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Abstract

Vehicle re-identification (re-ID) is of great significance

to urban operation, management, security and has gained

more attention in recent years. However, two critical chal-

lenges in vehicle re-ID have primarily been underestimated,

i.e., 1): how to make full use of raw data, and 2): how to

learn a robust re-ID model with noisy data. In this paper,

we first create a video vehicle re-ID evaluation benchmark

called VVeRI-901 and verify the performance of video-

based re-ID is far better than static image-based one. Then

we propose a new Pompeiu-hausdorff distance (PhD) learn-

ing method for video-to-video matching. It can alleviate

the data noise problem caused by the occlusion in videos

and thus improve re-ID performance significantly. Exten-

sive empirical results on video-based vehicle and person re-

ID datasets, i.e., VVeRI-901, MARS and PRID2011, demon-

strate the superiority of the proposed method. The source

code of our proposed method is available at https://

github.com/emdata-ailab/PhD-Learning.

1. Introduction

Vehicle re-identification (re-ID) aims to locate and rec-

ognize a vehicle of interest across multiple non-overlapping

cameras in various traffic intersections. It is of great sig-

nificance to urban operation, management, security [31,

72, 38], and has gained more attention in recent years

[33, 65, 50, 57, 46]. The challenges are exponentially

increasing for the visual appearance based vehicle re-ID

tasks, such as tiny intra-class variations, multiple camera

viewpoints, various illumination conditions, severe occlu-

sions, and complex traffic conditions [51, 46, 64], e.g., a

car might glow different colors at varying viewing angles

and light beams, while the vehicles of same model usually

exhibit limited visual differences. Vehicle re-ID can be con-

ducted on either images or videos. The existing vehicle re-

ID has been extensively studied for still images via match-
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Figure 1. Schematic illustration of the advantage of video-based

vehicle re-ID and the proposed Pompeiu-hausdorff distance (PhD)

Learning method. (a): We create a video-based vehicle re-ID

benchmark from complex traffic intersections. The rich spatial-

temporal information in video can resist visual ambiguities. (b):

Severe partial and full occlusions frequently occur in a traffic in-

tersection surveillance video. It would introduce a large number

of occlusion samples for recognition. (c): The proposed set-to-

set PhD Learning method for video-to-video matching. The noisy

sample (e.g., x1) can be eliminated automatically during the op-

timization process. Colors (i.e., yellow and red) indicate the se-

mantical visual appearance, while shapes (i.e., squares and circles)

represent the annotated label (i.e., ground truth).

ing spatial appearance features [50, 38, 57, 46, 65]. How-

ever, static image-based approaches are intrinsically limited

due to the visual ambiguities (e.g., occlusions, viewpoints,

and resolutions) and the lack of spatio-temporal informa-

tion. Video sequences contain richer spatial and tempo-

ral clues and are beneficial for identifying a vehicle under

complex surveillance conditions. Currently, making use of

videos brings new challenges to vehicle re-ID. The diffi-
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culties mainly come from the following two aspects: 1)

An adequate quantity and high-quality video-based vehi-

cle re-ID dataset is absent. To the best of our knowledge,

most of the current vehicle re-ID datasets are constructed

from sampled static images [31, 33, 50, 38, 57, 46, 65],

where the consecutive spatial-temporal information are in-

sufficient. Moreover, the diversity (e.g., variations in view-

point, occlusion, illumination, and resolution) of cameras’

captured data are also oversimplified. These restrictions

might make limited contributions to construct a reliable and

robust appearance-based model. The right subfigure in Fig-

ure 1(a) presents a toy example to illustrate the advantages

of the successive video data for re-ID. Two video tracklets

with the same identity (ID) would be matched more accu-

rately at frame t3. 2) An effective video-based vehicle re-ID

method of seeking discriminative features from the videos

is also critically needed. Video-based re-ID benefits from

rich spatial-temporal data to resist the aforementioned vi-

sual ambiguities. However, it also brings additional difficul-

ties in accurately matching video sequences, especially the

problem of matching frames from the videos with occlusion

[41, 52]. As illustrated in Figure 1(b), two video tracklets

{x0, x1, x2} and {y0, y1, y2} are labeled with IDs X and Y ,

respectively. At Frame t1, the visual appearance of bound-

ing box x1 is heavily occluded by that of y1. It leads to x1

has a very similar visual feature with y1, while still been la-

beled as ID X . These kinds of occlusion samples frequently

occur in a surveillance video captured from crowded scenes

(e.g., traffic intersections). It will cause great difficulties

for subsequent identification and deteriorate the recognition

performance significantly.

In this paper, we have done the following two works

to overcome the above limitations: 1) We firstly create

a new Video-based Vehicle Re-Identification benchmark

named VVeRI-901 1. Some distinctive characteristics are

summarized as: a) Unconstrained capture conditions in-

volving multiple intersections motivate visual information

diversity in viewpoint, resolution, and illumination, etc,

as shown in Figure 2. b) Successive spatial and tempo-

ral information without any further down-sampling is con-

tained to enhance the appearance-based model’s robustness

in tackling visual ambiguities. c) With the aid of rich in-

formation, more related research areas can be facilitated,

like cross-resolution re-ID [29], cross-view matching [66],

and multi-view synthesis [5]. 2) We then propose a set-

to-set Pompeiu-hausdorff Distance (PhD) learning method

for video-to-video matching. It can eliminate the occlu-

sion samples automatically during the optimization process.

Figure 1(c) illustrates the PhD learning method’s optimiza-

tion process. In the conventional metric learning method

[23, 18, 1, 43], all the images within a mini-batch will be

1Part of the VVeRI-901 dataset is preliminarily released at https:

//gas.graviti.cn/dataset/hello-dataset/VVeRI901.

employed for optimizing the metric space, and the occlusion

samples would play an adverse influence on the optimiza-

tion, e.g., the distance of positive pairs x0 and x1 (noise)

with considerable visual discrepancy will be narrowed for

the large ground distance, and the case is opposite for neg-

ative pairs (e.g., x1 and y1). In contrast, as for the pro-

posed PhD metric learning, the aforementioned detrimental

positive pairs (e.g., x0 and x1) could be excluded automati-

cally due to the selected pairs to be optimized in PhD met-

ric space can only be composed of samples from different

video tracklets. Additionally, in terms of the negative with

the highest similarity (e.g., x1 and y1), it can also be elim-

inated in that the PhD measures the maximum mismatch

between two point sets via the max-min optimization. In a

nutshell, our main contributions are summarised as follows:

1. We create a new VVeRI-901 benchmark for video-

based vehicle re-ID. It is the first successive video-based

vehicle re-ID benchmark captured from unconstrained real-

world traffic intersections.

2. We propose a new PhD learning method for video-to-

video matching in re-ID tasks. It can alleviate the occlusion

problem in video-based re-ID and improve recognition per-

formance significantly.

3. We verify the superiority of our proposed method on

video-based re-ID tasks, including video-based vehicle re-

ID and video-based person re-ID.

2. Related Work

2.1. Vehicle ReID Benchmarks

The pre-existing vehicle re-ID benchmarks are con-

structed from interval sampled static images. The spatial-

temporal information and the diversity of the data might be

insufficient. It will cause difficulties for subsequent iden-

tification. VeRi-776 [34] contains 776 identities in 50, 000
images, which were collected from 20 surveillance cameras

with different attributes and spatiotemporal labels. PKU-

VD [58] has two large-scale sub-datasets VD1 and VD2,

captured from two different cities with high-resolution cam-

eras and surveillance cameras. VehicleReID [32] was col-

lected from two non-overlapping surveillance cameras. It

only captures the front and back viewpoints, and the oc-

clusion is also not considered. CityFlow [50] is a city-

scale traffic camera benchmark. It was collected from 40
cameras of 10 traffic intersections in an American mid-

sized city. CarsReid74k [46] contains almost 74, 000 ve-

hicle tracks with identity annotation. The 66 cameras cap-

tured the tracks on the bridges overlooking the same free-

way. VERI-Wild [38] is a large-scale benchmark built in the

wild, and over 400, 000 images were captured by an exten-

sive surveillance system containing 174 cameras covering a

large urban district more than 200km2.
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Benchmarks IDs Cameras Boxes N-Overlap Multi-View Multi-Reso Multi-Illu Occlusion Video

VeRi-776 [34] 776 20 49,357 % ! ! ! % %

VehicleReID [32] 26,267 2 221,763 ! % ! ! % %

PKU-VD1 [58] 1,232 - 846,358 - % ! ! % %

PKU-VD2 [58] 1,112 - 807,260 - % ! ! % %

CityFlow [50] 666 40 229,680 % ! ! ! % %

VERI-Wild [38] 40,671 174 416,314 ! ! ! ! ! %

VVeRI-901 (Ours) 901 11 488,195 ! ! ! ! ! !

Table 1. Comparison with publicly available vehicle re-ID benchmarks. For each benchmark, the table illustrates the number of identities,

bounding boxes, non-overlapping scenarios (N-Overlap), multiple viewing angles, multiple resolutions (Multi-Reso), multiple illumination

conditions (Multi-Illu), occluded data (Occlusion), and sequential video-based (Video).

2.2. Videobased ReID Methods

The video-based re-ID can be regarded as an extension

of single-shot image-based methods. It adopts an image

sequence to further improve the matching accuracy [68].

McLaughlin et al. [41] first proposed a primary deep learn-

ing pipeline for video-based person re-ID. It selects discrim-

inative frames is usually performed before feature extrac-

tion, aiming at selecting sufficient informative information

while avoiding redundancy [3]. Typically adopted strate-

gies are random sampling [3, 47, 56], restricted random

sampling [53, 30, 28], snippet sampling [2], and periodical

sampling [69], etc. Generating informative temporal rep-

resentations is also a critical issue, and different sequential

feature fusion methods have significant effects on the final

performance of the models [13]. Among various methods,

recurrent neural networks (RNNs) [41, 60], pooling (aver-

age or maximum) [70] and attention-based models [56, 36]

are most widely applied. Besides, some proposed models

incorporate the spatial and temporal feature extraction to-

gether via 3D CNN [26]. Almost all of the pre-existing

works focus on the structure-related improvement, rarely

on designing suitable metric learning methods for resolving

video-based re-ID problems.

2.3. Distance Metric Learning

Distance Metric learning [23] aims to learn an optimal

distance metric to measure the similarity among samples.

Recently, deep metric learning [18, 1, 43, 55, 59, 48] shows

a better ability to solve real-world problems and has at-

tracted attention in various fields. Most existing supervised

re-ID methods apply identification loss for identity classifi-

cation (e.g., cross-entropy loss) [49] and verification loss for

metric learning (e.g., triplet loss) [16]. Triplet loss [43] is

designed initially for the face recognition problem, in which

an anchor, a positive sample, and a negative sample are in-

cluded. Quadruplet loss [4] is an improved version of triplet

loss, which contains two different negative samples to learn

a larger inter-class distance and a smaller intra-class dis-

tance compared to the triplet loss. However, almost all of

the existing re-ID methods share the identical criterion of a

point-to-point distance metric, and there is no valid set-to-

Figure 2. Some image and tracklet instances sampled from our

VVeRI-901 dataset. Within a tracklet, more visual information

are included, and temporal information can be explored with

appearance-based models for vehicle re-ID task.

set distance metric specially designed for sequential images

in video-based re-ID.

3. VVeRI-901 Benchmark

The raw video data of the VVeRI-901 are captured from

a mid-sized city of China with an area of 1.1km × 2.4km.

In this region, 11 non-overlapping surveillance cameras are

deployed at different traffic intersections. We tailor the raw

videos captured by all the cameras from 7 : 00 am to 10 : 00
am when traffic is massive, and more vehicle IDs can be

recorded accordingly. We mask the license plates in the

VVeRI-901 for privacy consideration and make the model

more focus on the vehicle’s visual appearance.

Data Annotations: To acquire the tracklets of each vehicle

in every single camera, we manually annotate the bound-

ing box of each tracklet with the help of the Computer Vi-

sion Annotation Tool (CVAT) [44]. After getting all the

tracklets in each camera, we associate the same vehicle

that appears at different cameras with the auxiliary spatial-

temporal cues. It is worth noting that we find some vehi-

cles stopping and keeping still at zebra crossings in some
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Figure 3. Statistic of the VVeRI-901 dataset. (a): The number of identities across different cameras. (b): The distribution of the variance of

resolution within a tracklet. (c): The distribution of the length of tracklet at traffic intersections.

raw videos. These vehicles provide the same appearance in

each frame and poss limited variations in a tracklet, leading

to severe information redundancy in the dataset. In order to

avoid this redundancy issue, we define a region of interest

(ROI) for each scenario and retain the clips within the ROI.

Data Statistics: The proposed dataset contains 901 IDs

(i.e., 451 IDs for training and 450 IDs for testing), 2, 320
tracklets, and 488, 195 bounding boxes. As sketched in Fig-

ure 3(a), all the IDs are captured by at least two cameras,

and most of the IDs are captured by 2-4 cameras, indicat-

ing that VVeRI-901 is an ideal benchmark for algorithms to

explore multiple queries or re-ranking methods. In Figure

3(b), we calculate the distribution of the standard deviation

of
√
H ∗W for the tracklets, herein and after, H and W rep-

resent the height and width of each frame in a tracklet, re-

spectively. Most of the tracklets render more or less scale

changes due to the vehicle’s high moving speed. Figure 3(c)

shows the distribution of the sequence length at traffic inter-

sections. The sequence length presents a distinct distribu-

tion at different crossroads due to the discrepancy between

various scenes. Generally, most of the sequences from all

cameras contain 100-400 frames, guaranteeing information

diversity in the proposed benchmark dataset.

Data Characteristics: The leading contribution of the pro-

posed benchmark is providing challenging factors to facili-

tate the development of vehicle re-ID methods in realistic

scenarios. As shown in Table 1, the main practical fac-

tors in vehicle re-ID tasks, including occlusions and view-

points, are fully considered only in the VERI-Wild [38]

and our benchmark, i.e., VVeRI-901. However, compared

with VVeRI-901, vehicle images from the side view and se-

vere occlusions can hardly be found in VERI-Wild. Only

images with limited viewpoints and minor occlusions are

provided. Furthermore, the VVeRI-901 is the only exist-

ing video-based vehicle re-ID benchmark. It benefits from

the sequential video information, and some small but in-

formative clues can be preserved for matching and identi-

fication. The video is closer to the raw data captured from

the surveillance system from the real-world application per-

spective, making the VVeRI-901 more practical and chal-

lenging. More detailed information about our VVeRI-901

benchmark can be found in our supplementary materials.

Evaluation Protocols: To evaluate the performance of ve-

hicle re-ID tasks, there are two widely used performance

metrics, namely, mean Average Precision (mAP) and Cu-

mulative Matching Curve (CMC). More specifically, the

mAP indicates the overall performance of re-identification:

AP =

∑n

l=1
S(k)× gt(k)

Mgt

, (1)

where k is the rank in the order of vehicles of size n, Mgt

is the number of relevant vehicles. S(k) is the precision

at cut-off k and gt(k) indicates whether the k-th recall is

correct. Therefore, the mAP is defined as:

mAP =

∑V

u=1
AP (u)

V
, (2)

where V represents the number of total query images.

The CMC shows the ranking capabilities of re-ID models

through quantitative evaluation. The CMC value at rank k
can be calculated as:

CMC@k =

∑V

u=1
gt(u, k)

V
, (3)

where gt(u, k) is equal to 1 when the ground truth of u im-

age appears before rank k.

4. Our Method

4.1. Vanilla Pompeiuhausdorff Distance Metric

The pompeiu-hausdorff distance is widely used to mea-

sure the similarity between two sets of points [21, 8]. Let

S1 and S2 be two non-empty subsets of the Euclidean
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Figure 4. The basic principle of Pompeiu-hausdorff distance (PhD) metric learning in solving the occlusion problem. Shapes (i.e.,

squares and circles) represent the annotated label while filling colours (i.e., yellow, blue, and red) represent the semantic visual appearance.

(a): Three kinds of harmful metric pairs due to the outlier (i.e., x3) and label noise (i.e., x6) when applying the existing point-to-point

metric. (b): Without extra modification, the vanilla PhD metric can alleviate the impacts of an outlier but failed in resisting the label noise.

(c): The relaxed PhD metric can alleviate the impacts of the outlier and label noise simultaneously.

metric space (G, dE). Their pompeiu-hausdorff distance

dH(S1, S2) denotes that any point in set S1 is at most at

distance dH(S1, S2) to some point in set S2. Specifically,

dH(S1, S2) can be defined as:

dH(S1, S2) = max
{
sup
p∈S1

inf
q∈S2

dE(p, q),

sup
q∈S2

inf
p∈S1

dE(p, q)
}
,

(4)

where sup and inf denote supremum and infimum, respec-

tively. Equivalent form of Equation (4) [42] is:

dH(S1, S2) = inf
{
ε ≥ 0; S1 ⊆ S

ε
2 and S2 ⊆ S

ε
1

}
,

S
ε
1 =

⋃

p∈S1

{
g ∈ G; dE(g, p) ≤ ε

}
, (5)

Equation (5) represents the set of all points within ǫ of the

set S1 and sometimes called the ǫ-fattening of S1 or a gen-

eralized ball of radius ǫ around S1.

In video-based re-ID, a whole tracklet (i.e., image se-

quence) can be regarded as a point set. Supposing S1, S2 ⊂
R

N are two sets composed of M and N points, respec-

tively. The Pompeiu-hausdorff distance dH(S1, S2) between

two sets of points S1 and S2 can be defined as:

dH(S1, S2) = max{dU(S1, S2), dU(S2, S1)},
dU(S1, S2) = max

p∈S1

min
q∈S2

dE(p, q),

dU(S2, S1) = max
q∈S2

min
p∈S1

dE(q, p),

(6)

where dH(S1, S2) is also called bi-directional Pompeiu-

hausdorff distance. The dU(S1, S2) and dU(S2, S1) are

two uni-directional Pompeiu-hausdorff distances between

the two sets, which is the maximum value measuring the

distance from points in one set to its nearest neighbor

point in the other set. Furthermore, the bi-directional

Pompeiu-hausdorff distance is the larger one of the two uni-

directional Pompeiu-hausdorff distances.

4.2. Noises Elimination with Relaxed PhD Metric

We clarify the principle of PhD learning for resisting the

noisy samples caused by the occlusion problem in Figure

4. Three video tracklets with two identities are exempli-

fied here, and in each tracklet, three samples are included.

Specifically, inspired by [67], two types of noisy samples,

outlier (i.e., x3) and label noise (i.e., x6), are investigated

here in details, which result from partial and full occlusion,

respectively. As shown in Figure 4(a), in the existing point-

to-point metric learning method, three kinds of metric pairs

(i.e., {x1, x6}, {x2, x3} and {x3, x7}) caused by the noisy

samples (i.e., x3 and x6) are introduced. It would play an

adverse influence on the optimization, e.g., the distance of

positive pairs x2 and x3 (x6) with considerable visual dis-

crepancy will be narrowed for the large ground distance

and the case is opposite for negative pairs (e.g.,x3 and x7).

The problems essentially originate from that in the conven-

tional point-to-point method, each sample is treated inde-

pendently, and the structure of the tracklet is not considered.

In contrast, for the PhD metric shown in Figure 4(b), only

the distance between two sets is taken into account, and

the metric pair within the same tracklet (e.g., {x2, x3}) can

be discarded automatically. At the same time, according

to definition of uni-directional Pompeiu-hausdorff distance

dU(S1, S2) (dU(S2, S1)) in the equation 6, the sample pairs

between two sets with minimum distance are discarded, and

the metric pair {x3, x7} can also be avoided accordingly.
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Algorithm 1: Pseudocode of PhD Learning.

1 Input: network F parameterized by θ, dataset D and

hyperparameter k, τ .

2 while not MaxEpoch do
/* Sample a mini-batch */

3 B ← {(Si, yi) ∼ D}
|B|
i=1

/* Compute relaxed PhD metric dkH */

4 for Si={xi,1,· · ·, xi,p,· · ·, xi,S1
}∈B do

5 for Sj ={xj,1,· · ·, xj,q,· · ·, xj,S2
}∈B(i 6= j) do

6 dkU(Si,Sj)←kth max{min{F (xi,p)
⊤F (xj)}}

7 dkU(Sj ,Si)←kth max{min{F (xj,q)
⊤F (xi)}}

8 dkH(Si, Sj)← max{dkU(Si, Sj), d
k
U(Sj , Si)}

9 end

10 end

/* Compute LPhD and the gradient */

11 LPhD ← torch.nn.MarginRankingLoss(dkH, y, τ)
12 δθ ← ∂θLPhD

13 end

14 Output: network F

However, the vanilla PhD metric is sensitive to the la-

bel noise x6 due to the maximum operation in the calcula-

tion of uni-directional Pompeiu-hausdorff distance. To fur-

ther circumvent this difficulty, we propose a relaxed PhD

metric learning by relaxing the maximum constraint of uni-

directional distance. Denoting the distance as:

dkH (S1, S2)=max
{
kth-max

p∈S1

{min
q∈S2

dE(p, q)},

kth-max
q∈S2

{min
p∈S1

dE(q, p)}
}
,

(7)

where kth-max
p∈S1

{min
q∈S2

dE(p, q)} means selecting kth maxi-

mum value in set D1 = {min
q∈S2

dE(pi, q), pi ∈ S1} and vice

versa. The relaxed PhD metric can automatically select the

k best matching points of S1 (S2) because it identifies the

subset of the whole set of size k that minimizes the uni-

directional Hausdorff distance and the metric pair caused

by the label noise x6 can be avoided attributed to the largest

distance as shown in Figure 4 (c).

4.3. Loss Objective of Setbased PhD learning

We propose the PhD loss objective to adopt a set-based

sample selection strategy for the video-based re-ID task.

The PhD loss is developed based on Batch Hard (BH) triplet

loss [16]. Specifically, let f be the embedding feature of

a sample x learned with a function, and S represents the

tracklet of one object. Following the sampling strategy

in [16], the batches are formed by randomly sampling P
classes (object identities) and then randomly sampling K
sequences of each class. For each sequence, S samples are

sampled from the whole tracklet. Now, the BH triplet loss

function for video-based re-ID can be re-defined as follow:

LBH-Tri=

all anchors
︷ ︸︸ ︷

P∑

i=1

K∗S∑

a=1

[
τ +

hardest positive
︷ ︸︸ ︷

max
p=1...K∗S

dE(f
i
a, f

i
p)

− min
j=1...P

n=1...K∗S
j 6=i

dE(f
i
a, f

j
n)

︸ ︷︷ ︸

hardest negative

]

+

(8)

where τ is the margin. The footnotes a, p and n represent

the anchor, positive and negative, respectively.

To evaluate the video-based distance in a set-to-set man-

ner, we revise the triplet strategy based on the proposed re-

laxed pompeiu-hausdorff distance and design the PhD loss

objective. For a specific anchor Sa, the PhD loss can be

formulated as follow:

LPhD=

all anchors
︷ ︸︸ ︷

P∑

i=1

K∑

a=1

[
τ +

hardest positive
︷ ︸︸ ︷

max
p=1...K

dkH(S
i
a, S

i
p)

− min
j=1...P
n=1...K

j 6=i

dkH(S
i
a, S

j
n)

︸ ︷︷ ︸

hardest negative

]

+

(9)

where dkH represents the relaxed hausdorff distance. It

should be noted that the sampling strategies in vanilla (k=1)

and relaxed (k-th max) PhD can be regarded as batch-hard

and semi-hard methods in [24] as mentioned. The pseudo-

code of the PhD learning is described in the Algorithm 1.

5. Experiments

5.1. Experiment Settings

Architecture: Standard ResNet-50 [15] and OSNet-AIN

[71] pretrained on ImageNet are applied as the backbone

for video-based vehicle and person re-ID, respectively. We

adopt cross-entropy as identification loss (i.e., ID loss [49])

for identity classification, triplet loss [16] and our PhD loss

as verification loss for metric learning. As suggested by

Luo et al. [40], we apply the structure of the BNNeck layer,

which is positioned after features extracted by the backbone

and before classifier fully connected layers. Furthermore,

both the BNNeck and fully connected layers are initialized

through Kaiming’s initialization [14].

Datasets: Each image in a image tracklet 2 is prepossessed

and resized to the same resolution (256×256 for VVeRI-901,

256 × 128 for MARS [70], and PRID2011 [17]) in pixels

2According to the “probe-to-gallery” pattern [70], the queries and gal-

leries are both image tracklets for supporting video-to-video re-ID mode.
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and synchronously augmented with a random horizontal flip

operation for each image tracklet.

Parameters: Adam [22] optimizer is selected with an ini-

tial learning rate of 3.5 × 10−4. The commonly adopted

warm-up strategy [9] is applied to bootstrap the network for

better performance. In practice, the network is optimized

for 120 epochs. We spend 10 epochs linearly increasing the

learning rate from 3× 10−6 to 3× 10−4, and it then decays

by 10 at 40th epoch and 70th epoch respectively. In each

Strategies mAP R1 R5 R10 R20

Aggregation

Strategies

(S = 6)

Avg. Pooling 41.8 41.4 61.2 70.2 76.0

Max Pooling 40.5 39.6 59.1 68.4 77.3

Attention 39.8 39.2 61.4 66.1 74.7

LSTM 37.2 36.5 54.3 61.8 69.8

Tracklets

Lengths

(Avg.)

S = 4 39.7 38.4 58.6 66.7 72.4

S = 6 41.8 41.4 61.2 70.2 76.0

S = 8 42.0 41.2 61.2 68.8 75.3

Sampling

Strategies

(S = 6, Avg.)

Evenly 41.8 41.4 61.2 70.2 76.0

Random 45.7 44.3 64.3 73.1 80.0

RandomSeq. 45.2 43.7 63.9 73.6 80.7

Table 2. Ablation study results of PhD learning on the VVeRI-901.

Methods mAP R1 R5 R10 R20

GoogLeNet [63] 41.4 40.8 59.6 65.3 72.0

ID Loss [35] 36.5 37.2 52.4 60.5 68.6

TCLNET-tri∗ [19] 44.0 45.5 58.0 67.1 72.9

MGH [61] 44.5 44.3 61.8 67.8 74.1

Triplet+ID(I-I) [16] 26.1 27.8 41.5 47.8 51.5

Triplet+ID(I-V) [16] 33.7 35.6 51.2 54.3 59.7

Triplet+ID(V-I) [16] 33.3 36.8 50.3 55.6 61.4

Triplet+ID(V-V) [16] 41.8 41.4 61.2 70.2 76.0

PhD+ID (S = 6, Avg., Ran.) 47.2 47.1 67.6 74.7 80.4

Table 3. Comparison results with other methods on the VVeRI-901.

training batch, we sample 8 identities (i.e., P = 8), each

with 4 tracklets (i.e., K = 4), and the sequence length of

each tracklet is 6 (i.e., S = 6). Besides, the margin param-

eter τ defined in the loss objectives is set to 0.3.

5.2. Evaluation on Videobased Vehicle ReID

Aggregation Strategies Evaluation: Some commonly ap-

plied aggregation methods including temporal pooling [13],

temporal attention [7] and RNN [41] are evaluated on the

VVeRI-901. In the temporal pooling model, we consider

two modes, i.e.,, max pooling and average pooling. In the

temporal attention model, we apply an attention weighted

average on the sequence of image features as suggested in

[13]. For RNN fusion, we test the Long Short-Term Mem-

ory (LSTM). It can be found from the evaluation results in

the top part of Table 2 that temporal pooling methods out-

perform the other methods, while the LSTM method is in-

ferior in terms of mAP and CMC on VVeRI-901. Further-

more, the average pooling method shows superior perfor-

mance compared with the max pooling.

Sequence Lengths Evaluation: Then, we explore the ef-

fects of different sequence lengths (i.e., S = 4, S = 6, and

S = 8) with the evenly sampling strategy. It can be seen in

Table 2 that the mAP and CMC increase with the sequence

length, while the performance of S = 6 and S = 8 are sim-

ilar, indicating improvement can be limited when further

increasing the sequence length.

Sampling Strategies Evaluation: We compare three com-

monly used sampling strategies: 1) Evenly sampling strat-

egy divides the whole tracklet into S clips with the same

length first and then select an image in each clip to construct

the sequence. 2) Random sampling strategy randomly sam-

ples S frames in each tracklet. 3) Random sequence sam-

pling strategy randomly choose a consecutive clip with a

length of S. The comparison results are listed in Table 2.

The random sampling strategy performs better than others

cause of suitable randomness within the tracklets.

Comparison with The Existing Methods: We evaluate

the PhD learning performance with some commonly used

methods on the VVeRI-901. Four probe-to-gallery pat-

terns [70] (i.e., image-to-image (I-I), image-to-video (I-V),

video-to-image (V-I), and video-to-video (V-V) pattern) are

also considered. The comparison results in Table 3 demon-

strate that the PhD combined with ID loss outperforms the

other methods by a large margin.

5.3. Evaluation on Videobased Person ReID

Noise Robustness Evaluation: We evaluate the noise re-

sistance ability of the proposed PhD learning method. The

vanilla (i.e., k=1) and relaxed (i.e., k=S/2, where S is the

tracklet length) PhD metric learning methods are compared

in Table 4. Since the noise intensity correlates with the

length of image tracklets, we also investigate the method by

sampling different sequence length (i.e., S = 4, S = 6,

and S = 8). Empirical results on MARS show the re-

laxed (e.g., k=S/2,S=8) PhD metric is more robust than the

vanilla PhD. In contrast, the vanilla PhD loss shows supe-

rior performance on PRID2011. The reason lies in that the

MARS uses DPM detector [11] and GMMCP tracker [6] for

pedestrian detection and tracking, respectively. It brings in

a number of false detection and tracking annotations [70].

The relaxed PhD loss with a larger value of k (and the corre-

sponding S) is more effective to reduce these outliers. Com-

pared with the MARS, the PRID2011 dataset has fewer out-

liers due to manual annotations. Thus, the relaxed PhD loss

may regard some hard positive samples as outliers and fil-

ter them, which result in insufficient optimization for the

model parameters and degraded the performance compared

with the vanilla PhD loss objective.

The MARS also provides optional distractors (labelled
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Tracklet Lengths

MARS [70] PRID2011 [17]

k = 1 (vanilla) k = S/2 (relaxed ) k = 1 (vanilla) k = S/2 (relaxed )

mAP R1 R5 mAP R1 R5 R1 R5 R1 R5

S = 4 81.5 85.8 95.8 82.5 86.7 96.4 85.4 94.4 83.1 94.4

S = 6 82.7 87.0 96.5 83.6 87.7 96.2 92.1 97.8 88.8 96.6

S = 8 82.0 86.0 96.2 84.1 88.0 96.6 89.9 97.8 89.9 95.5

Table 4. Ablation study results on the relaxed parameter k and tracklet length S.

Methods (S=6)
MARS

mAP R1 R5 R10

BH triplet (w/o noise) 82.2 86.5 95.9 97.4

BH triplet (w noise) 70.0 79.5 91.3 93.8

PhD (w/o noise) 86.2 88.9 97.0 97.9

PhD (w noise) 80.4 84.2 94.7 96.3

Table 5. Noise robustness evaluation results.

Loss Objectives
MARS [70] PRID2011 [17]

mAP R1 R5 R1 R5

ID Loss [49] 79.1 84.4 94.7 85.4 95.5

Quadruplet+ID [4] 79.4 85.4 94.2 85.4 96.6

Triplet+ID [16] 82.2 86.5 95.9 87.6 96.9

PhD+ID 83.6 87.7 96.2 92.1 97.8

Table 6. Evaluation results of several loss objectives.

Methods
MARS [70] PRID2011 [17]

mAP R1 R5 R20 R1 R5 R20

RQEN [45] 51.7 73.7 84.9 91.6 91.8 98.4 99.8

RRU+STIM [37] 72.7 84.4 93.2 96.3 92.7 98.8 99.8

GLTR [25] 78.5 87.0 95.8 98.2 95.5 100.0 100.0

STA [12] 80.8 86.3 95.7 98.1 - - -

AdaptiveGraph [54] 81.9 89.5 96.6 97.8 94.6 99.1 100.0

VRSTC [20] 82.3 88.5 96.5 - - - -

NVAN [30] 82.8 90.0 - - - - -

STGCN [62] 83.7 89.9 96.4 98.3 - - -

TACAN [27] 84.0 89.1 96.1 98.0 95.3 - -

TCLNET-tri∗ [19] 85.1 89.8 - - - - -

MGH [61] 85.8 90.0 96.7 98.5 94.8 99.3 100.0

SSDML [73] 65.7 74.4 89.4 95.0 86.5 98.9 100.0

MMDML [39] 81.6 86.3 95.7 98.1 85.4 95.5 100.0

SA Triplet [10] 81.8 85.3 95.4 98.2 90.2 99.6 100.0

PhD (Ours) 86.2 88.9 97.0 98.6 96.6 97.8 100.0

Table 7. Performance comparison with the state-of-the-art meth-

ods. Among them, the middle group of results represents some

recent set-based metric learning methods.

as ’ID=0’) in the gallery to evaluate the methods’ robust-

ness. We randomly insert a distractor in the image tracklet

to mimic the label noise. Table 5 shows the performance

degraded significantly for the batch-hard triplet, while the

relaxed PhD is robust. The mAP of PhD dominates the

batch-hard triplet by 4.0%. This performance gap could be

further expanded to 10.4% after inserting additional noises.

Loss Objectives Evaluation: We compare some com-

monly used loss objectives with the relaxed PhD loss on

MARS and PRID2011 datasets. We train the relaxed PhD

loss with a sequence length of S = 6, and an evenly sam-

pling technique is used for all the methods for a fair com-

parison. Comparison results in Table 6 show the relaxed

PhD combined with ID loss outperforms the other losses.

Comparison with The State-of-the-art Methods: We

compare our method with the state-of-the-art methods on

the MARS and PRID2011 in Table 7. To further evaluate

the set-based PhD metric, we also make comparison with

some exiting set-to-set metric learning methods (e.g., SS-

DML [73], MMDML [39], and SA Triplet [10]). It also

should be noted that we use different sampling strategies in

ablation studies (i.e., Table 4 and 6) and the “SOTA” contest

(i.e., Table 5 and 7). In ablation studies, we evenly sample S
frames from tracklets for both training and querying (fixed

S=6) for eliminating randomness. When compared with the

SOTAs, we random sample S=6 frames for training, and

use whole tracklets for querying as [61] to boost the perfor-

mance. The results in Table 7 shows that the PhD method

achieves 86.2% mAP without re-ranking on the MARS. It is

a new SOTA result on this large-scale dataset. The 96.6%
in rank-1 on the PRID2011 also dominates other methods.

The PhD metric outperforms other set-based metric learn-

ing methods by at least 4.4% in mAP on the MARS and

6.4% in rank-1 on the PRID2011. The comparison results

demonstrate the superiority of our PhD learning method for

both video-based vehicle and person re-ID tasks.

6. Conclusion

In this paper, we created a new video-based vehicle re-ID

benchmark VVeRI-901 to promote the research of vehicle

re-ID. It is the first video-based vehicle re-ID benchmark

captured from unconstrained intersections. The spatial-

temporal clues in videos are rich, diverse, and change suc-

cessively. It is beneficial for identifying a vehicle under

complex surveillance conditions in the wild. Although more

information can be obtained from vehicle videos, more

challenges come along. E.g., the noises induced by par-

tial and full occlusions in vehicle videos are more severe.

Thus, we further propose the video-to-video relaxed PhD

learning method. The delicate matching and mining strate-

gies in PhD metric learning can resist the noise and improve

recognition significantly. Our current study mainly focuses

on correctly stressing noises caused by severe occlusions

while fully exploiting the abundant visual sequential infor-

mation in collected vehicle videos. Video-based vehicle re-

ID task on the created VVeRI-901 is still challenging as the

PhD merely achieves 47.2% mAP. The more vital spatial-

temporal information, e.g., timestamps and camera coordi-

nates, is also pre-annotated in VVeRI-901. Our future work

will focus more on modelling the prior knowledge and gain

deeper insights on the video vehicle re-ID task.
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