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Abstract

Recent advances in person re-identification (ReID) ob-

tain impressive accuracy in the supervised and unsuper-

vised learning settings. However, most of the existing meth-

ods need to train a new model for a new domain by access-

ing data. Due to public privacy, the new domain data are

not always accessible, leading to a limited applicability of

these methods. In this paper, we study the problem of multi-

source domain generalization in ReID, which aims to learn

a model that can perform well on unseen domains with

only several labeled source domains. To address this prob-

lem, we propose the Memory-based Multi-Source Meta-

Learning (M3L) framework to train a generalizable model

for unseen domains. Specifically, a meta-learning strat-

egy is introduced to simulate the train-test process of do-

main generalization for learning more generalizable mod-

els. To overcome the unstable meta-optimization caused by

the parametric classifier, we propose a memory-based iden-

tification loss that is non-parametric and harmonizes with

meta-learning. We also present a meta batch normaliza-

tion layer (MetaBN) to diversify meta-test features, further

establishing the advantage of meta-learning. Experiments

demonstrate that our M3L can effectively enhance the gen-

eralization ability of the model for unseen domains and can

outperform the state-of-the-art methods on four large-scale

ReID datasets.

1. Introduction

Person re-identification (ReID) aims at matching persons

of the same identity across multiple camera views. Recent

works in ReID mainly focus on three settings, i.e., fully-
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Comparison of different settings in ReID.

Setting
Source(s) Target(s)

Multi Images Labels Images Labels

Fully-Supervised × X X — —
Fully-Unsupervised × X × — —
Single-Source UDA × X X X ×
Single-Source DG × X X × ×
Multi-Source DG X X X × ×

Figure 1: Comparison of different settings in person ReID.

Different background colors indicate different distributions,

i.e., domains. Solid/dashed ellipses denote data subset

with/without labels. Domain generalization (DG) is de-

signed to learn models for unseen domains, while other

settings focus on learning models for specific domains.

Compared to single-source DG, multi-source DG leverages

knowledge from multiple labeled datasets, enforcing the

model to learn more underlying patterns across domains.

supervised [45, 47, 55], fully-unsupervised [23, 24, 39] and

unsupervised domain adaptive [8, 44, 52] ReID. Despite

their good performance on a seen domain (i.e., a domain

with training data), most of them suffer from drastic per-

formance decline on unseen domains. In real-world appli-

cations, the ReID systems will inevitably search persons in

new scenes. Therefore, it is necessary to learn a model that

has good generalization ability to unseen domains.

To meet this goal, domain generalization (DG) is a

promising solution that aims to learn generalizable models

with one or several labeled source domains. As shown in
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Fig. 1, compared to other settings, DG does not require the

access to target domains. Generally, DG can be divided into

two categories, single-source DG [14, 22, 56] and multi-

source DG [16, 33], according to the number of source do-

mains. Recent works mainly focus on single-source DG

where only one labeled source domain is available. How-

ever, a single domain provides limited training samples and

scene information, restricting the improvement of single-

source DG methods. In contrast, multi-source DG utilizes

multiple datasets of different distributions, providing more

training data that contain numerous variations and environ-

mental factors. However, due to the strong compatibility

of deep networks, directly aggregating all source domains

together might lead the model to overfit on the domain

bias, hampering the generalization ability of the model.

Although we can sample balanced training data from all

source domains during training to reduce the impact of do-

main bias, the above issue still remains.

In this paper, we study the multi-source DG and aim to

enforce the model to learn discriminative features without

domain bias so that the model can be generalized to un-

seen domains. To achieve this goal, this paper introduces

a meta-learning strategy for multi-source DG, which simu-

lates the train-test process of DG during model optimiza-

tion. In our method, we dynamically divide the source

domains into meta-train and meta-test sets at each itera-

tion. The meta-train is regarded as source data, and the

meta-test is regarded as “unseen” data. During training, we

encourage the loss of meta-train samples to optimize the

model towards a direction that can simultaneously improve

the accuracy of meta-test samples. Nevertheless, meta-

learning causes a problem for traditional parametric-based

identification loss — unstable optimization. On the one

hand, ReID datasets contain numerous IDs, so the num-

ber of classifier parameters will surge when multiple do-

mains are used for training. On the other hand, the uni-

fied optimization of classifiers is unstable due to the asyn-

chronous update by the high-order gradients of the meta-

test. Consequently, we propose a memory-based identifi-

cation loss, which uses a non-parametric memory to take

full advantage of meta-learning while avoiding unstable op-

timization. We also introduce a meta batch normalization

layer (MetaBN), which mixes meta-train knowledge with

meta-test features to simulate the feature variations in dif-

ferent domains. Our full method is called Memory-based

Multi-Source Meta-Learning (M3L). Experiments on four

large-scale ReID datasets demonstrate the effectiveness of

our M3L when testing on unseen domains and show that

our M3L can achieve state-of-the-art results.

Our contributions are summarized as follows:

• We propose a Multi-Source Meta-Learning framework

for multi-source DG, which can simulate the train-test

process of DG during training. Our method enables the

model to learn domain-invariant representations and

thus improves the generalization ability.

• We equip our framework with a memory-based mod-

ule, which implements the identification loss in a non-

parametric way and can prevent unstable optimization

caused by traditional parametric manner during meta-

optimization.

• We present MetaBN to generate diverse meta-test fea-

tures, which can be directly injected into our meta-

learning framework and obtain further improvement.

2. Related Work

Person Re-identification. Recently, supervised learning

approaches [4, 34, 36, 40, 45, 47, 50, 54, 55] have achieved

significant performance in person re-identification (ReID),

relying on labeled training data. Considering the difficul-

ties and complexities of annotations, unsupervised learn-

ing (USL) [6, 23, 24, 39] and unsupervised domain adap-

tation (UDA) [5, 8, 43, 44, 51, 52, 57] methods are pro-

posed. UDA aims to utilize labeled source data and un-

labeled target data to improve the model performance on

the target domain. UDA methods mainly focus on gener-

ating pseudo-labels on target data [8, 44, 52] or transfer-

ring source images to the styles of the target domain for

providing extra supervision during adaptation [5, 51, 57].

USL approaches learn discriminative features only from un-

labeled target data, the mainstream [6, 23] of which is to

train models with pseudo-labels obtained by clustering.

Domain Generalization. Although USL and UDA

ReID methods show good performance, they still need to

collect a large amount of target data for training models.

In contrast, domain generalization (DG) has no access to

any target domain data. By carefully designing, DG meth-

ods [3, 14, 17] can improve the model performance on un-

seen domains. Most existing DG methods focus on closed-

set tasks [3, 15, 17, 26, 29], assuming that the target data

have the same label space as the source data. Lately, sev-

eral works [14, 22, 33, 56] were introduced to learn gen-

eralizable models for person ReID. SNR [14] disentangles

identity-relevant and identity-irrelevant features and recon-

structs more generalizable features. Liao et al. [22] pro-

pose a novel QAConv for calculating the similarity between

samples, which can effectively improve ReID accuracy in

unseen data but is inefficient during testing. DIMN [33]

proposes a mapping subnet to match persons within a mini-

batch and trains the model with data from one domain at

each iteration. Song et al. [33] claim that DIMN uses meta-

learning in the training stage. However, DIMN optimizes

the model with the common training strategy, which is com-

pletely different from our meta-learning strategy.

Meta Learning. The concept of meta-learning [37] is

learning to learn, and has been initially proposed in the
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Figure 2: The framework of the proposed M3L. During training, we are given several (three in this example) source domains.

At each iteration, source domains are divided into one meta-test and two meta-train domains. In the meta-train stage, memory-

based identification loss and triplet loss are calculated from meta-train data as the meta-train loss. In the meta-test stage, the

original model is copied and then the copied model is updated with meta-train loss. We compute the meta-test loss on the

updated model. In this stage, MetaBN is used to diversify the meta-test features. Finally, the combination of meta-train and

meta-test losses is used to optimize the original model.

machine learning community. Recently, meta-learning has

been applied to various deep-based applications, including

model optimization [1, 19], few-shot learning [7, 32, 35, 38]

and domain generalization [2, 10, 17, 18, 21]. MAML [7]

and its variant Reptile [27] are proposed to learn a good

initialization for fast adapting a model to a new task. Li

et al. [17] first extend MAML [7] to closed-set DG. Latter,

meta-learning was applied to closed-set DG [2, 18, 21] and

open-set DG [10]. In this paper, we propose a memory-

based meta-learning approach, which is tailor-made for

multi-source DG in ReID.

3. Methodology

For multi-source domain generalization (DG) in person

ReID, we are provided with NS source domains DS =
{D1

S , ...,D
NS

S } in the training stage. The label spaces of the

source domains are disjointed. The goal is to train a gener-

alizable model with the source data. In the testing stage, the

model is evaluated directly on a given unseen domain DT .

3.1. Overview

This paper designs a Memory-based Multi-source Meta-

Learning (M3L) framework for multi-source domain gen-

eralization (DG) in person ReID task. In our framework,

we introduce a meta-learning strategy, which simulates the

train-test process of DG during model optimization. Specif-

ically, we dynamically split the source domains into meta-

train and meta-test at each iteration. During training, we

first copy the original model and update it with the loss from

meta-train data. Then we use the updated model to com-

pute the meta-test loss. The memory-based identification

loss and triplet loss are adopted for effective meta-learning.

We also inject a meta batch normalization layer (MetaBN)

into the network, which diversifies the meta-test features

with meta-train distributions to further facilitate the effect

of meta-learning. Finally, the combination of the meta-train

and meta-test losses is used to update the original model to-

wards a generalizable direction that performs well on meta-

train and meta-test domains.

3.2. MetaLearning for MultiSource DG

We adopt the concept of “learning to learn” to simu-

late the train-test process of domain generalization during

the model optimization. At each training iteration, we ran-

domly divide NS source domains into NS − 1 domains as

meta-train and the rest one domain as meta-test. The pro-

cess of computing the meta-learning loss includes the meta-

train and the meta-test stages.

In the meta-train stage, we calculate the meta-train loss

Lmtr on the meta-train samples to optimize the model. In

the meta-test stage, the optimized model is used to calculate

the meta-test loss Lmte with the meta-test samples. Finally,

the network is optimized by the combination of meta-train

and meta-test losses, i.e.,

argmin
Θ

Lmtr(Θ) + Lmte(Θ
′

), (1)

where Θ denotes the parameters of the network, and Θ
′

de-

notes the parameters of the model optimized by the Lmtr.

Note that, Lmte is only used to update Θ, the derivative of

which is the high-order gradients on Θ.

Remark. In the proposed meta-learning objective, the

meta-test loss encourages the loss of meta-train samples to

optimize the model towards a direction that can improve the

accuracy of meta-test samples. By iteratively enforcing the

generalization process from meta-train domains to meta-test

6279



domain, the model can avoid overfitting to domain bias and

can learn domain-invariant representations that generalize

well on unseen domains.

Next, we will introduce the loss functions used in meta-

learning in Sec. 3.3, the MetaBN layer in Sec. 3.4 and de-

tailed training procedure of meta-learning in Sec. 3.5.

3.3. Memorybased Identification Loss

Identification loss can effectively learn discriminative

person representations in a classification manner. Com-

monly, a fully-connected layer is adopted as the classifier

to produce the probabilities that are used for computing

the cross-entropy loss. Although existing works [2, 31, 35]

show the effectiveness of meta-learning in the classification

task, the parametric classifier is inadequate in the context of

ReID. This is because ReID is an open-set task, where dif-

ferent domains contain completely different identities and

the number of identities in each domain is commonly large.

In multi-source DG of ReID, we have two kinds of para-

metric classifier selections, one global FC classifier or NS

parallel FC classifiers for each domain, both of which will

lead to problems during meta-learning.

For the global FC classifier (Fig. 3(a)), the dimension

of the FC layer is the sum of all source identities. Different

from closed-set tasks [2, 3], the global FC classifier contains

a large number of parameters when trained with multiple

person ReID datasets. This will lead to unstable optimiza-

tion during the meta-learning. As for parallel FC classifiers

in Fig. 3(b), although we can alleviate the parameter bur-

den by only identifying persons within their own domain

classifier, the number of parameters for all classifiers is still

large. Moreover, during the meta-learning, the classifier of

the meta-test domain is only updated by high-order gradi-

ents, which is asynchronous with the feature encoder. This

optimization process is unequal and unstable, leading to an

incomplete usage of meta-learning.

Taking all the above into consideration, inspired by [9,

42, 52, 53], we propose a memory-based identification loss

for multi-source DG, which is non-parametric and suit-

able for both meta-learning and person ReID. As shown in

Fig. 3(c), we maintain a feature memory for each domain,

which contains the centroids of each identity. The simi-

larities between features and memory centroids are used to

compute the identification loss. The memory-based identifi-

cation loss has two advantages to our meta-learning frame-

work. First, the memory is a non-parametric classifier,

which avoids the unstable optimization caused by a large

number of parameters. Second, the asynchronous update

between the feature encoder and memory has a slight influ-

ence on model training. This is because the memory is up-

dated smoothly by a momentum instead of being updated

by an optimizer. Thus, the memory is insensitive to the

changes of the feature encoder caused by the last few train-

𝓛𝓛𝒎𝒎𝒎𝒎𝒓𝒓𝑻𝑻𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎

(a) One global FC classifier

Global FC
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𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎
Meta Train

Global FC𝓛𝓛𝒎𝒎𝒎𝒎𝒓𝒓
(b) 𝑁𝑁𝑆𝑆 parallel FC classifiers

𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎high-order

gradients𝓛𝓛𝒎𝒎𝒎𝒎𝒓𝒓 gradients

FC3FC1 FC2FC3FC1 FC2

Meta Train Meta Train Meta Test

(c) Non-parametric memory-based classifiers

Meta Test

Memory2𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎
Meta Train Meta Train

Memory1 Memory3𝓛𝓛𝒎𝒎𝒎𝒎𝒓𝒓𝑻𝑻 𝓛𝓛𝒎𝒎𝒎𝒎𝒓𝒓𝑻𝑻
Figure 3: Comparison of different classifiers. Layers within

dashed rectangles are updated together by an optimizer.

ing iterations. In Sec. 4.4, we show that our meta-learning

framework gains more improvements with the memory-

based identification loss than with the FC-based identifica-

tion loss. Next, we will introduce the memory-based iden-

tification loss in detail.

Memory Initialization. We maintain an individual

memory for each source domain. For a source domain Di
S

with ni identities, the memoryMi has ni slots, where each

slot saves the feature centroid of the corresponding identity.

In initialization, we use the model to extract features for

all samples of Di
S . Then, we initialize the centroid of each

identity with a feature, which is averaged on the features

of the corresponding identity. For simplicity, we omit the

superscript of the domain index and introduce the memory

updating and memory-identification loss for one domain.

Memory Updating. At each training iteration, we up-

date the memory with the features in the current mini-batch.

A centroid in the memory is updated through,

M[k]← m · M[k] + (1−m) ·
1

|Bk|

∑

xi∈Bk

f(xi), (2)

where Bk denotes the samples belonging to the kth identity

and |Bk| denotes the number of samples for the kth identity

in current mini-batch. m ∈ [0, 1] controls the updating rate.

Memory-based identification loss. Given an embed-

ding feature f(xi) from the forward propagation, we cal-

culate the similarities between f(xi) and each centroid in

the memory. The memory-based identification loss aims to

classify f(xi) into its own identity, which is calculated by:

LM = − log
exp

(

M[i]T f(xi)/τ
)

∑ni

k=1
exp (M[k]T f(xi)/τ)

, (3)

where τ is the temperature factor that controls the scale of

distribution.

Triplet loss. We also use triplet loss [12] to train the

model, which is formulated as,

LTri = [dp − dn + δ]+, (4)
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Figure 4: Detailed architecture of MetaBN. MetaBN first

utilizes the mean and variance of meta-train mini-batch fea-

tures to construct Gaussian Distributions. Then, features

sampled from these distributions are mixed with meta-test

mini-batch features for generating new meta-test features.

where dp is the Euclidean distance between an anchor fea-

ture and a hard positive feature, and dn is the Euclidean dis-

tance between an anchor feature and a hard negative feature.

δ is the margin of triplet loss and [·]+ refers to max(·, 0).

3.4. MetaBN

In our meta-learning strategy, the meta-test loss is im-

portant for learning generalizable representations, since the

meta-test plays the role of the “unseen” domain. Intuitively,

if the meta-test examples are sampled from more diverse

distributions, the model will be optimized to be more ro-

bust to variations and thus be more generalizable to un-

seen domains. To achieve this goal, we introduce MetaBN

to generate more diverse meta-test features at the feature-

level. As shown in Fig. 2, we replace the last batch normal-

ization layer (BN) [13] in the network with MetaBN. Dur-

ing training, MetaBN utilizes the domain information from

meta-train domains to inject domain-specific information

into meta-test features. This process can diversify meta-

test features, enabling the model to simulate more feature

variations. The operation of MetaBN is illustrated in Fig. 4.

In the meta-train stage, for the ith meta-train domain,

MetaBN normalizes the meta-train features as the tradi-

tional BN, and saves the mini-batch mean µi and mini-batch

variance σi, which are used in the following meta-test stage.

In the meta-test stage, MetaBN uses the saved mean and

variance to form NS − 1 Gaussian Distributions. Note that,

the generated distribution mainly reflects the high-level do-

main information instead of specific identity information.

This is because each saved mean and variance is calculated

over samples belonging to dozens of identities. Considering

this factor, we sample features from these distributions and

inject these domain-specific features into meta-test features.

Specifically, for the ith distribution, we sample one fea-

ture zij for each meta-test feature:

zij ∼ N (µi, σi) , (5)

where N denotes Gaussian Distribution. By doing so, we

obtain B (the batch size of meta-test features) sampled fea-

tures, which are mixed with the original meta-test features

Algorithm 1: Training procedure of M3L

Input: NS source domains DS = {D1
S , ...,D

NS

S }
Init: Feature encoder F parametrized by Θ;

Inner loop learning rate α;

Outer loop learning rate β; Batch-size B;

1 for iter in train iters do

2 Randomly select a domain as meta-test Dmte;

3 Sample remaining domains as meta-train Dmtr;

4 Meta-Train:

5 Sample B images Xk
S from each meta-train

domain Dk
mtr;

6 Compute meta-train loss Lmtr (Eq.9);

7 Copy the original model and update the copied

parameters Θ by Adam and inner loop learning

rate α:

8 Θ
′

← Adam(∇ΘLmtr,Θ, α);
9 Meta-Test:

10 Sample B images XT from the meta-test

domain Dmte;

11 Diversify meta-test features with MetaBN;

12 Compute meta-test loss Lmte (Eq.10);

13 Meta Optimization:

14 Update the original model parameters Θ by

Adam and outer loop learning rate β:

15 Gradient: g ← ∇Θ(Lmtr(Θ) + Lmte(Θ
′

));
16 Θ← Adam(g,Θ, β).

17 end

for generating new features F i
T ,

F i
T = λFT + (1− λ)Zi, (6)

where FT denotes the original meta-test features. Zi =
[zi0, z

i
1, · · · , z

i
B ] denotes B sampled features from the ith

Gaussian Distribution. λ is the mixing coefficient, which is

sampled from Beta Distribution, i.e., λ ∼ Beta(1, 1).
Finally, the mixed features are normalized by batch nor-

malization,

f i
T = γ

F i
T − µi

T
√

σi
T

2
+ ǫ

+ β, (7)

where µi
T and σi

T denote mini-batch mean and variance of

F i
T . γ and β denote the learnable parameters that scale and

shift the normalized value.

3.5. Training procedure of M3L

During training, NS source domains are separated into

NS − 1 meta-train domains and one meta-test domain at

each iteration. The model is optimized by the losses calcu-

lated in the meta-train and meta-test stages.

Meta-train. For each meta-train domain, the meta-train

loss is a combination of memory-based identification (Eq.3)
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Table 1: Statistics of Person ReID Benchmarks.

Benchmarks # IDs # images # cameras

Market-1501 [46] 1,501 32,217 6
DukeMTMC-reID [48] 1,812 36,411 8
CUHK03 [20] 1,467 28,192 2
MSMT17 [41] 4,101 126,441 15

and triplet losses (Eq.4), i.e.,

Li
mtr = LTri(X

i
S ; Θ) + LM (Xi

S ,M
i
S ; Θ), (8)

where Θ denotes the parameters of the network. Xi
S and

Mi
S denote the training samples and memory of the ith

meta-train domain, respectively.

The total loss for meta-train is averaged over NS − 1
meta-train domains, formulated as,

Lmtr =
1

NS − 1

NS−1
∑

i=0

Li
mtr. (9)

Meta-test. In the meta-test stage, the meta-test domain

is performed on the new parameters Θ
′

, which is obtained

by optimizing Θ with Lmtr. With the MetaBN proposed

in Sec. 3.4, we can obtain NS − 1 mixed features for each

meta-test sample. The average memory-based identifica-

tion loss over these features is considered as the meta-test

memory-based identification loss. The meta-test loss is:

Lmte = LTri(XT ; Θ
′

) +
1

NS − 1

NS−1∑

k=0

LM (fk

T ,MT ; Θ
′

),

(10)

where XT denotes the meta-test samples and fk
T denotes the

kth mixed features generated by the MetaBN.

Meta Optimization. Finally, the model is optimized by

the objective in Eq.1. The optimization procedure of our

M3L is summarized in Alg. 1.

4. Experiments

4.1. Benchmarks and Evaluation Metrics

We conduct experiments on four large-scale per-

son re-identification benchmarks: Market-1501 [46],

DukeMTMC-reID [30, 48], CUHK03 [20, 49] and

MSMT17 [41]. For studying the multi-source DG, we di-

vide these four datasets into two parts: three domains as

source domains for training and the other one as target do-

main for testing. For CUHK03, we adopt CUHK-NP [49]

detected subset for evaluation. The statistics of these four

benchmarks are shown in Table 1. For simplicity, we denote

Market-1501, DukeMTMC-reID, CUHK03, and MSMT17

as M, D, C, and MS in tables.

The cumulative matching characteristic (CMC) at Rank-

1 and mean average precision (mAP) are used to evaluate

performance on the target testing set.

4.2. Implementation Details

We implement our method with two common backbones,

i.e., ResNet-50 [11] and IBN-Net50 [28]. Images are re-

sized to 256×128 and the training batch size is set to 64.

We use random flipping and random cropping for data aug-

mentation. For the memory, the momentum coefficient m
is set to 0.2 and the temperature factor τ is set to 0.05. The

margin δ of triplet loss is 0.3. To optimize the model, we

use Adam optimizer with a weight decay of 0.0005. The

learning rate of inner loop α and outer loop β are initialized

to 3.5 × 10−5 and increase linearly to 3.5 × 10−4 in the

first 10 epochs. Then, α and β are decayed by 0.1 at the

30th epoch and 50th epoch. The total training stage takes

60 epochs.

Baseline. For the baseline, we directly train the model

with the memory-based identification loss and triplet loss

using the data of all the source domains. That is, the base-

line does not apply the meta-learning strategy and MetaBN.

4.3. Comparison with StateoftheArt methods

Since there is no multi-source DG method evaluating on

large-scale datasets, we compare our method with state-

of-the-art single-source DG methods, including OSNet-

IBN [55], OSNet-AIN [56], SNR [14] and QAConv [22].

SNR [14] and QAConv [22] use the ResNet-50 as the back-

bone. OSNet-IBN [55] and OSNet-AIN [56] use their

self-designed networks that have better performance than

ResNet-50. When testing on Market-1501, DukeMTMC-

reID, and CUHK03, the existing single-source DG meth-

ods utilize MSMT17 as the source domain for model train-

ing. They combine the train set and test set of MSMT17,

which is denoted as Combined MSMT17 (Com-MS) in this

paper. To verify that the effectiveness of our method is

obtained by multi-source meta-learning instead of training

with more IDs and images, we only use the training sets

of the source domains for model training. For example,

when using Market-1501 as the target domain, we train the

model with the train sets of DukeMTMC-reID, CUHK03,

and MSMT17, including 3,110 IDs and 75,406 images. The

numbers of IDs and images are less than that of Combined

MSMT17 (3,110 IDs vs. 4,101 IDs, and, 75,406 images vs.

126,441 images). To conduct a fair comparison, we reim-

plement recent published QAConv [22] with the same train-

ing data as us. Comparison results are reported in Table 2.

Results on Market-1501 and DukeMTMC-reID.

From Table 2, we can make the following observations.

First, when using Combined MSMT17 as the source data,

OSNet-AIN [56] and QAConv [22] achieve the best results

on both Market-1501 and DukeMTMC-reID. Second, com-

pared to single-source DG methods that use more train-

ing data (Combined MSMT17), our M3L outperforms them

by a large margin on Market-1501 and achieves compara-

ble results with them on DukeMTMC-reID. Specifically,
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Table 2: Comparison with State-of-the-Arts domain generalization methods on four large-scale person ReID benchmarks —

Market-1501 (M), DukeMTMC-reID (D), CUHK03 (C) and MSMT17 (MS). The performance is evaluated quantitatively by

mean average precision (mAP) and cumulative matching characteristic (CMC) at Rank-1 (R1).

Method Source IDs Images
Market-1501

Source IDs Images
DukeMTMC

mAP R1 mAP R1

OSNet-IBN [55]

Com-MS 4,101 126,441

37.2 66.5

Com-MS 4,101 126,441

45.6 67.4
OSNet-AIN [56] 43.3 70.1 52.7 71.1
SNR [14] 41.4 70.1 50.0 69.2
QAConv50 [22] 43.1 72.6 52.6 69.4

QAConv50 [22] *

MS+D+C 3,110 75,406
35.6 65.7

MS+M+C 3,159 71,820
47.1 66.1

M3L (ResNet-50) 48.1 74.5 50.5 69.4
M3L (IBN-Net50) 50.2 75.9 51.1 69.2

Method Source IDs Images
CUHK03

Source IDs Images
MSMT17

mAP R1 mAP R1

QAConv50 [22] Com-MS 4,101 126,441 22.6 25.3 D 702 16,522 8.9 29.0

QAConv50 [22] *

MS+D+M 2,494 62,079
21.0 23.5

D+M+C 2,820 55,748
7.5 24.3

M3L (ResNet-50) 29.9 30.7 12.9 33.0
M3L (IBN-Net50) 32.1 33.1 14.7 36.9

* We reimplement this work based on the authors’ code on Github with the same source datasets as us.

when testing on Market-1501, with the same backbone,

our M3L surpasses SNR [14] by 6.7% in mAP and 4.4%

in Rank-1 accuracy. Third, when training with multiple

source domains, with the same backbone, our M3L pro-

duces significantly higher results than QAConv50. Specifi-

cally, our M3L is higher than QAConv50 by 12.5% in mAP

for Market-1501 and by 3.4% in mAP for DukeMTMC-

reID. This demonstrates the superiority of our method over

the method that considers all the source domains as one do-

main. Fourth, when using the IBN-Net50 as the backbone,

our M3L can achieve better mAP than using ResNet-50.

Results on CUHK03 and MSMT17. There is only

one method (QAConv [22]) evaluated on CUHK03 and

MSMT17. When testing on MSMT17, QAConv [22] uses

DukeMTMC-reID as the source data. Clearly, our M3L

achieves higher results than QAConv [22] on both datasets,

no matter how many source domains QAConv is trained

with. We also find that both our M3L and QAConv produce

poor results on CUHK03 and MSMT17, indicating there is

still a large room for generalizable models in DG.

4.4. Ablation Studies

Effectiveness of Meta-Learning. To investigate the ef-

fectiveness of the proposed meta-learning strategy, we con-

duct ablation studies in Table 3. Clearly, the model trained

with the proposed meta-learning strategy consistently im-

proves the results with different backbones.Specifically,

with ResNet-50, adding meta-learning optimization in-

creases the baseline by 5.3% in Rank-1 accuracy on Market-

1501 and by 3.7% in Rank-1 accuracy on CUHK03.

With IBN-Net50 backbone, meta-learning strategy gains

5.4% and 2.8% improvement in mAP on Market-1501 and

CUHK03, respectively. This demonstrates that by simulat-

Table 3: Ablation studies on meta-learning strategy and

MetaBN. Models are trained with the other three datasets

except the target dataset. “Meta”: training with meta-

learning strategy; “MetaBN”: training with MetaBN.

Backbone Meta MetaBN
MS+D+C→M MS+D+M→C
mAP R1 mAP R1

ResNet-50
× × 41.1 67.9 25.7 25.4
X × 47.4 73.2 29.1 29.1
X X 48.1 74.5 29.9 30.7

IBN-Net50
× × 43.6 71.1 28.2 29.4
X × 49.0 75.0 31.0 31.8
X X 50.2 75.9 32.1 33.1

ing the train-test process during training, the meta-learning

strategy helps the model to learn domain-invariant represen-

tations that can perform well on unseen domains.

Effectiveness of MetaBN. As shown in Table 3, plug-

ging MetaBN into the meta-learning-based model further

improves the generalization ability. For ResNet-50 back-

bone, MetaBN improves the meta-optimized model by

1.3% and 1.6% in Rank-1 accuracy on Market-1501 and

CUHK03. For IBN-Net50, we can observe similar improve-

ments. The results validate that diversifying meta-test fea-

tures by MetaBN is able to help the model to learn more

generalizable representations for unseen domains.

Loss function components. We conduct experiments to

evaluate the impact of the memory-based identification loss

and triplet loss. Results in Table 4 show that the memory-

based identification loss LM is the predominant supervision

for training a generalizable model and additionally adding

the triplet loss LTri can slightly improve the performance.

Comparison of different classifiers. In Table 5, we

compare different types of identification classifiers. We
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Table 4: Comparison of loss function components. LM and

LTri denote memory-based identification loss and triplet

loss. Experiments are conducted with ResNet-50.

LM LTri

MS+D+C→M MS+D+M→C
mAP R1 mAP R1

X × 47.8 73.6 29.9 30.3
× X 35.1 59.7 20.9 19.9
X X 48.1 74.5 29.9 30.7

Table 5: Comparison of different classifiers. LM denotes

memory-based identification loss. LFCG and LFCP de-

note traditional identification loss with global classifier and

parallel classifiers. “Meta” denotes training with the meta-

learning strategy and MetaBN. Numbers in parentheses de-

note performance improvement gained by “Meta”. Experi-

ments are conducted with ResNet-50.

Loss Meta
MS+D+C→M MS+D+M→C

mAP R1 mAP R1

LFCG

× 37.7 67.0 21.2 20.9
X 39.7 (2.0) 68.3 (1.3) 21.2 (0.0) 21.9 (1.0)

LFCP

× 37.7 67.0 21.2 20.9
X 40.9 (3.2) 69.3 (2.3) 23.9 (2.7) 24.3 (3.4)

LM

× 41.1 67.9 25.7 25.4
X 48.1 (7.0) 74.5 (6.6) 29.9 (4.2) 30.7 (5.3)

Table 6: Comparison of training with different source do-

mains. Experiments are conducted with ResNet-50.

Sources
Market-1501

Sources
CUHK03

mAP R1 mAP R1

MS+D 38.5 66.2 MS+D 21.9 23.7
MS+C 39.8 65.8 MS+M 27.1 27.8
MS+D+C 48.1 74.5 MS+D+M 29.9 30.7

have the following observations. First, compared with

the two parametric classifiers, our proposed non-parametric

classifier gains higher improvement with the meta-learning

strategy. Second, when directly training with multi-source

data without the meta-learning, the model trained with

memory-based identification loss achieves higher results.

These two observations demonstrate that the proposed

memory-based identification loss is suitable for multi-

source DG and our meta-learning strategy.

Effectiveness of Multi-Source. Table 6 shows the com-

parison between two-source DG and multi-source DG. De-

spite bringing more domain bias, training with more source

domains consistently produces higher results when testing

on an unseen domain. This demonstrates the significance of

studying multi-source DG.

4.5. Visualization

To better understand the effectiveness of our approach,

we visualize the t-SNE [25] distributions of the features on

the four datasets for different models, i.e., ImageNet pre-

(a) ImageNet pretrained (b) Baseline (c) M3L

Source

Duke

MSMT17

CUHK03

Market

Target

Figure 5: Visual distributions of four person ReID bench-

marks. The distributions are obtained from inference fea-

tures of (a) ImageNet pretrained model, (b) Baseline, and

(c) M3L. All of the models are trained with ResNet-50,

and the dimension of inference features is reduced by t-

SNE [25].

trained model, baseline, and M3L. Results are shown in

Fig. 5. As shown in Fig. 5(a), without training, distributions

vary by domains: (1) MSMT17 is the largest dataset that

contains images in a variety of situations; (2) DukeMTMC-

reID and Market-1501 are closely related to MSMT17 and

each other; (3) CUHK03 has a relatively more distinct dis-

tribution compared with the others. Fig. 5(b) and Fig. 5(c)

show the visual distributions of the four datasets after train-

ing. The model is trained on DukeMTMC-reID, CUHK03,

and MSMT17, and tested on Market-1501. Comparing

Fig. 5(b) with Fig. 5(c), we observe that the features from

the source and target domains of M3L (Fig. 5(c)) are clus-

tered more compactly, indicating that M3L leads the model

to learn more generic and domain-agnostic representations.

5. Conclusion

In this paper, we propose a Memory-based Multi-source

Meta-Learning (M3L) framework for multi-source domain

generalization (DG) in person ReID. The proposed meta-

learning strategy enables the model to simulate the train-test

process of DG during training, which can efficiently im-

prove the generalization ability of the model on unseen do-

mains. Besides, we introduce a memory-based module and

MetaBN to take full advantage of meta-learning and obtain

further improvement. Extensive experiments demonstrate

the effectiveness of our framework for training a general-

izable ReID model. Our method achieves state-of-the-art

generalization results on four large-scale benchmarks.
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