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Abstract

Many existing approaches for 3D point cloud semantic

segmentation are fully supervised. These fully supervised

approaches heavily rely on large amounts of labeled train-

ing data that are difficult to obtain and cannot segment new

classes after training. To mitigate these limitations, we pro-

pose a novel attention-aware multi-prototype transductive

few-shot point cloud semantic segmentation method to seg-

ment new classes given a few labeled examples. Specifically,

each class is represented by multiple prototypes to model the

complex data distribution of labeled points. Subsequently,

we employ a transductive label propagation method to ex-

ploit the affinities between labeled multi-prototypes and unla-

beled points, and among the unlabeled points. Furthermore,

we design an attention-aware multi-level feature learning

network to learn the discriminative features that capture

the geometric dependencies and semantic correlations be-

tween points. Our proposed method shows significant and

consistent improvements compared to baselines in differ-

ent few-shot point cloud semantic segmentation settings (i.e.

2/3-way 1/5-shot) on two benchmark datasets. Our code is

available at https://github.com/Na-Z/attMPTI.

1. Introduction

Point cloud semantic segmentation is a fundamental com-

puter vision problem, which aims to estimate the category

of each point in the 3D point cloud representation of a scene.

The outcome of 3D semantic segmentation can benefit var-

ious real-world applications, including autonomous driv-

ing, robotics, and augmented/virtual reality. However, point

cloud semantic segmentation is a challenging task due to the

unstructured and unordered characteristics of point clouds.

Recently, a number of fully supervised 3D semantic seg-

mentation approaches [7, 8, 10, 11, 17, 24, 28, 31] have

been proposed and have achieved promising performance

on several benchmark datasets [1, 2]. Nonetheless, their

success relies heavily on the availability of large amounts of

labeled training data that are time-consuming and expensive

to collect. Moreover, these approaches follow the closed set
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Figure 1. Few-shot point cloud semantic segmentation task is to

learn a segmentor that segments the query point cloud in terms of

new classes with learned knowledge from the support examples.

This figure illustrates an example with 2-way 1-shot setting.

assumption which states that the training and testing data

are drawn from the same label space. However, the closed

set assumption is not strictly adhered to the dynamic real

world, where new classes can easily occur after training. As

a result, these fully supervised approaches suffer from poor

generalization to new classes with only few examples.

Although several existing works used self-[26], weakly-

[6, 27] and semi-supervised [14] learning to mitigate the

data hungry bottleneck in fully supervised 3D semantic seg-

mentation, these approaches are still under the closed set

assumption, where the generalization ability to new classes

is overlooked. The increasingly popular few-shot learning

is a promising direction that allows the model to generalize

to new classes with only a few examples. In few-shot point

cloud segmentation, our goal is to train a model to segment

new classes given a few labeled point clouds, as illustrated in

Figure 1. We adopt the commonly used meta-learning strat-

egy, i.e. episodic training [22], that learns over a distribution

of similar few-shot tasks instead of only one target segmen-

tation task. Each few-shot task consists of a few labeled

samples (support set) and unlabeled samples (query set), and

the model segments the query with learned knowledge from

the support. Due to the consistency between the training few-

shot task and the testing task, the model is endowed with

better generalization ability that makes it less susceptible
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to overfitting to rare support samples. Despite the benefit

of episodic training, few-shot point cloud segmentation still

faces two major challenges on how to: 1) distill discrimina-

tive knowledge from scarce support that can represent the

distributions of novel classes; and 2) leverage this knowledge

to effectively perform segmentation.

In this paper, we propose a novel attention-aware multi-

prototype transductive inference method for few-shot point

cloud semantic segmentation. Specifically, our approach is

able to model the complex distributions of the points within

the point clouds of the support set, and perform the seg-

mentation via transductive inference with the discriminative

features extracted under the few-shot constraint. We are mo-

tivated by the prototypical network [21], which represents

each class with a single prototype obtained from averaging

the embeddings of labeled samples in the support. We pos-

tulate that such uni-modal distribution assumption can be

violated in point cloud segmentation due to the complex data

distribution of points. In particular, the geometric structures

of the points can vary largely within the same semantic class.

Consequently, we propose to represent each class with mul-

tiple prototypes to better capture the complex distribution.

Furthermore, it is important to learn discriminative features

for the few-shot 3D point cloud semantic segmentation set-

ting. To this end, we meticulously design an attention-aware

multi-level feature learning network to learn the point-wise

features by capturing the geometric dependencies and se-

mantic correlations between the points. Subsequently, we

perform the segmentation step in a transductive manner with

the multiple prototypes in the learned feature space. In

contrast to the conventional prototypical network [21] that

matches unlabeled instances with the class prototypes by

computing their Euclidean distances, our transductive in-

ference not only considers the relationships between the

unlabeled query points and the multi-prototypes, but also

exploits the relationships among the unlabeled query points.

The main contributions of this work are: 1) We are the

first to study the promising few-shot 3D point cloud seman-

tic segmentation task, which allows a model to segment

new classes given a few or even one example(s). 2) We

propose a novel attention-aware multi-prototype transduc-

tive inference method. Our designs of the attention-aware

multi-level feature learning, and the affinity exploitation be-

tween multi-prototypes and unlabeled query points enable

our model to obtain highly discriminative features and ac-

complish more precise segmentation in the few-shot scenario.

3) We conduct comprehensive experiments on the S3DIS and

ScanNet datasets to demonstrate the superior performance of

the proposed approach over baselines in different (i.e. 2-/3-

way 1-/5-shot) few-shot point cloud segmentation settings.

Specifically, our method improves over the fine-tuning base-

line in the challenging 3-way 1-shot setting by 52% and 53%

on the S3DIS and ScanNet dataset, respectively.

2. Related Work

3D Semantic Segmentation. Many deep learning based

approaches [7, 8, 10, 11, 17, 24, 28, 31] are proposed to

tackle 3D semantic segmentation using full supervisions, i.e.

point-wise ground truths. PointNet [17] is the first work that

designs an end-to-end deep neural network to segment raw

point clouds instead of their transformed representations, e.g.

voxel grids and multi-view images. Despite its simplicity

and efficiency, PointNet overlooks the important local infor-

mation embedded in the neighboring points. DGCNN [24]

addresses this issue by designing the EdgeConv module that

can capture local structures. In our work, we make use of

DGCNN as the backbone of our feature extractor to extract

local geometric features and semantic features. Although

these fully supervised approaches achieved promising seg-

mentation performance, their requirement for large amounts

of training data precludes their use in many real-world sce-

narios where training data is costly or hard to acquire. More-

over, these approaches can only segment a set of pre-defined

classes that are seen during training. To alleviate these limi-

tations, we explore the direction of few-shot learning for 3D

semantic segmentation. This enables the model to segment

new classes by seeing just a few labeled samples.

Few-shot Learning. The goal of few-shot learning is to

develop a classifier that is able to generalize to new classes

with very few examples (e.g. one example for the one-shot

case). To address this challenging few-shot learning, several

meta-learning approaches [4, 5, 15, 18, 19, 21, 22] have pro-

posed to learn transferable knowledge from a collection of

learning tasks and made significant progress. In particular,

metric-based method [5, 21, 22] is notable because of its

effectiveness in directly inferring labels for unseen classes

during inference. The key idea in metric-based method is to

learn a good metric function which is able to produce a simi-

larity embedding space representing the relationship between

labeled and unlabeled samples. Matching network [22] and

Prototypical Network [21] are two representative metric-

based methods. Both methods utilize deep neural network to

map the support and query sets into an embedding space, and

then apply a non-parametric method to predict classes for the

query based on the support. Specifically, matching network

leverages the weighted nearest neighbor method that repre-

sents a class by all its support samples, while prototypical

network leverages the prototypical method that represents

a class by the mean of its support samples. These two non-

parametric methods become two extreme ends of the spec-

trum of complicated to simple data distribution modeling

when applied to few-shot point cloud semantic segmentation.

This is because the support samples for one class in the point

cloud counterpart can contain a large number of points. In

this paper, we represent each class in point clouds some-

where between the two extremes with multiple prototypes

and perform segmentation in a transductive manner.
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Figure 2. The architecture of our proposed method. This figure illustrates a 3-way 1-shot setting.

Few-shot Image Segmentation. All approaches men-

tioned previously focused on the few-shot image classifi-

cation task. Only recently, several works [3, 12, 16, 20, 23,

29, 30] started to study few-shot learning on image segmen-

tation by extending these meta-learning techniques to pixel

levels. Most existing approaches [3, 16, 23, 30] leverage

on metric-based techniques to solve a one-to-many match-

ing problem between the support and query branch, where

the support sample(s) of each class is represented as one

global vector. On the contrary, Zhang et al. [29] considers

the problem as many-to-many matching, where the support

branch is represented as a graph with each element in the

feature map of the support sample(s) as a node. However,

these few-shot image segmentation approaches learn image

features by using convolution neural network (CNN) based

architectures, which are not applicable to point cloud data

due to the irregular structures of point clouds. Moreover,

the properties of a good embedding space are different for

point clouds (c.f . Section 3.2.1) and images. In view of the

differences, we design an attention-aware multi-level fea-

ture learning network and propose a novel attention-aware

multi-prototype transductive inference method for the task

of few-shot 3D point cloud semantic segmentation.

3. Our Methodology

3.1. Problem Definition

We align the training and testing of few-shot point cloud

semantic segmentation with the episodic paradigm [22] that

is commonly used in few-shot learning. Specifically, we

train our model on a group of few-shot tasks sampled from

a data set with respect to a training class set Ctrain, and

then we test the trained model by evaluating it on another

group of tasks sampled from a different data set with respect

to new classes Ctest, where Ctest ∩ Ctrain = ∅. Each

few-shot task, a.k.a. an episode, is instantiated as an N -

way K-shot point cloud semantic segmentation task. In

each N -way K-shot episode, we are given a support set,

denoted as S = {(P1,k
s ,M1,k)Kk=1, ..., (P

N,k
s ,MN,k)Kk=1},

with K labeled pairs of support point cloud Pn,k
s and its

corresponding binary mask Mn,k for each of the N unique

classes. Each point cloud P ∈ R
M×(3+f0) contains M

points associated with the coordinate information ∈ R
3 and

an additional feature ∈ R
f0 , e.g. color. We are also given

a query set, denoted as Q = {(Pi
q,Li)}Ti=1, which contains

T pairs of query point cloud Pi
q and its corresponding label

Li ∈ R
M×1. Note that the ground-truth label L is only

available during training. The goal of N -way K-shot point

cloud semantic segmentation is to learn a model fΦ(Pq, S)
that predicts the label distribution H ∈ R

M×(N+1) for any

query point cloud Pq based on S. Formally, our training

objective is to find the optimal parameters Φ∗ of fΦ(Pq, S)
by computing:

Φ∗ = argmin
Φ

E(S,Q)∼Ttrain

[

∑

(Pi
q,L

i)∈Q

J(Li, fΦ(P
i
q, S))

]

,

(1)

where Ttrain denotes the training set containing all the

episodes sampled from Ctrain, and J(·) is the loss func-

tion that will be defined in Section 3.2.4.

3.2. Attention­aware Multi­prototype Transductive
Inference Method

Figure 2 illustrates our attention-aware multi-prototype

transductive inference framework. It consists of five compo-

nents: 1) the embedding network that learns the discrimi-

native features for the support and query point clouds; 2) the

multi-prototype generation that produces multiple proto-

types for each of the N + 1 classes (N semantic classes and

one background class); 3) the k-NN graph construction

that encodes both the cross-set (support-query) and intra-set

(support-support, query-query) relationships within the em-
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bedding space; 4) the label propagation that diffuses labels

through the whole graph along high density areas formed by

the unlabeled query points; and 5) the cross-entropy loss

function that computes the loss between the predicted labels

and ground-truth labels of all the query points.

3.2.1 Embedding Network

The embedding network is the most important part of our

model since both multi-prototype generation and k-NN

graph construction are dependent on the learned embedding

space. We expect this space to possess three properties: it

can 1) encode the geometric structures of points based on lo-

cal context; 2) encode the semantic information of points and

their semantic correlation based on global context; and 3)

quickly adapt to different few-shot tasks. To this end, we de-

sign an attention-aware multi-level feature learning network

that incorporates three levels of features: local geometric

features, global semantic features, and metric-adaptive fea-

tures. Specifically, our embedding network is composed

of three modules: feature extractor, attention learner, and

metric learner. We adopt DGCNN [24], a dynamic graph

CNN architecture, as the backbone of our feature extractor

to respectively produce local geometric features (outputs

of the first EdgeConv layer) and semantic features (outputs

of the feature extractor). To further explore semantic cor-

relation between points in the global context, we apply a

self-attention network (SAN) on the generated semantic fea-

tures. SAN allows the point-wise feature to aggregate the

global contextual information of the corresponding point

cloud in a flexible and adaptive manner. The architecture of

SAN is illustrated in Figure 3. In addition, we introduce the

metric learner, i.e. a stack of multi-layer perceptrons (MLP)

layers to enable faster adaptability of the embedding space

to different few-shot tasks since the feature extractor is up-

dated with a slower learning rate (c.f . the training details in

Section 4.2). The metric learner maps all point-wise features

of support and query sets into a manifold space, where com-

mon distance functions (e.g. euclidean distance or cosine

distance) can be directly used to measure proximity between

points. Finally, we concatenate the three levels of learned

features together as the output of the embedding network.

3.2.2 Multi-prototype Generation

For each of the N +1 classes in the support set, we generate

n1 prototypes to model the complex data distribution accord-

ing to the few labeled samples in the episode. We cast the

generation procedure as a clustering problem. While there

can be different ways to cluster support points into multiple

prototypes, we employ a simple strategy: sampling seed

1Although we can vary n for different classes, we keep it uniform for

simplicity.
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Figure 3. The architecture of Self Attention Network (SAN). θ, ϕ,

and ψ are linear embedding functions with trainable parameters.

points and point-to-seed assignment based on the learned

embedding space. Specifically, we sample a subset of n

seed points from a set of support points in one class using

the farthest point sampling based on the embedding space.

Intuitively, the farthest points in this space can inherently

represent different perspectives of one class if the embed-

ding space is learned well. Let {sci}
n
i=1 and {fci}

mc

i=1, where

{sci}
n
i=1 ⊂ {fci}

mc

i=1, denote the sampled seeds and all the

mc support points belonging to the class c, respectively. We

compute the point-to-seed distance and take the index of

the closest seed as the assignment of a point. Formally, the

multi-prototypes µc of class c is given by:

µ
c =

{

µ
c
1, ...,µ

c
n | µc

i =
1

|Ic∗
i |

∑

fc
j
∈Ic∗

i

fcj

}

s.t. Ic∗ = argmin
Ic

n
∑

i=1

∑

fc
j
∈Ic

i

‖fcj − sci‖2,

(2)

where {fci}
mc

i=1 is partition into n sets Ic∗ = {Ic∗
1 , ..., Ic∗

n }
such that f cj ∈ Ic∗

i is assigned to sci .

3.2.3 Transductive Inference

In addition to the similarity relations between each unla-

beled query point and the labeled multi-prototypes, we also

consider the similarity relations between pairs of unlabeled

query points to exploit the “smoothness” constraints2 among

neighboring query points in our few-shot point cloud seman-

tic segmentation task. To this end, we leverage on transduc-

tive inference to reason cross-set and intra-set relationships

based on the embedding space. Concretely, we propose the

use of transductive label propagation to construct a graph on

the labeled multi-prototypes and the unlabeled query points,

and then propagate the labels in the graph with random walk.

k-NN graph construction. To mitigate the large number

of query points, we construct a k Nearest Neighbor (NN)

graph instead of a fully-connected graph for computational

efficiency. Specifically, we take both the n× (N + 1) multi-

prototypes and T × M query points as nodes of a graph

with size V = n × (N + 1) + T × M . We construct a

sparse affinity matrix, denoted as A ∈ R
V×V , by computing

2Nearby points are most likely to have the same label.
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the Gaussian similarity between each node and its k nearest

neighbors in the embedding space:

Aij = exp(−
||vi − vj ||

2
2

2σ2
), for vj ∈ Nk(vi), (3)

where vi represents the node feature and σ2 is the variance

of the distance between two nodes. We follow [9] to let

W = A + A⊤, this assures the adjacency matrix is non-

negative and symmetric. Subsequently, we symmetrically

normalize W to yield S = D−1/2WD−1/2, where D is the

diagonal degree matrix with its diagonal value to be the sum

of the corresponding row of W. Furthermore, we define a

label matrix Y ∈ R
V×(N+1), where the rows corresponding

to labeled prototypes are one-hot ground truth labels and the

rest are zero.

Label propagation. Given S and Y, label propagation it-

eratively diffuses labels through the graph according to:

Zt+1 = αSZt + (1− α)Y. (4)

Zt ∈ R
V×(N+1) represents the predicted label distributions

at iteration t, and α ∈ (0, 1) is a parameter that controls the

relative probability of the information from its adjacency

nodes or its initial labels. In [32], Zhou et al. show that

sequence {Zt} converges to a closed-form solution:

Z∗ = (I − αS)−1Y. (5)

We adopt the closed-form solution to directly compute the

predictions Z∗ of label propagation.

3.2.4 Loss Function

Once Z∗ is obtained, we first take the predictions correspond-

ing to the T query point clouds denoted as {zi}Ti=1, where

zi ∈ R
M×(N+1) represents the predictions of the point cloud

Pi
q. The prediction of each point in zi is then normalized

into a probability distribution using the softmax function:

Hi
m,n =

exp(zim,n)
∑N+1

j=1 exp(zim,j)
, (6)

Finally, we compute the cross-entropy loss between

{Hi}Ti=1 and the ground truth labels {Li}Ti=1 as:

JΦ = −
1

T

1

M

T
∑

i=1

M
∑

m=1

N+1
∑

n=1

1[Li
m = n] log(Hi

m,n), (7)

where Φ is the set of parameters of our model fΦ(Pq, S).
More precisely, fΦ(Pq, S) = h(gΦ(Pq,Ps),M) is a com-

posite function of the embedding network gΦ(.), and the

multi-prototypes generation and transductive inference op-

erations h(.). It becomes apparent that the minimization of

J over the parameters Φ is governed by the affinity prop-

erties among the labeled multi-prototypes and unlabeled

query points since the gradients have to flow through the

parameter-less h(.) into the embedding network gΦ(.).

4. Experiments

We conduct experiments to evaluate the effectiveness of

our method on two benchmark datasets. To the best of our

knowledge, there is no prior study of few-shot point cloud

semantic segmentation. Thus, we design the setup of the

dataset, implementation details, and baselines for evaluation.

4.1. Datasets and Setup

Datasets. We evaluate on two datasets: 1) S3DIS [1] con-

sists of 272 point clouds of rooms with various styles (e.g.

lobby, hallway, office, pantry). The annotation of the point

clouds corresponds to 12 semantic classes plus one for the

clutter. 2) ScanNet [2] consists of 1,513 point clouds of

scans from 707 unique indoor scenes. The annotation of the

point clouds corresponds to 20 semantic classes plus one for

the unannotated space.

Setup. To customize the dataset to the few-shot learning

setting, we evenly split the semantic classes in each dataset

into two non-overlapping subsets based on the alphabetical

order of the class names. The splitting details are listed in

Table 1 of the supplementary material. For each dataset, we

perform cross-validation on the corresponding two subsets

by selecting one split as the test class set Ctest, while taking

the remaining split as the training class set Ctrain.

Since the number of points in the original rooms is large,

we follow the data pre-processing strategy used in [17, 24] to

divide the rooms into blocks using a non-overlapping sliding

window of 1m×1m on the xy plane. As a result, S3DIS and

ScanNet give 7,547 and 36,350 blocks, respectively. From

each block, M = 2, 048 points are randomly sampled.

The training set Ttrain is constructed by including all the

blocks that contain at least 100 points for any target class in

Ctrain. During training, we randomly sample one episode

from Ttrain using the following procedure: we first ran-

domly choose N classes from Ctrain, where N < |Ctrain|;
and then a support set S and a query set Q are randomly

sampled based on the chosen N classes. The mask M in the

support set and the label L in the query set are modified from

the original point annotations accordingly to correspond to

the chosen classes. The testing episodes are formed in a

similar fashion, with the exception that we exhaustively it-

erate all the combinations of N classes out of Ctest rather

than randomly choosing N classes. Specifically, we sample

100 episodes for each combination and use them as the Ttest
for evaluating each of the methods in our experiments. It is

worth highlighting that the same point cloud can appear in

both Ttrain and Ttest, but the annotations of this point cloud

are different due to the difference in the classes of interest.

Evaluation metric. For the evaluation metric, we adopt

the widely used metric in point cloud semantic segmentation,

i.e. mean Interaction over Union (mean-IoU). In our few-

shot setting, the mean-IoU is obtained by averaging over the

set of testing classes Ctest.
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Method

2-way 3-way

1-shot 5-shot 1-shot 5-shot

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

FT 36.34 38.79 37.57 56.49 56.99 56.74 30.05 32.19 31.12 46.88 47.57 47.23

ProtoNet 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24

AttProtoNet 50.98 51.90 51.44 61.02 65.25 63.14 42.16 46.76 44.46 52.20 56.20 54.20

MPTI 52.27 51.48 51.88 58.93 60.56 59.75 44.27 46.92 45.60 51.74 48.57 50.16

Ours 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86

Table 1. Results on S3DIS dataset using mean-IoU metric (%). Si denotes the split i is used for testing.

Method

2-way 3-way

1-shot 5-shot 1-shot 5-shot

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

FT 31.55 28.94 30.25 42.71 37.24 39.98 23.99 19.10 21.55 34.93 28.10 31.52

ProtoNet 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17

AttProtoNet 37.99 34.67 36.33 52.18 46.89 49.54 32.08 28.96 30.52 44.49 39.45 41.97

MPTI 39.27 36.14 37.71 46.90 43.59 45.25 29.96 27.26 28.61 38.14 34.36 36.25

Ours 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77

Table 2. Results on ScanNet dataset using mean-IoU metric (%). Si denotes the split i is used for testing.

4.2. Implementation Details

Framework details. We illustrate the architecture and

configuration of the embedding network in Figure 2 (bottom).

Following [32], the hyper-parameter α in label propagation

is set to 0.99. The settings of the other three hyperparam-

eters (i.e. n in multi-prototype generation, k and σ in the

k-NN graph construction) are discussed in Section 4.4 and

supplementary Section B.1.

Training. We pre-train the feature extractor module on

training set Ttrain by adding three MLP layers at the end

of feature extractor as the segmentor over Ctrain. During

pre-training, we set the batch size to 32 and train for 100

epochs. The pre-trained model is optimized by Adam with a

learning rate of 0.001. After initializing the feature extractor

with the pre-trained weights, we use the Adam optimizer

with an initial learning rate of 0.0001 for the feature extractor

module, and an initial learning rate of 0.001 for the metric

learner and attention learner modules, respectively. Both

learning rates are decayed by half after 5,000 iterations. In

each iteration, one episode is randomly sampled, and all the

point clouds in the support and query set are augmented by

Gaussian jittering and random rotation around z-axis.

4.3. Baselines

We design four baselines for comparison with our method.

Fine-tuning (FT). We take the architecture of our pre-

trained segmentation network as the backbone of this base-

line. For fair comparison, we use the same pre-trained

weights for this segmentation network and our method. Fol-

lowing the strategy in [20], we fine-tune the trained segmen-

tation network on samples from the support set and test on

the query samples for each N -way K-shot task. To avoid

overfitting, we only fine-tune the last three MLP layers.

Prototypical Learning (ProtoNet). We adapt the proto-

typical network [5] utilized in the few-shot image segmen-

tation [3, 23] task to few-shot point cloud segmentation. To

extract the point-wise features for the support and query sets,

we use similar architecture as our embedding network but

replace SAN with a linear mapper that maps the features into

the same dimension as SAN. Similarly, the feature extractor

is initialized by the same pre-trained weights. We represent

each class by one prototype given by the mean feature of its

support points. The predictions of query points are from its

squared Euclidean distance with respect to the prototypes.

Attention-aware Prototypical Learning (AttProtoNet).

This baseline is an upgraded version of ProtoNet, where

the self-attention mechanism is added into the embedding

network. In other words, it uses the same architecture as our

embedding network.

Multi-prototype Transductive Inference (MPTI). This

can be considered as a degraded version of our method,

where the attention learner module (SAN) in the embedding

network is replaced by a linear mapper similar to ProtoNet.

4.4. Results and Analyses

Comparison with baselines. Table 1 and 2 summarize the

results of comparing our method to the baselines on S3DIS

and ScanNet, respectively. It is not surprising that using

more labeled samples, i.e. larger K-shot leads to signifi-

cant improvements for all the methods. We also observe

that the performance of 3-way is generally lower than 2-

way segmentation due to its higher difficulty. As can be

seen from the two tables, our proposed method consistently

and significantly outperforms the baselines in all four set-

tings, i.e. 2/3-way 1/5-shot on both datasets. Particularly, our

method improves upon FT under the challenging 3-way 1-
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Figure 4. Effects of three hyper-parameters under 2-way 1-shot setting on S3DIS (S0) and ScanNet (S1) datasets.

fgeometric fsemantic fmetric S3DIS ScanNet

✓ ✗ ✗ 40.31 26.91

✗ ✓ ✗ 44.43 34.51

✗ ✗ ✓ 48.24 35.07

✓ ✓ ✗ 47.82 38.69

✓ ✗ ✓ 52.21 36.12

✗ ✓ ✓ 50.12 39.81

✓ ✓ ✓ 53.77 40.83

Table 3. Effects of different levels of features under 2-way 1-shot

setting on S3DIS (S0) and ScanNet (S1) datasets.

shot setting by around 52% and 53% on S3DIS and ScanNet

dataset, respectively. Compared to ProtoNet, our method

gains around 10% and over 20% improvements on S3DIS

and ScanNet, respectively, when using only one sample, i.e.

one-shot. These improvements shows that our proposed

method can obtain more useful knowledge from very lim-

ited data during inference. The superiority of our method

as compared to AttProtoNet shows the contribution of our

proposed multi-prototype transductive inference mechanism.

Additionally, both the improvements of AttProtoNet over

ProtoNet and the improvements of our method over MPTI

demonstrate the capacity of self-attention network in exploit-

ing semantic correlations between the points, which is very

important in inferring point-wise semantic labels.

An interesting observation is that the degraded version of

our method, i.e. MPTI clearly outperforms ProtoNet under

the one-shot settings, but loses the gain under five shots. This

is probably due to the naive multi-prototype generation of

MPTI made it difficult to extract accurate multi-prototypes

for a large number of support points if the embedding space

is not learned well. This phenomenon also indicates the im-

portance of incorporating the self-attention network, which

helps in learning a more representative embedding space.

Ablation study of multi-level features. We study the ef-

fects of various designs of the embedding network since

it is one of the most important components of our method.

We denote the levels of features, i.e. local geometric fea-

ture, global semantic feature, and metric-adaptive feature as

fgeometric, fsemantic, and fmetric, respectively. We select

one or two level(s) of feature(s) as our embedded feature3

for the estimation of its(their) contribution(s). The results

3Specifically, the output of the embedding network will be the selected

feature or the concatenation of the two selected features.

of six variants are listed in Table 3. From the perspective

of individual feature, fsemantic and fmetric contribute more

than fgeometric. This is reasonable since the embedding

space are supposed to be semantic. By combining any two

levels of features, we achieve varying improvements on the

two datasets. Eventually, the integration of the three levels

of features gives us the best performance on both datasets.

Effects of hyper-parameters. In Figure 4, we illustrate

the effects of three hyper-parameters (i.e., n, k, σ) for 2-way

1-shot point cloud semantic segmentation on one split of

each dataset. As can be seen from Figure 4(a), increasing the

number of prototypes per class n can achieve better results,

but overly large n can lead to the over-fitting problem and

cause adverse impact on the performance. As Figure 4(b)

shows, there is a slight difference on performance between

the two datasets when choosing a smaller k, i.e. k = 50.

However, the overall trend is similar, and the selection of

k = 200 gives the best result on both datasets. As reported

in [13, 25], σ in the Gaussian similarity function used in the

construction of the affinity matrix (see Eq. 3) plays a role

in the performance of label propagation. We empirically

find that σ in different datasets has different optimal values.

Specifically, σ = 1 on S3DIS and σ = 5 on ScanNet enable

us to achieve the best performance, respectively.

4.5. Qualitative Results

Figure 5 and 6 show the qualitative results of our pro-

posed method for 2-way 1-shot point cloud semantic seg-

mentation on the S3DID and ScanNet dataset, respectively.

We compare the predictions of one query point cloud from

our method with the ground truths and predictions from Pro-

toNet. As we can see from Figure 5, the S3DIS dataset is

very challenging in many scenarios, e.g., “the white columns

that are very similar to the white wall and the window frame”

(first row of Figure 5), “the doors that only have visible door

frames” (second row of Figure 5), “the table that has a lot

of clutter on it” (last row of Figure 5). The accuracy of the

predictions from our method drops for these challenging

scenarios due to the limitation of having only one labeled

sample as support. Nonetheless, our method still generally

gives more accurate segmentation results than ProtoNet in all

cases (e.g. our method nicely segments the ‘ceiling’, ‘floor’,
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Input	Point	Cloud Ground	Truth Ours

chairfloorceiling backgroundwalldoorcolumn tablebookcase

ProtoNet

Figure 5. Qualitative results of our method in 2-way 1-shot point

cloud semantic segmentation on the S3DIS dataset in comparison

to the ground truth and ProtoNet. Four combinations of 2-way are

illustrated from the top to bottom rows, i.e., “ceiling, column” (first

row), “floor, door” (second row), “chair, bookcase” (third and forth

rows), “table, wall” (last row).

‘chair’, ‘bookcase’, ‘table’ in each scene from top to bottom

in Figure 5).

In contrast to the S3DIS dataset, the ScanNet dataset

contains more diverse room types, such as bathroom (see

first and last rows of Figure 6), bedroom/hotel (see second

row of Figure 6), living room/lounge (see third and fifth

rows of Figure 6), etc. Our proposed method is able to

correctly segment most of semantic classes within these new

room types, while ProtoNet gives poor segmentation results

that mix the background class with the semantic classes.

We believe that our correct segmentations are consequences

of integrating the attention-aware feature embedding and

multi-prototype transductive inference, which facilitates the

smoothness among neighboring points and the distinction

between different semantic classes.

5. Conclusion

This paper investigates the unexplored yet important few-

shot point cloud semantic segmentation problem. We pro-

pose a novel solution: the attention-aware multi-prototype

Input	Point	Cloud Ground	Truth Ours

floorsofacabinet backgroundtoiletsinkchairwindowbed

ProtoNet

Figure 6. Qualitative results of our method in 2-way 1-shot point

cloud semantic segmentation on the ScanNet dataset in comparison

to the ground truth and ProtoNet. Four combinations of 2-way are

illustrated from the top to bottom rows, i.e., “cabinet, bed” (first

and second rows), “sofa, window” (third and forth rows), “chair,

floor” (fifth row), “sink, toilet” (last row).

transductive inference method, which achieves clear and

consistent improvements over baselines on a variety of few-

shot point cloud semantic segmentation tasks. Furthermore,

this work offers several key insights on few-shot 3D point

cloud semantic segmentation. Firstly, the learning of the

discriminative features that encode both geometric and se-

mantic context is the core of the metric-based few-shot point

cloud semantic segmentation method. Secondly, the data

distributions of 3D point clouds are complex and cannot be

sufficiently modeled by a uni-modal distribution. Thirdly,

the exploitation of intrinsic relationships in the embedding

space is necessary for the point cloud segmentation task. Fu-

ture work could investigate an adaptive generation of multi-

prototypes to efficiently infer the number of prototypes based

on data complexity.
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