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Abstract

Temporal video grounding aims to localize the target

segment which is semantically aligned with the given sen-

tence in an untrimmed video. Existing methods can be di-

vided into two main categories, including proposal-based

approaches and proposal-free approaches. However, the

former ones suffer from the extra cost of generating pro-

posals and inflexibility in determining fine-grained bound-

aries, and the latter ones usually attempt to decide the start

and end timestamps directly, which brings about much dif-

ficulty and inaccuracy. In this paper, we convert this task

into a multi-step decision problem and propose a novel Cas-

caded Prediction Network (CPN) to generate the grounding

result in a coarse-to-fine manner. Concretely, we first en-

code video and query into the same latent space and fuse

them into integrated representations. Afterwards, we con-

struct a segment-tree-based structure and make predictions

via decision navigation and signal decomposition in a cas-

caded way. We evaluate our proposed method on three

large-scale publicly available benchmarks, namely Activi-

tyNet Caption, Charades-STA and TACoS, where our CPN

surpasses the performance of the state-of-the-art methods.

1. Introduction

With the rapid development of Internet technology, video

has become a significant medium for information com-

munication and dissemination, which brings great appli-

cation value and prospect for the field of automatic video

analysis. After the release of several large-scale datasets

[3, 4, 13, 36, 38], research in this area is gradually moving

towards video-text understanding tasks, including video-

text retrieval [39, 43], video captioning [21, 33], video ques-

tion answering [30, 49] and so forth. Considering the appli-

cation scenarios in video websites and search engines, an

increasing number of researchers begin to focus on the task

of temporal video grounding.
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Query: Several people begin chopping vegetables.

GT:

Figure 1. An illustration of temporal video grounding.

Figure 2. The overall perspective of our proposed model.

As the example in Figure 1 illustrates, temporal video

grounding aims to automatically determine when an ac-

tion or event corresponding to a given text query occurs

in the video. The previous approaches in this area can be

mainly categorized into two groups, including proposal-

based methods [5, 9, 34, 37, 41, 44, 46, 48] and proposal-

free methods [12, 20, 24, 35, 42, 45]. The former ones

mainly follow the paradigm to manually predefine some

proposals and select the best one by considering the corre-

lation between proposal features and the given semantic in-

formation. And the latter ones try to tackle this problem by

utilizing fully integrated features to determine the start and

end timestamps aligned to the given description directly.

However, for the proposal-based methods, the hand-

crafted pre-definitions heavily rely on the prior knowledge

to the length distribution of target segments for the specific

datasets and bring much extra computational cost for pre-

processing. Besides, the proposal boundaries are usually

fixed, leading to the incapability to work out more flexi-

ble results. As for the proposal-free methods, the decision

space for the final prediction is always too large for the

model to generate accurate results in a single-shot classi-

fication or regression. Moreover, due to the lack of supervi-

sion from the inside of segments, these methods are strongly

dependent on the expression ability of fusion modules.

To alleviate these problems, we devise a novel Cas-
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caded Prediction Network (CPN) for temporal grounding as

shown in Figure 2. Contrary to the existing approaches, we

perform multiple cascaded prediction subtasks in a coarse-

to-fine manner to generate fine-grained and flexible ground-

ing results. Considering the effectiveness of segment tree

in storing and representing segments of sequential data,

we choose to use this data structure to maintain our CPN

model, thus increasing computing speed and making the

whole framework easy to maintain. Specifically, we first ex-

tract features from video and query and integrate them into

fusion representations. Afterwards, we develop a segment-

tree-based structure to generate segment features in differ-

ent temporal scales and refine them in a message-passing

way via graph neural network. Finally, we perform deci-

sion navigation and signal decomposition on each level to

fully exploit the information from the boundary annotation

and response signal associated with the sentence query.

Our main contributions can be summarized as follows:

• We consider the temporal video grounding task as

a multi-step prediction problem and propose a novel

Cascaded Prediction Network (CPN) based on a

segment-tree structure to address this problem in a

coarse-to-fine manner.

• We devise an effective representation learning method

to generate discriminative segment features in different

scales, thus enhancing the grounding performance.

• The extensive experiments conducted on three chal-

lenging public benchmarks, namely ActivityNet Cap-

tion, Charades-STA and TACoS, demonstrate the ef-

fectiveness of our proposed CPN method.

2. Related Work

Given an untrimmed video and a natural language query,

temporal video grounding aims to locate the start and end

timestamps of the video segment that best matches the given

query. Initially, Gao et al. [9] first formulate this problem

and try to address it in a proposal-based mechanism. Fol-

lowing this paradigm, Chen and Yuan et al. [5, 41] utilize

various fine-grained multi-modal fusion methods to gener-

ate better integrated representations. Zhang et al. [48] try

to furthur leverage the inner structure of video and query to

improve the expressiveness of features. And Xu et al. [37]

employ 3D Region of Interest Pooling to generate proposals

instead of using sliding windows. Wang et al. [34] exploit

the boundary score to modulate the selection and refinement

of anchors. Moreover, Zhang and Zhang et al. [44, 46] both

establish a proposal-oriented structure and explore the rela-

tions between proposals to enhance the performance.

Considering the extra computational cost stemming from

generating proposal features, some proposal-free methods

are proposed to tackle this problem. Among them, Ro-

driguez and Yuan et al. [24, 42] devise attention-based

structures to generate predictions according to the rela-

tive affinity between two modalities. Hahn and Wang et

al. [12, 35] follow the reinforcement-learning paradigm to

drive the intelligent agent to glance over the video in a dis-

continuous way. Mun et al. [20] decompose the query sen-

tence into multiple phrases and model the local and global

context sequentially. And Zhang et al. [45] attempt to trans-

form this problem into a span-based question answering

task and solve it accordingly.

However, although these methods exhibit their great ap-

plication values on large-scale datasets, they still suffer

from the cost of collecting handcrafted annotations. There-

fore, researchers begin to study this task under the weakly-

supervised setting. The mainstream strategy in this area is

to follow the multiple instance learning (MIL) paradigm,

which is widely adopted by [6, 10, 19, 29]. Apart from this,

Bojanowski et al. [2] consider this task as a cross-modal

alignment problem and solve it via matrix optimization. Re-

cently, Duan, Lin and Song et al. [8, 17, 28] also attempt to

construct dual architectures to address this problem through

caption generation or sentence reconstruction.

3. Preliminary

3.1. Problem Formulation

Given an untrimmed video V and an assigned natural

language query Q, temporal video grounding is to ascertain

the moment τ̂ that is most relevant to the given text query.

More specifically, the input video can be denoted as V =
{vi}

nv

i=1 where nv is the frame number of video and vi is

the visual feature of the i-th frame, and the corresponding

text query can be denoted as Q = {qi}
nq

i=1 where nq is

the sentence length of query and qi is the textual feature of

the i-th word. Under this notation definition, our task is to

construct a proper model Ω and find a set of parameters θ

so that the visual information within the temporal range

τ̂ = (τ̂s, τ̂e) = Ω(V,Q;θ), where 1 ≤ τ̂s < τ̂e ≤ nv

(1)

can represent the semantic information contained in the

query most accurately.

3.2. Model Architecture and Features

The Overall Network Structure The overall architecture

of our proposed model is illustrated in Figure 2. Concretely,

we first employ a set of extractors and encoders to project

the input video and query into the same latent space. After-

wards, we utilize a Context-Query Attention module to inte-

grate textual and visual features into fused representations.

Finally, our Cascaded Prediction Network (CPN) module

is employed to generate and refine segment-level presenta-

tions and predict the temporal grounding result.
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Figure 3. The concrete diagram of our proposed Cascaded Prediction Network (CPN). For the sake of clarity, we take the case when

nv = 4 as an example to demonstrate the calculation process of this module.

Visual and Textual Representations Before generating

more expressive representations, we first need to embed the

given raw data into a continuous high-dimensional space.

In our model, we employ the 300d Glove word2vec embed-

ding [22] to extract textual features Q and pre-trained Con-

vNets to extract visual features V to keep consistent with

other methods. And then, we utilize 1D convolutional layer

and bi-directional GRU [7] as our generic choice of visual

encoder and textual encoder to furthur encode these initial

features into the same latent space. For the sake of clarity,

we denote the refined visual and textual representations as

Ṽ = {ṽi}
nv

i=1 ∈ R
nv×d and Q̃ = {q̃i}

nq

i=1 ∈ R
nq×d, re-

spectively. It’s worth noting that we perform a resampling

operation on the given video to guarantee nv is a power of

2 for the convenience of subsequent calculations.

Representation Fusion Following the standard strategy

adopted in most reading comprehension models [26, 40],

we utilize a Context-Query Attention (CQA) module to fuse

the textual and visual representations. Specifically, we first

calculate the cross-modal affinity matrix A ∈ R
nv×nq via

an additive attention mechanism [1], given by

Aij = w⊤
s (tanh(Wvṽi +Wqq̃j + bs)), (2)

where Wv,Wq ∈ R
d×d and bs,ws ∈ R

d are all train-

able parameters. And then, we normalize the affinity matrix

through SoftMax calculation along the row and column axis

to obtain the relative affinity intensity from one modality to

the other, which can be denoted as Ar and Ac respectively.

Afterwards, the video-to-query attention V ∈ R
nv×d and

the query-to-video attention Q ∈ R
nv×d can be calculated

as

V = Ac · Q̃, Q = Ac ·A
T
r · Ṽ (3)

And the final integrated representation V̄ ∈ R
nv×d can be

eventually given by

V̄ = ([Ṽ;V; Ṽ ⊙ V ; Ṽ ⊙Q])Wf + bf , (4)

where bf ∈ R
d and Wf ∈ R

4d×d are all learnable param-

eters.

4. Cascaded Prediction Network

In this section, we will introduce our proposed Cascaded

Prediction Network (CPN).As shown in Figure 3, we con-

struct a segment-tree-based structure to generate and refine

the segment representations in different scales and make the

final predictions in a cascaded manner. The whole predic-

tion procedure can be divided into four stages, including

Tree Initialization, Message Passing, Decision Navigation

and Signal Decomposition.

4.1. Tree Initialization

Given the integrated frame-level features V̄, we first con-

duct a bottom-up fusion to generate segment-level represen-

tations and initialize the entire tree structure. Imitating the

standard segment-tree construction process, the initializa-

tion of our CPN module can be formulated as follows.

We first denote the sequence of nodes contained in the

h-th level as Ũh = {ũh
i }

2h

i=1, and the frame-level features

serve as leaf nodes of the tree, i.e. ŨH = V̄. And then, the

representations of (h− 1)-th level can be given by

ũh−1
i = f(ũh

2i−1, ũ
h
2i), (5)

where f(·, ·) is the fusion module to aggregate the temporal

adjacent features, which can be selected from 1D convolu-

tion, 1D max-pooling and cross gate module.

By performing this calculation recursively, we can work

out the representations of all the other nodes in the tree,

which are also named branch nodes. After doing so, we can

obtain a full binary tree structure with H = log2(nv) levels

and 2nv − 1 nodes in total as shown in Figure 3. In order

to make the following descriptions clearer, we combine the

node sequences of different levels and assign unified num-

bers to all nodes, given by U = {ũ0
1, ũ

1
1, ũ

1
2, ..., ũ

H
nv
} =

{ui}
2nv−1
i=1 . Moreover, we define some special terms as the

preliminary of the following descriptions.

• Height and Order The Height and Order of the i-th

node can be expressed as hi = ⌊log2(i)⌋ and oi =
i−2⌊log2(i)⌋, which reflects the vertical and horizontal

position of nodes.
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• Interval The Interval corresponding to the i-th node is

denoted as τ i = [si, ei], and the start and end coordi-

nates are given by si = 1+oi2
hi and ei = (oi+1)2hi ,

respectively.

• Ancestor Node and Twin Node The Ancestor Node of

the i-th node with height difference of ∆h is denoted

as a(i,∆h) = ⌊
i

2∆h
⌋, and the Twin Node of the i-th

node is given by t(i) = 2a(i, 1) + 1− i, which points

to the node that shares the same ancestor with height

difference of 1.

4.2. Message Passing

Although we have obtained a series of fully integrated

representations in different temporal scales, these features

actually only capture the semantic information within the

corresponding intervals, which leads to the insufficiency of

comprehension to other parts of the video and makes it dif-

ficult to discriminate between target and the other segments.

A naive method to model context dependencies is to con-

sider all pair-wise relations between nodes, resulting in a

huge computational cost. Therefore, we attempt to prune

redundant relations and devise a graph-based message pass-

ing mechanism to fuse context information efficiently. Con-

cretely, given the node sequence U, we establish two sets of

edges between nodes, which are described as follows.

Reference Edge The Reference Edge allows information

to flow from other nodes to the linked leaf node. In order

to fuse context information at the least cost, we construct

a Reference Set for every leaf node. The Reference Set is

the smallest set in which the interval union of contained

nodes can exactly cover the complement interval of the cor-

responding leaf node, given by

R(i) = {t(a(i, j))|j ∈ [0, hi − 1]}, (6)

for the i-th node. And the set of Reference Edge can be

formulated accordingly as below.

ER = {j → i|j ∈ R(i), hi = H} (7)

Aggregation Edge The Aggregation Edge is used to rec-

ollect and aggregate the information from child nodes to an-

cestors dynamically. Similar to the Reference Set, we also

construct an Aggregation Set containing all the descendants

of a branch node, which is given by

A(i) = {j|a(j, h) = i, ∃h ∈ [1, hj ]}, (8)

for the i-th node. And the set of Aggregation Edge can be

formulated as

EA = {j → i|j ∈ A(i), hi < H} (9)

After the establishment of edges, we obtain a graph

structure G = {U, (ER ∪ EA)}. And we use the uni-

fied notation N (i) to denote the neighbor set of i-th node

instead of A(i) or R(i) annotations. In this structure, any

representation update that occurs in the tree (except on the

root node) can be broadcast to any node in up to 3 steps.

When it comes to the message passing procedure, actually

any kind of off-the-shelf graph neural networks can be uti-

lized to carry out this function, and we choose to employ a

L-layer DyResGEN architecture proposed by Li et al. [16].

Moreover, considering the position information usually

plays an essential role for sequence-related task, we gen-

erate a series of position-aware initial features U0 =
{u0

i }
2nv−1
i=1 for message passing, given by

u0
i = ui + [PE(hi);PE(oi)], (10)

where [; ] is the concatenation operator, and PE(·) is the

sinusoid position encoding function utilized in [32]. Conse-

quently, the iterative calculation can be formulated as

ul
i = MLP(ul−1

i +AGG({σ(ul−1
j )+ǫ|j ∈ N (i)})), (11)

where σ is the activation function and the operator AGG is

selected as SoftMax Aggregation.

4.3. Decision Navigation

After initializing and refining the tree structure, our CPN

module can be used to decide the importance of nodes to

a specified task in a navigation-based iterative way. In this

task, we adopt this mechanism to determine the importance

score of leaf nodes to the start and end of the target event,

and predict the boundary timestamps accordingly.

Figure 4. The detailed diagram of decision navigation.

Taking the start timestamp prediction as an example, we

first define a series of events Ai,j : τs ∈ τ a(i,j). Then the

final prediction can be converted into a multi-step decision

problem, given by

P (τs ∈ τ i) =

hi−1∏

j=0

P (Ai,j |Ai,j+1)P (Ai,hi
). (12)
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And this probability multiplication can be calculated by

traversing the tree structure from the top down. As depicted

in Figure 4, our decision navigation will start from the root

node. When the decision proceeds to the i-th node, the hi-th

navigator will be applied to predict the probability of nav-

igating left or right. Formally speaking, the probability of

navigating to the left child at i-th node φi is given by

φli = Nhi
(uL

i ,u
L
2i), φri = Nhi

(uL
i ,u

L
2i+1) (13)

φi =
eφ

l
i

eφ
l
i + eφ

r
i

(14)

where Ni is the navigator of i-th level.

And we denote the cumulative probability of navigating

to the i-th node as Φi = P (Ai,0), then the recursive calcu-

lation formula can be written as

Φ2i = φi · Φi, Φ2i+1 = (1− φi)Φi, (15)

Without loss of generality, we assign Φ1 = 1 to make the

Equation 15 applicable to all branch nodes. Using math-

ematical induction, it’s easy to prove that the cumulative

results of each level conform to the definition of probabil-

ity distribution. In this task, we just take the result of leaf

nodes as our final boundary distribution prediction, which

can be denoted as Ps and Pe for the prediction of start and

end boundaries, respectively.

4.4. Signal Decomposition

Moreover, our proposed CPN module can also imple-

ment the function of signal decomposition as shown in Fig-

ure 5. Given a target signal, we can reconstruct this signal

in different sampling frequencies via our cascaded structure

and consequently generate a decomposition sequence. Sim-

ilar to the Decision Navigation subtask, we also perform the

signal decomposition in a top-down manner. Denoting the

Figure 5. The detailed diagram of signal decomposition.

decomposition value of i-th node as ψi, this procedure can

be formulated as below.

ψl
i = σ(Dhi

(uL
i ,u

L
2i)), ψr

i = σ(Dhi
(uL

i ,u
L
2i+1)),

(16)

where the σ(·) is the Sigmoid function, and Di is the de-

composer of i-th level. And the cumulative decomposition

result Ψi of i-th node is given by

Ψi = α0ψi + α1ψa(i,1) + · · · =
hi∑

j=0

αjψa(i,j), (17)

where αj is the coefficient of result with height difference

of j. Considering that the decomposition result of higher

level always have a lower sampling frequency and resolu-

tion, we manually assign αj to be 2−j−1 and add a constant

to ensure the magnitude of Ψi remains unchanged.

In our architecture, the navigators and decomposers are

essentially multi-layer perceptron (MLP) modules and we

share weights between the navigator and decomposer of the

same level except the last linear layer in order to reduce the

amount of parameters and further fuse the supervision in-

formation from boundary annotations and response signals.

4.5. Training and Inference

Based on the calculation formula and module structure

mentioned previously, we apply a multi-task loss function

to train our CPN network in an end-to-end manner. The fi-

nal loss function is composed of two seperate parts, namely

Boundary Loss and Signal Loss.

Boundary Loss Considering that the ground-truth bound-

ary timestamps are given in a scalar form, we need to con-

vert them into the corresponding distributions first. For-

mally speaking, we suppose the ground-truth boundary dis-

tributions can be formulated as P̂s ∼ N (τ̂s, σ
2) and P̂e ∼

N (τ̂e, σ
2) due to the uncertainty of data annotation, where

N (µ, σ2) is the normal distribution with expectation of µ

and standard deviation of σ. And under the assumption

that a longer duration usually result in more blurred bound-

aries, we set σ as (1 +
τ̂e − τ̂s

nv
) to control the smoothness

of the distributions adaptively. Therefore, the loss function

for boundary decision navigation is given by

Ldiv = DKL(Ps ‖ P̂s) +DKL(Pe ‖ P̂e), (18)

whereDKL(P‖Q) is the Kullback-Leibler divergence from

Q to P.

Signal Loss Similar to Boundary Loss, we also need

to generate the corresponding square wave manually for

the ground-truth annotations. Concretely, the frame-wise

sampling sequence of the target response signal Ψ̂ =
{Ψ̂i}

nv

i=1 can be constructed by assigning the items within

the ground-truth range to 1 and the others to 0. So the loss

function for signal decomposition can be formulated as

Lsgn = −
nv∑

i=1

((1− Ψ̂i) log(1−Ψi) + Ψ̂i logΨi), (19)
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Finally, the overall loss function in the training process

can be summarized as

L = Ldiv + λLsgn, (20)

where λ is the hyper-parameter to balance these two parts.

While in the inference process, the start and end times-

tamps of grounding results are only determined by the nav-

igation predictions, which are given by

τ = (τs, τe) = argmax
(τs,τe)

(Ps(τs))(Pe(τe)),

s.t. 1 ≤ τs < τe ≤ nv

(21)

5. Experiments

5.1. Datasets

In order to validate the effectiveness of our proposed

method, we conduct a series of experiments on ActivityNet

Caption[15], Charades-STA[9] and TACoS[23].

ActivityNet Caption This dataset is generated by Kr-

ishna et al. from ActivityNet dataset [3] and contains about

20k various untrimmed videos of open-domain activities.

We follow the split principle used in [47, 48], leading to

37,417, 17,505, 17,031 clip-sentence pairs used for train-

ing, validation and testing respectively.

Charades-STA This dataset is constructed by Gao et al.

[9] from the original Charades dataset [27] and includes

9,848 videos of indoor activities. For model training and

evaluation purpose, a total of 16,128 clip-sentence pairs can

be furthur split into 12,408 and 3,720 ones as training and

testing dataset respectively.

TACoS This dataset contains 127 videos collected from

the MPII Cooking Composite Activities video corpus [25].

Taking the standard split used in [9] as a reference, the num-

ber of clip-sentence pairs in training, validation and testing

dataset are 10,146, 4,589 and 4,083, respectively.

5.2. Implementation Details

Data Processing For ActivityNet Caption dataset, we uti-

lize the same visual features as previous methods [46, 48],

which are extracted via a publicly available pre-trained C3D

model [31] and reduced to 500 dimensions using PCA. For

Charades-STA and TACoS datasets, it’s noteworthy that

some newly-proposed state-of-the-art methods adopt dif-

ferent feature extractors due to the lack of unified feature

extraction principle. To make a fair comparison, we get

different features and annotations from the download link

provided by other authors and compare with their proposed

methods using the same features. Besides, in order to ensure

the validity of our experiments, we fix all hyper-parameters

of our model when conducting experiments on different fea-

tures and annotations of the same dataset.

Model Setting The frame number of video nv is set to

64, 32, 128 for ActivityNet Caption, Charades-STA and

TACoS, respectively. And the layer number L of graph neu-

ral network is set to 4 for ActivityNet Caption and TACoS,

and 2 for Chardes-STA. Besides, we adopt the multi-head

mechanism proposed in [32] to improve the stability. Con-

cretely, we represent visual and textual features into 2048

dimensions via encoders, split them into multiple chunks

and take the average result over all chunks, in which the

number of chunk is set to 16 for ActivityNet Caption and

8 for Charades-STA and TACoS. It’s worth noting that this

process doesn’t increase the total amount of parameters in

our CPN module. In the training phase, we employ Adam

optimizer [14] with warmup strategy [32]. The learning

rate is set to 0.001 for ActivityNet Caption and TACoS, and

0.0008 for Charades-STA. And the batch size is set to 64 for

ActivityNet Caption and 32 for Charades-STA and TACoS.

5.3. Evaluation Metrics

Following the standard setting used in [9, 20, 45, 47],

we adopt the “R@n, IoU= m” metric to evaluate the model

performance automatically and objectively. This metric rep-

resents the ratio of language queries whose corresponding

top-n grounding results have a maximum of IoU (i.e. Inter-

section over Union) being larger than m when compared

with the ground-truth annotations. And we also use the

“mIoU” metric (i.e. the mean average IoU over all results)

to compare the overall performance.

5.4. Comparison with Other Methods

We compare our method with other existing state-of-

the-art approaches proposed in recent years, which can be

grouped into three categories as follows.

• Proposal-based Methods We compare our model

with some works adopting this stategy, including

CTRL [9], TGN [5], QSPN [37], CMIN [48] and 2D-

TAN [47].

• Reinforcement-learning-based Methods We con-

sider the following two RL-based methods, namely

SM-RL [35] and TripNet [12].

• Proposal-free Methods Our proposed method can be

also grouped into this category and will be compared

with ABLR [42], PfTML-GA [24], LGI [20], VSLNet

[45], DEBUG [18] and ExCL [11].

The overall evaluation results of our CPN and other

methods on ActivityNet Caption, Charades-STA and

TACoS datasets are presented in the Table 1, 2 and 3 respec-

tively. The best results are given in bold and the second best

ones are underlined in the tables. The experimental results

reveal some notable points listed as follows.

• Compared with other approaches, our CPN method

achieves superior performance on almost all criteria of
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Table 1. Performance evaluation results on ActivityNet Caption

(n = 1 and m ∈ {0.3, 0.5, 0.7}).

Method IoU=0.3 IoU=0.5 IoU=0.7 mIoU

MCN 39.35 21.36 6.43 15.83

TGN 45.51 28.47 - -

CTRL 47.43 29.01 10.34 20.54

TripNet 48.42 32.19 13.93 -

PfTML-GA 51.28 33.04 19.26 -

QSPN 52.13 33.26 13.43 -

ABLR 55.67 36.79 - 36.99

DEBUG 55.91 39.72 - 39.51

LGI 58.52 41.51 23.07 41.13

CMIN 63.61 43.40 23.88 -

VSLNet 63.16 43.22 26.16 43.19

2D-TAN 58.75 44.05 27.38 -

Ours 62.81 45.10 28.10 45.70

Table 2. Performance evaluation results on Charades-STA (n = 1

and m ∈ {0.3, 0.5, 0.7}).

Method IoU=0.3 IoU=0.5 IoU=0.7 mIoU

2D ConvNet without fine-tuning as visual feature extractor

CTRL - 21.42 7.15 -

ABLR - 24.36 9.01 -

SM-RL - 24.36 11.17 -

TripNet - 36.61 14.50 -

QSPN 54.70 35.60 15.80 -

DEBUG - 37.69 17.69 36.34

MAN - 41.24 20.54 -

2D-TAN⋄ - 42.80 23.25 -

Ours⋄ 64.41 46.08 25.06 43.90

3D ConvNet without fine-tuning as visual feature extractor

VSLNet⋆ 64.30 47.31 30.19 45.15

Ours⋆ 68.48 51.07 31.54 48.09

3D ConvNet with fine-tuning as visual feature extractor

ExCL 65.10 44.10 23.30 -

PfTML-GA - 52.02 33.74 -

VSLNet⋆ 70.46 54.19 35.22 50.02

LGI◦ 72.96 59.46 35.48 51.38

Ours⋆ 72.94 56.70 36.62 51.85

Ours◦ 75.53 59.77 36.67 53.14

⋄ The same data as 2D-TAN are adopted.
⋆ The same data as VSLNet are adopted.
◦ The same data as LGI are adopted.

these three datasets, which verifies the effectiveness of

our proposed representation learning method and cas-

caded prediction mechanism.

• On the TACoS and Charades-STA datasets, our CPN

outperforms all state-of-the-art methods which employ

different feature extraction strategies. This observation

suggests that our proposed model is applicable and ro-

Table 3. Performance evaluation results on TACoS (n = 1 and

m ∈ {0.1, 0.3, 0.5, 0.7}).

Method IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU

MCN 14.42 - 5.58 - -

ABLR 34.70 19.50 9.40 - 13.40

DEBUG 41.15 23.45 11.72 - 16.03

CTRL 24.32 18.32 13.30 - -

QSPN 25.31 20.15 15.23 - -

SM-RL 26.51 20.25 15.95 - -

CMIN 32.48 24.64 18.05 - -

TGN 41.87 21.77 18.90 - -

TripNet - 23.95 19.17 - -

VSLNet⋆ - 29.61 24.27 20.03 24.11

2D-TAN⋄ 47.59 37.29 25.32 - -

Ours⋆ 61.24 48.29 36.58 21.25 34.63

Ours⋄ 60.54 47.69 36.33 21.58 34.49

⋄ The same data as 2D-TAN are adopted.
⋆ The same data as VSLNet are adopted.

bust to diverse features.

• By observing the evaluation results on Charades-STA

dataset, we can find that the fine-tuning strategy is al-

ways helpful to boost the performance to a large extent.

And 3D ConvNets are usually better choices for fea-

ture extraction since they can capture motion features

and provide richer temporal information.

• On the TACoS dataset, our CPN gains a large mar-

gin compared with other methods, which may stem

from the intrinsic characteristics of this dataset. In

the videos collected from the original cooking-oriented

dataset, there are only slight differences between adja-

cent frames, and the target segments might take up a

small proportion of the total length, making other mod-

els confused and ineffective. And our cascaded predic-

tion procedure can handle these two problems well.

5.5. Ablation Study

In this section, we conduct the ablation study for the con-

crete design and setting of our model.

Choice of initialization function We compare different

fusion functions in the initialization process, including 1D

convolution, 1D max-pooling and cross gate module. Fig-

ure 6 shows that the cross gate module always outperforms

the others. We tentatively infer the reason is that pooling

may blur the difference between adjacent frames thus im-

peding the model from making accurate predictions, and

the cross gate module can furthur enhance interaction and

encourage competition between neighbor frames.

Effect of signal loss In the training process, we assign the

balance factor λ to 0, therefore the supervision information
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Figure 6. Ablation study of our proposed CPN method.

within the segment will not be exploited. From Figure 6, we

can observe that the signal loss effectively provides enough

supervision information from the inside of target segments

and improve the capacity of representation learning.

Effect of message passing To verify the function of mes-

sage passing, we remove this process and proceed directly

with the initial tree structure. As shown in Figure 6, we find

that it’s quite significant to exploit context information and

it shows the effectiveness of this mechanism.

5.6. HyperParameter Analysis

In our model, the balance factor λ in the loss function is a

significant hyper-parameter. Therefore, we furthur explore

its effect to the model performance in this section. Specifi-

cally, we conduct multiple experiments by varying λ in the

range of [1, 9] and plot the evaluation results 1 in the Fig-

ure 7. We can clearly find that the optimum is obtained

when λ is 6 for ActivityNet Caption and Charades-STA and

8 for TACoS. From this observation, we speculate the rea-

son might be that too small λ would make the model inca-

pable of extracting adequate information from the inside of

target segments, while too large λ would cause the supervi-

sion from boundary annotations to be diluted, which makes

the model confused and produce blurry or unstable results.

Apart from this, some other hyper-parameter analysis can

be referred to the supplementary materials.

Figure 7. Effect of the balance factor λ in the multi-task loss on all

three datasets.

5.7. Qualitative Analysis

In order to qualitatively evaluate the performance of our

CPN method, we show a success case and a failure case

1The values are normalized by dividing the optimal value.

Query: She is instructing a class.

Ours

GT

13.43s 71.63s

12.89s 71.63s

(a) Success Case

Query: The man does push ups on the parallel bars.

Ours

GT

45.48s 59.59s

36.63s 44.66s

(b) Failure Case

Figure 8. Qualitative Examples on the ActivityNet Caption dataset.

on ActivityNet Caption dataset, which can be found in

the supplementary Figure 8. Each case presents predicted

boundary distributions and response signals 2 along with the

ground-truth annotation. In the success case, although there

are lots of scene changes appearing in the video, our CPN

method is still available to generate quite accurate predic-

tions, which demonstrates the comprehensive analysis ca-

pability of our model. And looking closer into the the fail-

ure case, we can find that our CPN mistake rope traverse

and declined pull up for push up. This may be because the

model misidentifies different actions as variants of a single

action under the change of perspective. The detailed analy-

sis can be found in the supplementary materials.

6. Conclusion

In this paper, we propose a novel cascaded prediction

network for temporal video grounding task. Our main idea

is to split the original problem into a series of cascaded sub-

tasks and solve them sequentially. Therefore, we devise a

hierarchical representation learning method to produce ef-

fective integrated features and perform decision navigation

and signal decomposition on each level to address this task.

The extensive experiments on large-scale datasets demon-

strate the effectiveness of our CPN method.
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