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Abstract

Face forgery by deepfake is widely spread over the in-

ternet and has raised severe societal concerns. Recently,

how to detect such forgery contents has become a hot re-

search topic and many deepfake detection methods have

been proposed. Most of them model deepfake detection

as a vanilla binary classification problem, i.e, first use a

backbone network to extract a global feature and then feed

it into a binary classifier (real/fake). But since the differ-

ence between the real and fake images in this task is often

subtle and local, we argue this vanilla solution is not op-

timal. In this paper, we instead formulate deepfake detec-

tion as a fine-grained classification problem and propose a

new multi-attentional deepfake detection network. Specifi-

cally, it consists of three key components: 1) multiple spa-

tial attention heads to make the network attend to differ-

ent local parts; 2) textural feature enhancement block to

zoom in the subtle artifacts in shallow features; 3) aggre-

gate the low-level textural feature and high-level semantic

features guided by the attention maps. Moreover, to address

the learning difficulty of this network, we further introduce

a new regional independence loss and an attention guided

data augmentation strategy. Through extensive experiments

on different datasets, we demonstrate the superiority of our

method over the vanilla binary classifier counterparts, and

achieve state-of-the-art performance. The models will be

released recently at https://github.com/yoctta/

multiple-attention.

1. Introduction

Benefiting from the great progress in generative mod-

els, deepfake techniques have achieved significant success

recently and various face forgery methods [19, 41, 21, 31,

32, 44, 28, 38] have been proposed. As such techniques

can generate high-quality fake videos that are even indistin-

guishable for human eyes, they can easily be abused by ma-
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Figure 1: Example of the multiple attentional regions ob-

tained by our method. The attention regions are separated

and respond to different discriminative features.

licious users to cause severe societal problems or political

threats. To mitigate such risks,many deepfake detection ap-

proaches [27, 34, 22, 33, 26, 45] have been proposed. Most

of them model deepfake detection as a vanilla binary clas-

sification problem (real/fake). Basically, they often first use

a backbone network to extract global features of the suspect

image and then feed them into a binary classifier to discrim-

inate the real and fake ones.

However, as the counterfeits become more and more re-

alistic, the differences between real and fake ones will be-

come more subtle and local, thus making such global fea-

ture based vanilla solutions work not well. But actually,

such subtle and local property shares a similar spirit as the

fine-grained classification problem. For example, in the

fine-grained bird classification task, some species look very

similar and only differentiate from each other by some small

and local differences, such as the shape and color of the

beak. Based on this observation, we propose to model deep-

fake detection as a special fine-grained classification prob-

lem with two categories.

Inspired by the success of parts based model in the
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fine-grained classification field, this paper presents a novel

multi-attention network for deepfake detection. First, in

order to make the network attend to different potential ar-

tifacts regions, we design multi-attention heads to predict

multiple spatial attention maps by using the deep semantic

features. Second, to prevent the subtle difference from dis-

appearing in the deep layers, we enhance the textural feature

obtained from shallow layers and then aggregate both low-

level texture features and high-level semantic features as the

representation for each local part. Finally, the feature rep-

resentations of each local part will be independently pooled

by a bilinear attention pooling layer and fused as the repre-

sentation for the whole image. Figure 1 gives an example

of the discriminative features obtained by our method.

However, training such a multi-attentional network is not

a trivial problem. This is mainly because that, unlike single-

attentional network [6] which can use the video-level labels

as explicit guidance and be trained in a supervised way, the

multi-attentional structure can only be trained in an unsu-

pervised or weakly-supervised way. By using a common

learning strategy, we find the multi-attention heads will de-

grade to a single-attention counterpart, i.e., only one atten-

tion region produces a strong response while all remaining

attention regions are suppressed and can not capture use-

ful information. To address this problem, we further pro-

pose a new attention guided data augmentation mechanism.

In detail, during training, we will deliberately blur some

high-response attention region (soft attention dropping)

and force the network to learn from other attention regions.

Simultaneously, we introduce a new regional independence

loss to encourage different attention heads to attend to dif-

ferent local parts.

To demonstrate the effectiveness of our multi-attentional

network, we conduct extensive experiments on different

existing datasets, including FaceForensics++[34], Celeb-

DF[25] and DFDC[9]. It shows that our method is superior

to the vanilla binary classifier baselines and achieves state-

of-the-art performance. In summary, the contributions of

this paper are threefold as below:

• We reformulate the deepfake detection as a fine-

grained classification task, which brings a novel per-

spective for this field.

• We propose a new multi-attentional network architec-

ture to capture local discriminative features from mul-

tiple face attentive regions. To train this network, we

also introduce a regional independence loss and design

an attention guided data augmentation mechanism to

assist the network training in an adversarial learning

way.

• Extensive experiments demonstrate that our method

outperforms the vanilla binary classification baselines

and achieves state-of-the-art detection performance.

2. Related Works

Face forgery detection is a classical problem in computer

vision and graphics. Recently, the rapid progress in deep

generative models makes the face forgery technique “deep”

and can generate realistic results, which presents a new

problem of deepfake detection and brings significant chal-

lenges. Most deepfake detection methods solve the problem

as a vanilla binary classification, however, the subtle and lo-

cal modifications of forgeried faces make it more similar to

fine-grained visual classification problem.

2.1. Deepfake Detection

Since the face forgery causes great threat to societal se-

curity, it is of paramount importance to develop effective

countermeasures against it. Many works [46, 23, 4, 53, 34,

22, 33, 26, 45, 43] have been proposed. Early works [46, 23]

detect the forgery through visual biological artifacts, e.g.,

unnatural eye blinking or inconsistent head pose.

As the learning based methods become mainstream,

some works [53, 34] have proposed frameworks which ex-

tract features from spatial domain and have achieved ex-

cellent performances on specific datasets. Recently, more

data domains have been considered by emerging methods.

[45] detects tampered faces through Spatial, Steganalysis

and Temporal features. It adds a stream of simplified Xcep-

tion with a constrained convolution layer and an LSTM.

[26] uses a two-branch representation extractor to combine

information from the color domain and the frequency do-

main using a multi-scale Laplacian of Gaussian (LoG) op-

erator. [33] uses frequency-aware decomposition and local

frequency statistic to expose deepfake artifacts in frequency

domain and achieves state-of-the-art performance.

Most existing methods treat the deepfake detection as a

universal binary classification problem. They focus on how

to construct sophisticated feature extractors and then a di-

chotomy to distinguish the real and fake faces. However,

the photo-realistic counterfeits bring significant challenge

to this binary classification framework. In this paper, we

redefine the deepfake detection problem as a fine-grained

classification problem according to their similarity.

2.2. Fine-grained Classification

Fine-grained classification [50, 49, 13, 37, 12, 52, 47, 17,

10] is a challenging research task in computer vision, which

captures the local discriminative features to distinguish dif-

ferent fine-grained categories. Studies in this field mainly

focus on locating the discriminative regions and learning

a diverse collection of complementary parts in weakly-

supervised manners. Previous works [50, 49] build part

models to localize objects and treat the objects and seman-

tic parts equally. Recently, several works [52, 47, 10] have

been proposed under a multiple attentional framework, the
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Figure 2: The framework of our method. Three components play an important role in our framework: an Attention Module for generating

multiple attention maps, a texture enhancement block for extracting and enhancing the textural information and a bidirectionally used

bilinear attention pooling for aggregating textural and semantic features.

core ideal of these method is that learning discriminative re-

gions in multiple scales or image parts simultaneously and

encouraging the fusion of these features from different re-

gions. In addition, [17] designs attention cropping and at-

tention dropping to obtain more balanced attention maps.

In this paper, we model deepfake detection as a special fine-

grained classification problem for the first time. It shares the

same spirit in learning subtle and discriminative features,

but only involves two categories, i.e., real and fake.

3. Methods

3.1. Overview

In this section, we initially state the motivation of the

designing and give a brief overview of our framework.

As aforementioned, the discrepancy between real and fake

faces is usually subtle and occurs in local regions, which

is not easy to be captured by single-attentional structural

networks. Thus we argue that decomposing the attention

into multiple regions can be more efficient for collecting

local feature for deepfake detection task. Meanwhile, the

global average pooling which is commonly adopted by cur-

rent deepfake detection approaches is replaced with local

attention pooling in our framework. This is mainly be-

cause the textural patterns vary drastically among different

regions, the extracted features from different regions may

be averaged by the global pooling operation, resulting in

a loss of distinguishability. On the other hand, we observe

that the slight artifacts caused by forgery methods tend to be

preserved in textural information of shallow features. Here,

the textural information represents the high frequency com-

ponent of the shallow features, just like the residual infor-

mation of RGB images. Therefore, more shallow feature

should be focused on and enhanced, which has not been

considered by current state-of-the-art detection approaches.
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Figure 3: The structure of attention module and the procedure

of obtaining textural feature matrix P. The proposed normalized

average pooling is adopted instead of global average pooling.

Motivated by these observation, we propose a multi-

attentional framework to solve the deepfake detection as a

fine-grained classification problem. In our framework, three

key components are integrated into the backbone network:

1) We employ an attention module to generate multiple at-

tention maps. 2) We use densely connected convolutional

layers [18] as a texture enhancement block, which can ex-

tract and enhance the textural information from shallow fea-

ture maps. 3) We replace the global average pooling with

Bilinear Attention Pooling(BAP). And we use BAP to col-

lect the textural feature matrix from the shallow layer and

retain the semantic feature from the deep layer. The frame-

work of our method is depicted in Figure 2.

Unlike single-attentional structure based network which

can take the video-level labels as explicit guidance for train-

ing, the multi-attentional based network can only be trained

in a unsupervised or weakly-supervised manner due to the

lack of region-level labels. It could lead to a degrada-

tion of network that multiple attention maps focus on same

region while ignoring other regions which may also pro-

vide discriminative information. To address the problem,

we specifically design a Region Independence Loss, which
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aims to ensure each attention map focusing on one specific

region without overlapping and the focused region is con-

sistent across different samples. Further, we employ the At-

tention Guided Data Augementation(AGDA) mechanism to

decrease the salience of the most discriminative feature and

force other attention maps to mine more useful information.

3.2. Multi-attentional Framework

Denote the input face image of network as I and the

backbone network of our framework as f , the feature maps

extracted from the intermediate stage of t-th layer is de-

noted as ft(I) with size of Ct ×Ht ×Wt. Here, Ct is the

number of channels, Ht,Wt are the height and the width of

feature maps, respectively.

Multiple Attention Maps Generation. As described

above, given a real/fake face image I as input, our frame-

work first uses an attention block to generate multiple atten-

tion maps for I . As shown in Figure 3, the attention block

is a light weighted model which consists of a 1× 1 con-

volutional layer, a batch normalization layer and non-linear

activation layer ReLU. The feature map extracted from a

specific layer SLa will be fed into this attention block to

obtain M attention maps A with size of Ht × Wt, among

which Ak ∈ R{Ht×Wt} represents the k-th attention map

and corresponds to one specific discriminative region, for

example, eyes, mouth or even blending boundary defined in

[22]. The determination of SLa will be discussed in Sec-

tion 4.

Textural Feature Enhancement. Most binary classifica-

tion frameworks of deepfake detection do not pay attention

to an important phenomenon, that is, the artifacts caused

by forgery methods are usually salient in the textural infor-

mation of shallow feature maps. The textural information

here represents the high frequency component of the shal-

low features. Thus to preserve more textural information

for capturing those artifacts, we design a textural feature

enhancement block as shown in Figure 3. We first apply the

local average pooling in patches to down-sample the fea-

ture maps from a specific layer SLt and obtain the pooled

feature map D. How to choose SLt will be discussed in

the following experiments part. Then similar to the texture

representation of spatial image, we define the residual at the

feature level to represent the texture information as below:

TSLt
= fSLt

(I)−D (1)

Here T contains most textural information of fSLt
(I).

We then use a densely connected convolution block with

3 layers to enhance T , the output is noted as F ∈

RCF×Hs×Ws , which is defined as “textual feature map”.

Bilinear Attention Pooling. After getting the attention map

A and textural feature map F , we use Bilinear Attention

Pooling (BAP) to obtain feature maps. We bidirectionally

use BAP for both shallow feature maps and deep feature

maps. As shown in Figure 3, to extract shallow textural fea-

ture, we first use bilinear interpolation to resize the attention

maps into the same scale with feature maps if they are not

match. Then, we respectively element-wise multiply tex-

tural feature map F by each attention map Ak and obtain

partial textural feature maps Fk.

To the end of this step, the partial textural feature maps

Fk should be fed into classifier after global pooling. How-

ever, considering the differences among the different region

range, if using the traditional global average pooling, the

pooled feature vector will be influenced by the intensity of

attention map, which violates the purpose of focusing on

textural information. To address the problem, we design a

normalized average pooling:

vk =

∑Hs−1
m=0

∑Ws−1
n=0 Fk,m,n

||
∑Hs−1

m=0

∑Ws−1
n=0 Fk,m,n||2

(2)

The normalized attention features vk ∈ R1×N are then

stacked together to obtain the textural feature matrix P ∈

RM×CF , which will be fed into the classifier.

As to deep features, we first splice each attention map to

get a single channel attention map Asum. Then we use BAP

for Asum and the feature map from the last layer of network

to get the global deep feature G, which will also be fed into

the classifier.

3.3. Regional Independence Loss for Attention
Maps Regularization

As aforementioned, training a multiple attention network

may easily fall into a network degraded case due to the lack

of fine-grained level labels. In details, different attention

maps tend to focus on the same region as shown in Figure 4

which is not conducive to the network to capture rich in-

formation for a given input. In addition, for different input

images, we hope that the each attention map locates in fixed

semantic region, for example, attention map A1 focuses on

eyes in different image, A2 focuses on mouth. Therefore,

the randomness of captured information by each attention

map will be reduced.

To achieve these goals, we propose a Region Indepen-

dence Loss which helps to reduce the overlap among atten-

tion maps and keep the consistency for different inputs. We

apply BAP on the pooled feature map D obtained in Sec-

tion 3.2 to get a “semantic feature vector” : V ∈ RM×N ,

and the Regional Independence Loss is defined as below by

modifying the center loss in [15]:

LRIL =

B
∑

i=1

M
∑

j=1

max(
∥

∥V i
j − ctj

∥

∥

2
−min(yi), 0)+

∑

k,l∈(M,M),k $=l

max
(

mout −

∥

∥ctk − ctl
∥

∥

2
, 0
)

(3)
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where B is the batch size, M is number of attentions, min

represents the margin between feature and the correspond-

ing feature center and is set as different values when yi is

0 and 1. mout is the margin between each feature center.

c ∈ RM×N are feature centers of V , it is defined as below

and updated in each iteration:

ct = ct−1
− α

(

ct−1
−

1

B

B
∑

i=1

V i

)

(4)

Here α is the updating rate of feature centers, we decay

α after each training epoch. The first part of LRIL is an

intra-class loss that pulls V close to feature center c, the

second part is an inter-class loss that repels feature centers

scattered. we optimize c by calculating the gradient for V

in each batch. Considering that the patterns of texture in

fake faces should be more diverse than real ones for fakes

are generated by multiple methods, thus we restrict part fea-

tures of fake faces in the neighborhood from the feature cen-

ter of real ones but with larger margin. In this way, we give

a larger margin in the intra-class for searching useful infor-

mation in fake faces.

For the objective function of our framework, we combine

this Regional Independence Loss with the traditional cross

entropy loss:

L = λ1 ∗ LCE + λ2 ∗ LRIL (5)

LCE is a cross entropy loss, λ1 and λ2 are the balancing

weights for these two terms. By default, we set λ1 = λ2 =
1 in our experiments.

3.4. Attention Guided Data Augmentations

Under the restraining of Regional Independence Loss,

we reduce the overlap of different attention regions. How-

ever, although different attention regions can be well sepa-

rated, the attention maps may still respond to the same dis-

criminative features. For example, in Figure 5, the attention

regions are not overlapped but they all strongly respond to

the landmarks of input faces. To force the different atten-

tion maps to focus on different information, we propose the

Attention Guided Data Augmentation (AGDA) mechanism.

For each training sample, one of the attention maps Ak is

randomly selected to guide the data augmentation process,

and it is normalized as Augmentation Map A∗

k
∈ RH×W .

Then we use Gaussian blur to generate a degraded image.

Finally, we use A∗

k
as the weight of original image and de-

graded image:

I ′ = I × (1−A∗

k) + Id ×A∗

k (6)

Attention guided data augmentation helps to train the

models in two aspects. Firstly, it can add blurry to some

regions which ensure the model to learn more robust fea-

tures from other regions. Alternatively, AGDA can erase

Candidate of SLt Candidate of SLa ACC(%)

L2 L4 96.38

L2 L5 97.26

L3 L4 96.14

L3 L5 96.81

Table 1: Performance of our methods based on different

combination of SLt and SLa.

the most saliently discriminative region by chance, which

forces different attention maps focusing their response on

different targets. Moreover, the AGDA mechanism can pre-

vent a single attention region from expanding too much and

encourage the attention blocks to explore various attention

region dividing forms.

4. Experiments

In this section, we first explore the optimal settings for

our proposed multi-attentional framework and then present

extensive experimental results to demonstrate the effective-

ness of our method.

4.1. Implement Details

For all real/fake video frames, we use a state-of-the-art

face extractor RetinaFace[8] to detect faces and save the

aligned facial images as inputs with a size of 380 × 380.

We set hyper-parameters α = 0.05 in Equation 4, and de-

cayed by 0.9 after each epoch. The inter-class margin mout

in Equation 3 is set to 0.2. The intra-class margin min are

set as 0.05 and 0.1 respectively for real and fake images.

We choose quantity of attention maps M , SLa and SLt

by experiments. In AGDA we set the resize factor 0.3 and

Gaussian blur σ = 7. Our models are trained with Adam

optimizer[20] with learning rate 0.001 and weight decay 1e-

6. We train our models on 4 RTX 2080Ti GPUs with batch

size 48.

4.2. Determination of SLa and SLt

In this paper, we adopt EfficientNet-b4[39] as the

backbone network of our multi-attentional framework.

EfficientNet-b4 is able to achieve comparable performance

to XceptionNet [3] with only half FLOPs. There are 7 main

layers in total of EfficientNet, which are denoted from L1-

L7, respectively.

As mentioned above, we observe that subtle artifacts

tend to be preserved by textural features from shallow layers

of the network, thus we choose L2 and L3 as the candidates

of SLt. Conversely, we want the attention maps to attend to

different regions of the input, which needs the guidance of

high-level semantic information to some extent. Therefore,

we use deeper stage L4 and L5 as the candidates of SLa.
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Methods
LQ HQ

ACC AUC ACC AUC

Steg.Features[11] 55.98 - 70.97

LD-CNN[5] 58.69 - 78.45 -

MesoNet[1] 70.47 - 83.10 -

Face X-ray[22] - 61.60 - 87.40

Xception[3] 86.86 89.30 95.73 96.30

Xception-ELA[14] 79.63 82.90 93.86 94.80

Xception-PAFilters[2] 87.16 90.20 - -

F3-Net[33] 90.43 93.30 97.52 98.10

Two Branch[26] - 86.59 - 98.70

EfficientNet-B4[39] 86.67 88.20 96.63 99.18

Ours(Xception) 86.95 87.26 96.37 98.97

Ours(Efficient-B4) 88.69 90.40 97.60 99.29

Table 2: Quantitative comparison on FaceForensics++

dataset with High-Quality and Low-Quality settings, re-

spectively. The best performances are marked as bold.

By default setting M = 1, we train models with four com-

binations on FF++(HQ). From the results in Table 1, we find

that the model reaches best performance when using L2 for

SLt and L5 for SLa.

4.3. Comparison with Previous Methods

In this section, we compare our framework with current

state-of-the-art deepfake detection methods. We evaluate

the performance on FF++ [34] and DFDC [9], respectively.

And we further evaluate the cross-dataset performance on

Celeb-DF [25] in Section 4. We adopt ACC (accuracy) and

AUC (area under Receiver Operating Characteristic Curve)

as the evaluation metrics for extensive experiments.

4.3.1 Evaluation on FaceForensics++

FaceForensics++[34] is the most widely used dataset in

many deepfake detection approaches, it contains 1000

original real videos from internet and each real video

corresponds to 4 forgery ones, which are manipulated

by Deepfakes, NeuralTextures[40], FaceSwap[48] and

Face2Face[41], respectively. In the training process, we

augment the original frames 4 times for real/fake label bal-

ance. We adopt EfficientNet-B4 as the backbone of our

framework, and test the performances on HQ (c23) version

and LQ (c40) version, respectively. Specially, when train-

ing our model on LQ, the parameters are initialized by those

pretrained on HQ to accelerate the convergence. The com-

parison results are listed in Table 2.

The results in Table 2 demonstrate that our method

achieves state-of-the-art performance on the HQ version of

FF++. And the performances of different backbone veri-

fies that our framework is not restricted by the backbone

Method Logloss

Selim Seferbekov[35] 0.1983

WM[51] 0.1787

NTechLab[7] 0.1703

Eighteen Years Old[36] 0.1882

The Medics[16] 0.2157

Ours 0.1679

Table 3: Comparison with DFDC winning teams’ methods

on the DFDC testing dataset. We participated in the compe-

tition as team WM.

networks. However, the performance decreases 1.5% com-

pared with F3-Net [33] on the LQ version since F3-Net is

a specifically designed method for high-compressed deep-

fake videos detection. This is mainly because the videos

in FF++(LQ) are highly compressed and cause a significant

loss in textural information, which is a disaster to our tex-

ture enhancement designing. The results also reveal a limi-

tation of our framework, that is, our framework is sensitive

to high compression rate which blurs most of the useful in-

formation in spatial domain. We will make our framework

more robust to compression in the future.

4.3.2 Evaluating on DFDC Dataset

DeepFake Detection Challenge (DFDC) is the most re-

cently released largest scale deepfake detection dataset, this

dataset is public on the Deepfake Detection Challenge or-

ganized by Facebook in 2020. Currently, it is the most chal-

lenging dataset for deepfake detection task due to the excel-

lent forgery quality of fake videos in this dataset. Seldom

previous methods have been conducted on this dataset thus

we train our model on the training set of this dataset and

only compare the logloss score with the winning teams’

methods of the DFDC contest. Here the provided logloss

scores are calculated on the DFDC testing set(Ref. to Table

2 of [9]), which is one part of DFDC private set. Smaller

logloss represent a better performance. The results in Ta-

ble 3 demonstrate that our framework achieves state-of-the-

art performance on DFDC dataset.

4.3.3 Cross-dataset Evaluation on Celeb-DF

In this part, we evaluate the transferability of our frame-

work, that is trained on FF++(HQ) with multiple forgery

methods but tested on Celeb-DF [25]. We sample 30 frames

for each video to calculate the frame-level AUC scores.

The results are shown in Table 4. Our method shows bet-

ter transferability than most existing methods. Two-branch

[26] achieves the state-of-the-art performance in transfer-

ability, however, its in-dataset AUC is far behind ours.
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Method FF++ Celeb-DF

Two-stream[53] 70.10 53.80

Meso4[1] 84.70 54.80

Mesolnception4[1] 83.00 53.60

FWA[24] 80.10 56.90

Xception-raw[25] 99.70 48.20

Xception-c23[25] 99.70 65.30

Xception-c40[25] 95.50 65.50

Multi-task[29] 76.30 54.30

Capsule[30] 96.60 57.50

DSP-FWA[24] 93.00 64.60

Two Branch[26] 93.18 73.41

F3-Net[33] 98.10 65.17

EfficientNet-B4[39] 99.70 64.29

Ours 99.80 67.44

Table 4: Cross-dataset evaluation on Celeb-DF (AUC(%))

by training on FF++. Results of some other methods are

cited directly from [26]. Our method outperforms most

deepfake detection approaches.

M FF++(HQ) Celeb-DF

1 97.26 67.30

2 97.51 65.74

3 97.35 66.86

4 97.60 67.44

5 97.39 66.82

Table 5: Ablation results on FF++(HQ) (Acc %) and Celeb-

DF (AUC %) with different number of attention maps.

4.4. Ablation Study

4.4.1 Effectiveness of Multiple Attentions

To confirm the effectiveness of using multiple attentions,

we evaluate how the quantity of attention maps affect the

accuracy and transferability of our model. We train mod-

els in our framework with different attention quantities M

on FF++(HQ), the other hyper-parameters are kept same as

settings in Table 2. For the single attentional model, we do

not use the regional independence loss and AGDA.

The Acc results on FF++(HQ) and AUC results on

Celeb-DF are reported in table Table 5. In some cases,

multi-attention based models perform better than the sin-

gle attentional model, and we found that M = 4 provides

the best performance.

4.4.2 Ablation Study on Regional Independence Loss

and AGDA

As mentioned above, the regional independence loss and

AGDA play an important role in regularized multiple atten-

Figure 4: Attention maps trained without regional indepen-

dence loss (RIL) and AGDA. Without RIL and AGDA, the

network is easily degraded and the multiple attention maps

locates the same regions of input.

Figure 5: Attention maps trained without AGDA. Although

the regional independence loss forces different attention

maps to separate, they tend to respond to the same salient

feature without the help of AGDA.

tion maps training. In this part, we execute quantitative ex-

periments and give some visualizations to demonstrate that
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Figure 6: Attention maps trained with both regional inde-

pendence loss and AGDA. The location and response of at-

tention maps are correctly distributed.

these two components are necessary.

First, to demonstrate the effectiveness of our regional in-

dependence loss, we compare the performances of the mod-

els trained with different auxiliary losses. We keep all the

settings identical with previous except for the loss function.

With the same motivation in designing auxiliary loss, we

substitute the regional independence loss with Additive An-

gular Margin softmax(AMS)[42] that can also force feature

vectors close to their center.

Then we verify the effectiveness of our design for

AGDA. As mentioned, we blur the original image to de-

grade the selected region of input. Thus the strategy of

AGDA can be regarded as a “soft attention dropping”. In

this part, we alternatively adopt a “hard attention dropping”,

which directly erases pixels of selected region by binary at-

tention mask BM :

BMk(i, j) =

{

0, if A∗

k
(i, j) > θd

1, otherwise.
(7)

We set the attention dropping threshold θd = 0.5 in this ex-

periment. The comparison results of this ablation study are

depicted in Table 6. The results verify that both regional in-

dependence loss (RIL) and attention guided data augmenta-

tions (soft attention dropping) have remarkable contribution

to improve the performance of our framework.

To further help understanding of the function of regional

independence loss and the AGDA strategy, we visualize the

attention maps of models trained with/without these two

Loss type AGDA type FF++(HQ) Celeb-DF

None None 96.74 64.86

AMS None 96.49 64.23

RIL None 97.38 65.85

AMS Hard 96.53 63.73

RIL Hard 97.24 64.40

AMS Soft 96.78 66.42

RIL Soft 97.60 67.44

Table 6: Ablation results of different loss function and

AGDA strategy. The model achieves best performance

when using regional independence loss and soft AGDA

mechanism. The metric on FF++(HQ) dataset is ACC, and

on Celeb-DF is AUC.

components. Figure 4 illustrate the attention maps without

RIL, it shows a clear trend that all attention maps are fo-

cused on same region. Figure 5 demonstrate that, although

the attention regions are separated under the retraining of

RIL, the different regions still exhibit similar response to the

most salient features such as landmarks. This is not conduc-

tive for multiple attention maps to capture divergent infor-

mation from different regions. While Figure 6 verifies that

when both RIL and soft AGDA are adopted, the attention

maps show response in discriminative regions with diverse

semantic representations.

5. Conclusion

In this paper, we research the deepfake detection from

a novel perspective that is formulating the deepfake detec-

tion task as a fine-grained classification problem. We pro-

pose a multi-attentional deepfake detection framework. The

proposed framework explores discriminative local regions

by multiple attention maps, and enhances texture features

from shallow layers to capture more subtle artifacts. Then

the low-level textural feature and high-level semantic fea-

tures are aggregated guided by the attention maps. A re-

gional independence loss function and attention guided data

augmentation mechanism are introduced to help train dis-

entangled multiple attentions. Our method achieves good

improvements in extensive metrics.

6. Acknowledgement

This work was supported in part by the Natural Science

Foundation of China under Grant U20B2047, U1636201,

62002334, by the Anhui Science Foundation of China

under Grant 2008085QF296, by the Exploration Fund

Project of the University of Science and Technology of

China under Grant YD3480002001 and the Fundamental

Research Funds for the Central Universities under Grant

WK2100000011.

2192



References

[1] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao

Echizen. Mesonet: a compact facial video forgery detection

network. In 2018 IEEE International Workshop on Informa-

tion Forensics and Security, WIFS 2018, Hong Kong, China,

December 11-13, 2018, pages 1–7. IEEE, 2018.

[2] M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich. Jpeg-

phase-aware convolutional neural network for steganalysis

of jpeg images. Proceedings of the 5th ACM Workshop on

Information Hiding and Multimedia Security, 2017.

[3] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR 2017, Hon-

olulu, HI, USA, July 21-26, 2017, pages 1800–1807. IEEE

Computer Society, 2017.

[4] Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. Fakecatcher:

Detection of synthetic portrait videos using biological sig-

nals. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.

[5] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva.

Recasting residual-based local descriptors as convolutional

neural networks: an application to image forgery detec-

tion. In Matthew C. Stamm, Matthias Kirchner, and Svi-

atoslav Voloshynovskiy, editors, Proceedings of the 5th ACM

Workshop on Information Hiding and Multimedia Security,

IH&MMSec 2017, Philadelphia, PA, USA, June 20-22, 2017,

pages 159–164. ACM, 2017.

[6] Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and

Anil K Jain. On the detection of digital face manipulation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5781–5790, 2020.

[7] Azat Davletshin. https://github.com/NTech-

Lab/deepfake-detection-challenge.

[8] Jiankang Deng, J. Guo, Y. Zhou, Jinke Yu, I. Kotsia, and S.

Zafeiriou. Retinaface: Single-stage dense face localisation

in the wild. ArXiv, abs/1905.00641, 2019.

[9] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu,

Russ Howes, Menglin Wang, and Cristian Canton Ferrer.

The deepfake detection challenge dataset. arXiv preprint

arXiv:2006.07397, 2020.

[10] Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang

Xie, Yi-Zhe Song, Zhanyu Ma, and Jun Guo. Fine-grained

visual classification via progressive multi-granularity train-

ing of jigsaw patches. In European Conference on Computer

Vision, 2020.

[11] Jessica J. Fridrich and Jan Kodovský. Rich models for ste-
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