation annotations or labels and increase the detec-

tion rates of masses.

Global Mass Classification. After running Graph

ResNet, we pool four features from all four pancreatic re-

gions according to the vertex indices (1-48, 49-93, 94-135,

136-156), as shown in Fig. 2. These four global fea-

ture vectors and 156 local feature vectors are concatenated

into one vector hvp, and fed into the final mass classifica-

tion layer. The final global classification layer is a fully-

connected layer. The global classification loss is the cross-

entropy loss:

LGlobal = −
K∑

k

ygk log(H(hvp)k), (5)

where H(hvp) is the softmax output of the classification

layer, and yg the patient-level mass/disease label. The over-

all loss function is the combination of three losses:

L = LSeg + η1LV ertex + η2LGlobal. (6)

where η is a hyperparameter used to balance the three loss

components. LSeg is the pixel-level segmentation loss , and

LV ertex is the vertex classification loss (Eq.4). All net-

works, namely the 3D segmentation network and the classi-

fication Graph-ResNet, can be trained end-to-end by lever-

aging this global loss function.
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4. Experiments

Data and Preprocessing. Our dataset contains 661 pa-

tients with surgical pathology-confirmed pancreatic masses

(366 PDACs, 46 ACs, 12 DCs, 35 PNETs, 13 RAREs, 32

SPTs, 43 CPs, 61 IPMNs, 7 MCNs, and 46 SCNs). Each

patient has 5-phase CT scans: non-contrast (NC), arterial-

early (AE), arterial-late (AL), venous (V), and delay (D).

The median voxel size is 0.419× 0.419× 3mm. The man-

ual annotations of masses was performed by an experienced

pancreatic imaging radiologist on the AL phase; CT scans

from the other four phases are registered to AL by DEEDS

[11]. Data augmentation is performed on-the-fly. This in-

cludes spatial transforms, Gaussian blur, and contrast shift-

ing [13]. The hyper-parameters are set as λ1 = 10−4,

λ2 = 10−2, and η1 = η2 = 0.1 based on preliminary exper-

iments. All experiments are performed using nested three-

fold cross-validation. In each fold, the network is trained

for 1000 epochs. The best model is selected based on its

performance on the validation set. It is then applied to the

test set to generate the final experimental results.

4.1. Evaluation on Mass Segmentation

Quantitative Evaluation. Segmentation accuracy is

measured using the Dice coefficient. Dice scores and detec-

tion rates of PDACs and nonPDACs (10 disease classes in

total) are provided in Table 1. A detection is considered suc-

cessful if the intersection (between the ground truth and seg-

mentation mask) over the ground truth is ≥ 10% (counted

as 1); otherwise, it is considered a misdetection (counted

as 0). Our SMCN network is compared to a strong base-

line, 3D nnUNet [13], trained from scratch on our dataset.

We find that integrating the 3D mesh-based anatomy rep-

resentation into Graph-ResNet significantly improves mass

segmentation and detection accuracies, especially for non-

PDAC, as determined by Wilcoxon signed-ranks test (Dice:

0.611 vs. 0.478; Detection rate: 88.7% vs. 69.3%).

Qualitative Evaluation. Fig.5 illustrates the segmenta-

tion results for qualitative comparison. SMCN can guide

the segmentation network by integrating geometry cues

and achieve more complete segmentation results, espe-

cially for harder and relatively rare nonPDAC classes. In

Fig.5, nnUNet misdetects an AC (malignant) completely

because the tumor is outside of the pancreas head. Our

SMCN model instead detects this AC finding. For an

IPMN case (malignant potential), our model provides more

complete segmentation including the clinically-critical sec-

ondary signs of pancreatic duct dilatation, than the 3D

nnUNet model [13]. For SCN (benign), SMCN segments

the full tumor surface. All demonstrate that our anatomy

geometry-aware SMCN network produces superior seg-

mentation results against the state-of-the-art 3D nnUNet

[13], being widely used in medical imaging applications.

PDAC Segmentation under Different CT Phases. We

Image Label nnUNet [13] SMCN

PDAC

AC

IPMN

SCN

Figure 5. Examples of pancreas-mass segmentation results. Light

red: pancreas. Green: surgery mass. Blue: monitoring mass. Yel-

low: discharge mass.

(c) CP(b) AC(a) PDAC (d) IPMN (e) SCN

Figure 6. Examples of 3D meshes generated from pancreas seg-

mentation under various scenarios. Top: red denotes the head of

pancreas; blue the ventral body; yellow the dorsal body; and green

the tail. Bottom: light red depicts the pancreas; green the surgery

tumor; blue the monitoring tumor; and yellow the discharge tumor.

compare our method to three other state-of-the-art methods

of [32], DDT [23], and [27] which are applied to Venous

phase. For ease of comparison, we implement/evaluate our

models using only one or a few CT phases (in Table 2). The

AL phase outperforms all other individual phases due to its

higher voxel resolution and imaging contrast; the second

best is Venous phase, widely adopted in clinical settings.

The fusion/concatenation of multiple CT phases as the net-

work’s input yields better results than any single phase.

The combined five phases yield the best segmentation Dice

score of 0.738, which noticeably improves upon the previ-

ous state-of-the-art result of 0.709 [32]. Note that in [32]

PDACs are mostly small in size and are only located at the

pancreas head. In our dataset, by contrast, PDACs appear

in various sizes and span the entire pancreas. The fusion of

all four phases but AL as input yields better results than any

single phase as well (Dice scores 0.696 vs. 0.562 ∼ 0.675).
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Table 1. Segmentation and detection results over the ten types of pancreatic masses. Note that in this experiment, networks are trained with

four labels: background, pancreas, PDAC, and nonPDAC. micro: result for all patients; macro: average of the metrics of the ten classes.

Metric PDAC NonPDAC AC CP DC IPMN MCN PNET RARE SCN SPT micro macro

Average Dice 0.734 0.478 0.423 0.533 0.001 0.151 0.924 0.514 0.849 0.585 0.762 0.618 0.548

nnUNet[13] Detection rate 0.959 0.693 0.7 0.778 0.0 0.308 1.0 0.833 1.0 0.8 1.0 0.838 0.738

SMCN Average Dice 0.738 0.611 0.438 0.668 0.006 0.602 0.924 0.514 0.824 0.666 0.801 0.681 0.618

(Ours) Detection rate 0.972 0.887 0.8 0.889 0.0 1.0 1.0 1.0 1.0 0.8 1.0 0.934 0.846

Table 2. PDAC segmentation under different CT phases: non-

contrust (N), arterial (A), arterial-early (AE), arterial-late (AL),

venous (V), and delay (D).

Methods CT Phases Average Dice

Reported from their original papers

Zhang et al. [32] N+A+V 0.709

DDT [23] V 0.634

Xia et al. [27] A+V 0.644

Ours AE 0.646

Ours AL 0.730

Ours V 0.675

Ours D 0.562

Ours N+AE+V+D 0.696

Ours N+AE+AL+V+D 0.738

4.2. 3D Anatomy Mesh Quality Evaluation

Qualitative results of our generated mesh model are

shown in Fig. 6. Our method can effectively and accurately

model the diseased pancreases under various scenarios, e.g.,

PDAC at the neck (Fig. 6(a)), AC at the head with pancreatic

duct dilatation (Fig. 6(b)), pseudocyst at the tail (Fig. 6(c)),

IPMN on the full pancreatic duct (Fig. 6(d)) and large tu-

mor and parenchymal atrophy (Fig. 6(e)). As described in

Sec. 3.2, our 3D mask-to-mesh algorithm can automatically

divide the pancreas into four parts: head, ventral body, dor-

sal body and tail, which are color-coded as red, blue, yel-

low and green. The distributions of anatomic locations of

10-class pancreatic masses in our dataset are described in

the supplementary material. AC and DC only appear at the

head; MCN does not appear on the head; CP and IPMN

appear mostly on the head; PDAC, PNET and RARE are

distributed over the entire surface of the pancreas. Cystic

masses (SPT, SCN and MCN) are distributed over the en-

tire pancreas with the majority being located at the dorsal

body. These observed distributions verify the prior knowl-

edge of different masses’ spatial locations and motivate our

geometry-aware mass diagnosis framework.

From the generated 3D mesh model, we can accurately

measure the shape and location of the mass against the pan-

creas, as shown in Fig.4, at a human-readable level (156

is a suitable number for the clinical expert’s perception).

Our proposed mask-to-mesh algorithm and SMCN models

can be generalized to other important organs with specific

anatomical structures (like liver), which can potentially im-

prove the underlying imaging-based mass diagnosis.

Table 3. Average values of PDAC vs. nonPDAC across 3 folds.

PV: pixel voting; VV: vertices voting; GC: global classification.

Methods Accuracy Sensitivity Specificity

Radiomics [21] 0.857 0.853 0.868

DeepTexture [28] 0.770 0.827 0.697

ResNet3D [9] 0.720 0.788 0.633

SMCN w PV 0.913 0.945 0.875

SMCN w VV 0.920 0.945 0.891

SMCN w GC 0.927 0.945 0.906

Expert radiologists - ∼0.94 ∼0.90

4.3. Evaluation on Mass Classification

We validate our model for two main mass classifica-

tion tasks: PDAC vs. nonPDAC and patient management.

SMCN is compared to the radiomics model and 2D/3D deep

classification networks.We extract 2,410 radiomics features

(482 for each CT phase) using Pyradiomics package [21]

from the manually-annotated masses. These features in-

clude mass characteristics of various-ordered texture and

shape descriptions. Gradient Boosting Decision Tree is

used as the classifier [14]. Feature importance is calculated

within each phase to select the most informative features

(top 30) in the training fold. To compare with deep classi-

fication models, we use automatic mass segmentation and

prepare 2D/3D tumor patches/volumes from all five phases.

Each 2D patch is the tumor region representing the largest

size in the axial view of the 3D volume which is then re-

sized to 256 × 256 following typical texture analysis prac-

tices [31]. For 3D volumes, we test with ResNet3D [9],

while for 2D patches we built deep texture networks using

ResNet-18 [10] as the backbone, following the model [28].

PDAC vs. NonPDAC. We first evaluate our method for

classifying PDAC vs. nonPDAC, which is the primary clin-

ical diagnosis task. Comparative results are provided in

Table 3. Sensitivity and specificity correspond to the pro-

portions of the correctly predicted PDACs and nonPDACs,

respectively. We also conduct an ablation study on sev-

eral classification strategies. Pixel voting (PV) indicates

that the classification result is voted by the pixels from the

segmentation masks – using an optimal volume threshold

from the validation set; vertex-based voting (VV) means

that the result is voted by the classified vertices of Graph-

ResNet; Global classification (GC) is our final model. All of

our SMCN variations significantly outperform both 2D/3D

deep networks, thus revealing that using only the tumor’s

texture information to distinguish PDAC from nonPDAC
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Table 4. Classification confusion matrix of quantitative patient management and comparison our results against the clinical test [20].

CompCyst [20] Discharge Monitoring Surgery Ours Discharge Monitoring Surgery

Discharge (n=53) 32 (60%) 14 (26%) 7 (13%) (n=46) 28 (61%) 10 (22%) 8 (17%)

Monitor (n=140) 1 (1%) 68 (49%) 71 (51%) (n=104) 11 (11%) 65 (63%) 27 (26%)

Surgery (n=152) 0 (0%) 14 (9%) 138 (91%) (n=440) 6 (1%) 16 (4%) 418 (95%)

Table 5. Experimental Results for Patient Management. PV: pixel

voting; VV: vertex-based voting; GC: global classification.

Methods Accuracy Average Recall

Radiomics [21] 0.854 0.667

DeepTexture [28] 0.743 0.557

ResNet3D [9] 0.737 0.607

SMCN w PV 0.832 0.735

SMCN w VV 0.839 0.656

SMCN w GC 0.865 0.746

(a) PDAC vs NonPDAC (b) Detection Rate

p%

Figure 7. Comparison of (a) classification and (b) detection per-

formances between fully-supervised and semi-supervised learn-

ing. The green dot depicts the performance of the mean second

reader.

is insufficient. Our fully automated models greatly outper-

form the radiomics approach (sensitivity 0.853, specificity

0.868) using manual annotations. The SMCN-w-GC con-

figuration reports the best quantitative results with a sensi-

tivity of 0.945 and specificity of 0.906.

Fully-supervised or Semi-supervised Learning. As

described in Sec. 3.1, we can perform the PDAC vs. non-

PDAC task even when only the patient-level nonPDAC la-

bels are available (referred as semi-supervised). A fully-

supervised setting means that both PDAC and nonPDAC an-

notated masks are obtained. ROC curves of PDAC (positive

class) vs. NonPDAC (negative class) are shown in Fig.7(A).

Generally, similar classification results are achieved by the

fully-supervised or semi-supervised learning method. Us-

ing only pseudo nonPDAC masks in a semi-supervised set-

ting slightly reduces the detection rate of PDAC. Our fully-

supervised method obtains sensitivity and specificity com-

parable to the mean second reader at a high-volume pan-

creatic cancer institution at 94% and 90%, respectively.

The detection rates by different thresholds are evaluated in

Fig.7(b). A segmentation result is counted as successful de-

tection if at least the fraction p of the mass is segmented (p
is the cut-off). For fully-supervised learning, the best PDAC

detection rate is 0.986 (p > 0); the best nonPDAC sensitiv-

ity is 0.906 (p ≃ 0.08). Under semi-supervised learning,

these numbers are 0.959 (p ≃ 0.2) and 0.515 (p > 0), re-

vealing the limitation of semi-supervised setting.

Quantitative Patient Management. Patient manage-

ment decisions fall under three categories: “Surgery”,

“Monitoring”and “Discharge” (Fig.1). We once again com-

pare our methods to the Radiomics based approach, which

is the current clinical standard, and conduct the ablation

study on different classification strategies: PV, VV, and GC

(Table 5). Our SMCN method generally outperforms the

radiomics method, and the SMCN-w-GC version yields the

best results. Importantly, CompCyst [20] reports real pan-

creatic mass patient management results leveraging clinical

features, imaging characteristics, cyst fluid genetic and bio-

chemical markers. However, it is invasive, and more ex-

pensive and time-consuming than SMCN. For a relatively

fair comparison, we adhere to the same pancreatic disease

taxonomy as [20], i.e., exclude AC, DC, and RARE classes.

Two confusion matrices, by CompCyst [20] and SMCN, are

compared side-by-side in Table 4. SMCN achieves simi-

lar or slightly improved quantitative performance via multi-

phase CT imaging. (1) 95% of surgery patients (increased

from 91% by CompCyst) are correctly guided to surgery,

but 1% of surgery patients are misclassified as discharge pa-

tients, which is clinically undesirable. (2) The correctly rec-

ommended monitoring patients have increased to 63% by

SMCN from 49% in [20]. The error rate for “recommend-

ing surgery” has decreased significantly from 51% [20] to

26%. (3) The performance for discharge patients are simi-

lar between SMCN and CompCyst clinical results. We clas-

sify more patients into the surgery class (17% vs. 13%).

This is due to the fact that the distribution of our patients

among all three actionable classes is more unbalanced than

that in [20], and our discharge patient sub-population may

be insufficient. Finally, we provide patient-level classifica-

tion results for all ten pancreatic tumor classes in the sup-

plementary material (considered as clinically less critical).

5. Conclusion

In this paper, we present a new segmentation-mesh-

classification deep network (SMCN) to tackle the challeng-

ing and clinically-demanding tasks of pancreatic mass seg-

mentation, diagnosis, and disease management. SMCN

is composed of an anatomy-mass segmentation network,

a mask-to-mesh 3D geometry modeling network, and a

Graph-ResNet with vertex feature pooling and can be

trained end-to-end. We extensively evaluate our SMCN

method on the largest pancreatic multi-phase CT dataset of

661 patients, using the full taxonomy of ten types of pancre-

atic masses. Our experiments demonstrate the superiority of

the proposed SMCN for all three pancreatic analysis tasks.
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