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Abstract

We study a very challenging task, human image com-

pletion, which tries to recover the human body part with a

reasonable human shape from the corrupted region. Since

each human body part is unique, it is infeasible to restore

the missing part by borrowing textures from other visible re-

gions. Thus, we propose two types of learned priors to com-

pensate for the damaged region. One is a structure prior,

it uses a human parsing map to represent the human body

structure. The other is a structure-texture correlation prior.

It learns a structure and a texture memory bank, which en-

codes the common body structures and texture patterns, re-

spectively. With the aid of these memory banks, the model

could utilize the visible pattern to query and fetch a sim-

ilar structure and texture pattern to introduce additional

reasonable structures and textures for the corrupted region.

Besides, since multiple potential human shapes are under-

lying the corrupted region, we propose multi-scale structure

discriminators to further restore a plausible topological

structure. Experiments on various large-scale benchmarks

demonstrate the effectiveness of our proposed method.

1. Introduction

Human image completion aims to repair human body

parts in the corrupted human image. It has various potential

applications, including the restoration of old human pho-

tographs and films, human image re-composition, and fash-

ion clothing re-editing.

By far, most image inpainting works [27, 45, 33, 44]

make the best use of the repeated textures in visible regions,

such as the attention mechanism [47], to restore a photo-
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(a) Cover the repeated region 

(DeepFill v2)

(b) Cover the human part

(DeepFill v2)

Structure Texture

(c) Cover the human part (Ours)

Figure 1. Illustration of the human body completion. (a) Existing

image inpainting methods [48] usually works well to recover these

repeated regions, (b) while they might fail to recover the unique

human body region. (c) We mainly focus on how to recover the

corrupted unique human body in the image via borrowing structure

and texture information of other images from the learned mem-

ory. With the help of additional prior information, our proposed

method could generate a more realistic and plausible image.

realistic image from the damaged part. Since there are both

human body and background in corrupted regions, and they

usually have the different style of textures, it is ambiguous

to place the repeated textures into the right position. Thus,

following works [11, 54, 10, 32] take an additional human

mask as guidance to ease the texture ambiguities between

foreground and background. However, since each human

body part is unique (only one head), it is impracticable to

borrow the repeated textures from other parts. Besides, a

human body is non-rigid with diverse poses, and thereby

multiple potential human shapes exist for the damaged re-
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gion. This ambiguity could further make the inpaintor pro-

duce a terrible result with unreasonable human body struc-

ture. As shown in Figure 1 (a), the existing method usually

works well to repair the corrupted area from the visible re-

peated texture, such as the sand. While when dealing with

the unique human body part, such as the arm in Figure 1

(b), it produces a result with an implausible human body

structure.

Fortunately, the human body is highly structured. We

could make the full use of the structure information of

a human body to guide the network to generate decent

results with reasonable human shapes. There are sev-

eral types of human structures, including a binary fore-

ground/background mask [3, 20], 2D pose [6, 34], hu-

man parsing [38, 39], densepose [1, 25], and 3D body

mesh [2, 13, 21]. From left to right, they have a more power-

ful capability in representing the structure in detail but with

more difficulties for their corresponding structure estimator

to infer an accuracy structure from a corrupted image. We

use the human parsing as a human structure prior, consider-

ing the trade-off between the representative ability and the

accuracy of its estimator in a corrupted image [30].

By leveraging the structure prior, we first learn a struc-

ture and a texture memory bank, encoding the common

body structure and texture patterns, respectively. To learn

more representative features for both the structure and tex-

ture, the memory prior encoding network takes the concate-

nation of structure and texture as the input. Then, we pro-

pose to estimate the human parsing map of the corrupted

image and recover a reasonable complete human parsing

map with the help of the structure memory bank. To further

eliminate the shape ambiguities underlying in corrupted re-

gions and produce an image with a more plausible topo-

logical structure, we also use multi-scale structure discrim-

inators to regularize the connections at different scales of

topological levels to be reasonable, such as the global level

(the whole body), the middle level (upper body), and the lo-

cal level (arm-with-torso). In this way, we could recover a

semantic plausibly structure map.

Conditioned on the recovered complete structure map,

we propose a texture completion module to restore the hu-

man body textures in the corrupted regions. Since the tex-

ture of each human body part is unique, it is infeasible for

the incomplete area to borrow the repeated textures from

the visible regions directly or with the advanced attentional

mechanism [47]. We further propose a structure-texture

correlation prior to introduce additional plausible textures

for the corrupt region. Specifically, the texture comple-

tion model could retrieve a reasonable texture pattern from

the texture memory bank as a compensation for the incom-

plete region corresponding to its complete structure. Also,

to preserve the identity of the visible part, we use skip-

connections between encoding features and memory fea-

tures. As shown in Figure 1 (c), our method could recover

the human body part from the corrupted regions with a plau-

sible human body structure.

We summarize our contributions as follows: (i) Different

from previous image inpainting works, we focus on recov-

ering the unique human body part from the incomplete re-

gion with a plausible human body structure; (ii) To further

produce an image with a reasonable topological structure

in the human body, we propose to use multi-scale structure

discriminators to regularize the connection among all the

topological levels; (iii) We propose a structure and texture

memory bank to introduce more additional priors as com-

pensation for the corrupted region. Extensive experiments

demonstrate the effectiveness of our proposed method.

2. Related Work

2.1. Image Inpainting

Benefiting from the growth of deep generative mod-

els [9, 51], learning-based image inpainting methods [7,

29, 22, 50, 31, 53, 19, 46, 52] achieved impressive perfor-

mance by learning high-level information from large scale

datasets. Following the assumption that missing pixels

could be found from visible parts in images, early meth-

ods [27, 45, 12, 40, 35], train the network to map corrupted

images to complete images and force the model to recon-

struct complete images. [12] introduces global and local

discriminators. The former critics the texture of the whole

image, and the latter penalizes the patch of generated con-

tents. However, it still produces results with artifacts be-

cause the model can not capture the long-term correlation.

To better utilize the information of visible parts and

capture the long-term correlation between uncorrupted and

corrupted regions, [47] devises contextual attention, which

computes the similarity score between the visible part and

generated part. Then it always borrows the most relevant

patch to fill up the content. Befitting from the attention

module, the model could capture the relation between fea-

sible regions and generated regions. [16] uses an iterative

method to utilize visible parts in the image to a greatest ex-

tent. However, because they process valid pixels and invalid

pixels in the same way, the results are still generated with

artifacts. [17, 48] solve the problem by designing new con-

volution operators. Based on the contextual attention mod-

ule, [48] further proposes using gated convolution to learn

the validate information automatically. The model produces

smooth results by using the correlation between each pixel

and reduce the influence from invalid pixels. However, re-

sults are always structurally unreasonable because it ignores

the high-level structure.

Except for attention-based methods, [24, 43, 15] propose

to use edge maps as the condition for networks to guide the

model extract high-level features. These methods produce
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results with reasonable structure on easy scenes but fail in

the complex scenes because the environmental lighting and

texture on objects would make the edge-map ambiguous.

Thus, the edge map may mislead the model to generate

wired results on the wild data.

2.2. Human Parsing

Previous works [42, 8] address the human semantic

segmentation task as a multi-task problem, and they per-

form pose-estimation and human semantic segmentation to-

gether. Later, [30] utilizes edge maps of images as condi-

tions to facilitate the prediction. Their method achieves high

performance. Recent methods [38, 39] propose first to pre-

dict each part of the human and then merge them up in a

bottom-up strategy.

2.3. Fashion Editing

Fashion editing is driving more attention in the com-

munity and industry due to its great commercial value.

[37] proposes to evaluate the compatibility between differ-

ent cloth with traditional computer vision methods. Later,

[54, 41, 4, 23] utilize human parsing maps as conditions

to change the cloth on human bodies in single person im-

ages. Unlike the above methods, [11, 5] propose solving

the fashion editing task with inpainting methods. Since the

style of clothes might obey a specific distribution, [11] uses

a network to learn a fashion distribution to predict the hu-

man parsing maps and images. However, they can only

predict one cloth of the whole human body, and the mask

is fixed. [5] utilizes an inpainting network to recover the

human parsing and then produce images. Although this

method can handle more kinds of masks, the model needs

some guidance in the input to facilitate the result and may

fail in practical applications.

3. Methodology

Our proposed method consists of three stages, including

prior encoding, segmentation completion, and texture com-

pletion, as illustrated in Figure 2.

3.1. Problem Formulation

Given a corrupted single person image, human comple-

tion aims to fill up its missing regions. We denote the input

corrupted image Ic ∈ R
3×H×W as Igt ⊙ (1 − M), where

Igt ∈ R
3×H×W denotes the ground-truth image and M ∈

R
1×H×W denotes the images mask (1 for the lost pixels).

The predicted image is denoted with Ipred ∈ R
3×H×W .

The existing image completion methods usually train a net-

work G to recover the missing content, as formulated:

Ipred = G(Ic). (1)

However, corrupted human parts in images are always

unique, leading to failure cases of the existing methods

via borrowing information within the image. Thus, we in-

troduce structure and texture correlation prior to our de-

signed memory bank module to encode additional informa-

tion from other images. We also propose utilizing the struc-

ture prior by leveraging the human segmentation map as in-

put to the network to encode the formal human structure

better. To this end, human body completion can formulate

as:

Ipred = G(Ic, S, E), (2)

where E represents the learned memory bank module, and

S represents the estimated corrupted human semantic map.

3.2. Prior Encoding

We design a memory bank module to encode the com-

mon information of human bodies in both structure and tex-

ture. Besides, we also leverage the multi-scale architecture

to capture local and global information on different scales

for further improvements. Specifically, each memory bank

is a 64 × 512 dictionary that stores the learned latent vec-

tors. Each latent vector corresponds to the stored feature.

This stage illustrates in Figure 2 (a).

We maintain two types of memory bank: a structure

memory bank Es and a texture memory bank Et, which de-

sign to encode and store the human structure and texture in-

formation in the whole training dataset, respectively. Each

type of memory bank has bi-level memories; the low-level

memory bank stores the local detail of images, and the high-

level memory bank stores the global information of images.

The Structure Memory Bank. We use an auto-encoder

embedded with bi-level memories to extract the common

information in numerous images. Using concatenation of

the complete single person image Igt and the complete hu-

man segmentation map Sgt as input, the auto-encoder is

constrained to reconstruct the complete human segmenta-

tion map Spred, as shown in Figure 2 (a). The encoder

extracts the low-level feature map fs
low ∈ RC×64×64 and

high-level feature map fs
high ∈ RC×32×32. We first use

high-level features to query in the high-level memory bank

Es
high. Specifically, for each feature fs

j ∈ fs
high, we use an

L-2 distance to measure the similarity between fs
j and ei,

and search its most similar latent vector ei ∈ Es
high, which

is formulated as:

fs
j = ei, i = argmin

k

‖fs
j − ek‖

2

2
, (3)

where k ∈ {0, 1, ..., 512}. We gain the new high-level fea-

ture map f̂s
high with retrieved features in Es

high. The de-

coder up-samples fs
high into scale 64 × 64. Similarly, we

get the new low-level feature map f̂s
low from the low-level

memory bank Es
low, and the decoder further reconstructs the

human segmentation map Spred. To encode the common

structure information of other images, the auto-encoder is
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Figure 2. The overview of our proposed method. The model consists of three stages, including (a) Prior Encoding, (b) Segmentation

Completion, and (c) Texture Completion. Note that two auto-encoders in (a) have different parameters.

optimized by minimizing the cross-entropy loss Lc:

Lc(Sgt, Spred) = −
1

HW

HW∑

m=1

C∑

c=1

Sgt log (Spred) . (4)

The Texture Memory Bank. Following a similar strat-

egy, we force the auto-encoder to maintain a low-level tex-

ture memory Et
low and a high-level texture memory Et

high

via reconstructing the complete image Igt. The model takes

a complete image Igt and the ground-truth segmentation

map Sgt as input to reconstruct the complete image Ipred.

We use an L-1 loss to constraint the model. During the re-

construction, texture memory bank could encode outside in-

formation of textures from other images.

Unlike the VQ-VAE [36, 28]: 1) we use the concate-

nation of images and segmentation maps as input to both

auto-encoder for better representing the external informa-

tion; 2) we maintain two types of dictionaries to make the

memory bank module focus on structure information and

texture information, respectively.

3.3. The Segmentation Completion

The segmentation completion module designs to infer

the structure information via a learned structure memory

bank and our proposed multi-scale structure discriminators.

This module utilizes the corrupted image Ic and its es-

timated corrupted human segmentation map Sc
pred by the

CE2P model [30] as a condition to reconstruct the complete

structure of the human body Spred. The prediction process

can be written as:

Spred = Gs(I
c, Sc

pred, E
s), (5)

where Gs represents the segmentation completion module

and Es means the learned structure memory.

This module consists of an encoder, the learned bi-

level structure memories, and a decoder, as shown in Fig-
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ure 2 (b). The encoder takes the concatenation of Ic

and Sc
pred as input and extracts the low-level feature map

fs
low ∈ RC×32×32 and the high-level feature map fs

high ∈

RC×64×64. We use features from extracted feature maps

flow and fhigh to retrieve the most similar features from

two learned structure memories Es
low and Es

high, respec-

tively. Further, they are reformed into the new low-level

feature map f̂s
low and high-level feature map f̂s

high. With

the aid of structure memory banks, the module could bor-

row the valid information from visible regions or querying

from other images to recover the missing similar structure.

Also, we employ two skip-connections to concatenate the

extracted feature map and the replaced feature map in two

levels to maintain the identification of the original image

and ensure that feature maps not worse than the original

feature map. Finally, the decoder predicts the complete hu-

man segmentation map Spred, which is a crucial to the next

stage. The model is optimized by minimizing the cross-

entropy loss Lc between Spred and Sgt.

Multi-scale Structure Discriminators. We observe that

although human body parts are flexible, the topological con-

nections between these parts are relatively fixed. For ex-

ample, the waist must connect the upper body and lower

body, and arms connect to the upper body. Additionally,

due to insufficient priors and unbalanced data, it is unlikely

to identify the generated human segmentation map has a

reasonable structure by a single discriminator.

Therefore, we design multi-scale structure discrimina-

tors as a regularizer to constrain the model generates seg-

mentation maps with reasonable topological structure. The

regularizer defines as Ds = {Dg
s , D

c
s, D

p
s}, where Dg

s is

a global discriminator, Dc
s is a group parts connection dis-

criminators, Dp
s is a group of specific part discriminators.

The specific part discriminator Dp
s critics whether the cor-

responding part exists in the result, it is defined as Dp
s =

{Dhead
s , Dtorso

s , Darms
s , Dhands

s , D
legs
s , Dfeet

s }. The group parts

connection discriminator Dc
s critics topological relations

between different parts in the predicted segmentation map

to penalize abnormal combinations of human parts like feet

appear in the upper body. Here, Dc
s = {Dupper

s , Dlower
s }. The

global discriminator Dg
s critics the structural rationality of

generated semantic segmentation maps.

We use the adversarial loss to optimize multi-scale struc-

ture discriminators. For example, the adversarial loss lever-

aged on the upper body discriminator can be written as:

Lu
adv = E[logDu

s (S
upper
gt )] + E[1− logDu

s (S
upper

pred)], (6)

where S
upper
gt and S

upper

pred denote the upper body in ground-

truth segmentation maps and predicted segmentation maps.

The full objective function is as follows:

L2 = λs
1
Ls + λs

2
L
g
adv + λs

3

B∑

i

Li
adv, (7)

where L
g
adv is the loss of global discriminator, B = {head,

torso, arms, hands, legs, feet, upper body, lower body}, and

we set the hyper-parameters as λs
1
= 6, λs

2
= 0.15 and

λs
3
= 0.1, respectively.

3.4. The Texture Completion

The texture completion module utilizes the predicted hu-

man segmentation map Spred as conditions to further re-

cover the appearance of a single person image. The process

of texture completion to produce plausible images is

Ipred = Gt(I
c, Spred, E

t), (8)

where Ipred is the final result, and Et is the texture memory.

The texture completion module consists of a generator,

a bi-level texture memories, and a discriminator. Segmen-

tation maps could guide the network to extract high-level

information and further ensure the network would at least

produce images with reasonable structure. Benefitting from

the correlation prior, when the lost content is unlikely to

borrow from the visible region, the model could query from

the memory bank with the surroundings of the missing part

to retrieve the detail. These priors guarantee the model to

generate images with plausible textures.

To produce decent results, we employ L1 loss, percep-

tual loss, style loss and feature matching loss over Ipred and

Igt to optimize Gt. We use a pre-trained VGG-16 network

to compute the perceptual loss, and the loss can writes as:

Lp =

N∑

i=1

1

HiWiCi

‖Pi(Igt)− P
i(Ipred)‖1, (9)

where P
i(·) denotes the feature maps from the ith pooling

layer of VGG-16. Hi,Wi and Ci corresponds to the height,

weight and channel of the feature map from the ith layer.

Similarly, the style loss is defined as:

Ls =

N∑

i=1

1

Ci × Ci

1

HiWiCi

‖Pi(Igt)(P
i(Igt))

T

− P
i(Ipred)(P

i(Ipred))
T ‖1.

(10)

Feature matching loss measure the distance between I and

Ipred. Denoting the feature map from the ith layer in Dt as

Di
t(·), the loss is as follow:

Lfm =
N∑

i=1

‖Di
t(Igt)−Di

t(Ipred)‖1. (11)

We also leverage an adversarial loss to train the model,

which can be written as:

Ladv = E[logDt(Igt)] + E[1− logDt(Ipred)]. (12)

We use hyper-parameters with value λt
1
= 1, λt

2
= 0.1,

λt
3
= 250, λt

4
= 10 and λt

5
= 10 to balance the different
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loss functions and we arrive at the full objective loss func-

tions in stage 3 as:

L3 = λt
1
L1 +λt

2
Lp +λt

3
Lstyle +λt

4
Lfm +λt

5
Ladv. (13)

3.5. The Training Detail

In implementations, we separately train each module.

First, we train the prior encoding module to maintain struc-

ture and texture memories. Then, these learned memories

are fixed and plugged into the corresponding completion

modules. Second, we train the semantic segmentation com-

pletion module to recover the human segmentation map,

and finally, we train the texture completion module to gen-

erate the inpainted result.

4. Experiments

4.1. Experiments Set­up

Our method is built with Pytorch [26] on a NVIDIA

GTX 1080 GPU. We apply the Adam optimizer with β =
(0.9, 0.999) to train all modules. In the stage of prior en-

coding, we fix the learning rate as 3e-4. In the following

two stages, we set the learning rate as 1e-4 for the genera-

tors and 4e-4 for the discriminators.

Datasets. We conduct experiments on two large-scale

datasets: the LIP dataset [8] and the Chictopia10K

dataset [14]. The LIP dataset contains 50462 images and

their corresponding semantic segmentation maps. There are

20 semantic labels, including 19 human parts labels and one

background label. It is a challenging dataset, owing to the

complex background and various actions in each image. To

our best knowledge, none of the existing inpainting methods

conduct experiments on the LIP dataset. The Chictopia10K

dataset contains 17,706 images, and each image annotates

with fine-grained semantic segmentation maps. The anno-

tation has 21 classes, including 20 human part labels and

one background label.

Metrics. To evaluate the performance of each method, we

use three common metrics: mean Intersection over Union

(mIoU), Peak Signal to Noise Ratio (PSNR), and Structural

Similarity (SSIM). The mIoU evaluates the accuracy of pre-

dicted semantic segmentation maps. The PSNR and SSIM

evaluate the quality of the generated images. For all met-

rics, high values mean better performance.

Baselines. We compare our method with the following

baselines, EdgeConnect [24], DeepFill v2 [48], RN [49],

RFR [16], and MEDFE [18].

Settings. We design the following two settings for fair

comparisons. 1) Structure-based human completion. It

designs to evaluate the completion capability based on a

corrupted image and a corrupted human segmentation map.

Similar to the segmentation completion stage in our method,

these methods first train to predict complete segmentation

maps by taking the masked image and masked segmenta-

tion map as input. Since these methods are not designed for

human body completion, they use the ground-truth human

segmentation map as input in texture completion, while our

method uses the predicted segmentation map. 2) Vanilla

human completion. It designs to evaluate the inpainting

performance only based on a corrupted image.

4.2. The Performance Comparison

To comprehensively evaluate the performance, we com-

pare our method among baselines on both the LIP dataset

and the Chictopia10K dataset in the above two settings.

The experimental result under structure-based human

completion setting and vanilla human completion setting

are shown in Table 1 and Table 2, respectively. The nu-

merical result shows that our method surpasses other meth-

ods in both settings. Besides, the modified previous meth-

ods under structure-based human completion setting always

achieve better performance than previous methods under

vanilla human completion setting, which indicates that the

structure prior indeed benefits to recover the human body.

In Table 2, compared with other modified methods, our

Ground

Truth
OursMDEFE

Deep

fillv2
RNECInput

Figure 3. Qualitative Analysis of the vanilla human completion.

Each column illustrates the input image, output of existing meth-

ods, the output of our method, and the ground-truth, respectively.

It shows that only our method can produce results with plausible

structure and texture. It further proves the effectiveness of our

method for human completion. Best viewed with zoom-in.

LIP Chictopia10K

PSNR SSIM PSNR SSIM

EdgeConnect [24] 19.35 0.8147 28.53 0.9168

DeepFill v2 [48] 23.06 0.8732 31.91 0.9676

RN [49] 20.25 0.8263 19.98 0.8361

RFR [16] 16.96 0.7343 16.00 0.7768

MEDFE [18] 22.54 0.8717 31.17 0.9597

Ours 25.57 0.9139 36.58 0.9802

Table 1. The performance comparison under a vanilla human com-

pletion setting on the LIP dataset and the Chictopia10K dataset.
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Figure 4. Qualitative Analysis of the structure-based human completion. Each row illustrates the input image, outputs of existing

methods, the output of our method, and ground truth from left to right. The difference between generated segmentation maps illustrated the

effectiveness of our correlation prior and multi-scale structure discriminators since only our model generates plausible segmentation maps.

When recovering images, except for our model, the others take complete segmentation maps as the condition. The comparison between

generated images shows that our model’s performance exceeds the others, which proves the effectiveness of the correlation prior.

LIP Chictopia10K

mIoU PSNR SSIM mIoU PSNR SSIM

EdgeConnect [24] 36.24% 20.53 0.8403 22.78% 28.98 0.9263

DeepFill v2 [48] 37.65% 23.38 0.8532 24.91% 30.01 0.9400

RN [49] 35.95% 21.64 0.8940 37.81% 29.11 0.8734

RFR [16] 10.15% 13.40 0.2672 11.20% 28.87 0.8229

Ours 56.22% 25.57 0.9139 45.54% 36.58 0.9802

Table 2. The performance comparison under a structure-based hu-

man completion setting on the LIP and the Chictopia10K dataset.

model could predict better segmentation maps and gener-

ate the image with higher quality. It further validates that

leveraging structure and texture correlation prior could help

the model recover corrupted images better.

Despite the quantitative comparison, we also illustrate

some qualitative results of both vanilla and structure-based

human completion settings in Figure 3 and Figure 4, respec-

tively. In Figure 3, all existing methods produce images

with obvious artifices in structure or texture. While condi-

tioned with human body segmentation maps, these methods

could generate plausible images with reasonable structures.

This demonstrates that the structure prior indeed benefits to

produce decent results, and it works for not only our method

but also the others. Although these methods could generate

results with reasonable body structure, the texture is still

wired and inconsistent on the local body part due to the

lack of valid texture information. However, with the help

of the texture memory bank, our method could synthesize

plausible results in both structure and texture.
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Input

Output

Figure 5. Visualization for Free-form Occlusions. The first row shows images with free-form occlusions and the second row shows

recovered images produced by our model. It shows that when handling free-form masks, our model still generates images with decent

structures and nice textures, which indicates that our model could recover corrupted images with free-form occlusions.

Correlation Prior Regularizer mIoU PSNR SSIM

- - 51.96% 20.07 0.7969

X - 53.78% 22.99 0.8561

- X 53.56% 22.63 0.7819

X X 56.22% 25.57 0.9139

Table 3. The experimental result of ablation studies on the LIP

dataset. Regularizer denotes multi-scale structure discriminators.

4.3. Ablation Studies

To verify the effectiveness of each component in our

proposed method, we conduct ablation studies on the LIP

dataset, and experimental results are shown in Table 3.

The effectiveness of the external prior. To explore

the impact of the structure and texture correlation prior, we

train an auto-encoder as baseline including a segmentation

completion stage and a texture completion stage to directly

generate complete images, without the correlation prior and

multi-scale structure discriminators. Results are shown in

Table 3. The gap between the first two rows and that of the

last two rows indicates the model could benefits from the

structure and texture correlation prior.

The effectiveness of the topological structure prior.

We also train the model without the multi-scale structure

discriminators as baseline to validate its effectiveness. Re-

sults are shown in Table 3. We can see that our method out-

performs the baseline, which indicates the regularizer could

help the model generate more plausible segmentation maps

and further facilitate the model to produce decent images.

Recovering images with free-form occlusions. Ex-

cept for square occlusions, we also use free-form masks to

produce input corrupted images. The visual results are il-

lustrated in Figure 5. The generated images have decent

structures and nice textures, which indicates that our model

could perform well on free-form occlusions.

Random masks in the testing phase. We leverage many

random masks to block different regions in the same image

to validate the model’s performance. Figure 6 illustrates the

visual result. It shows that no matter the whole human part

is masked or several human parts are partially masked, our

model can produce decent images.

Input

Image

Output

Image

Input

Segment

Figure 6. Visualization for Random Masks. Using a fixed image,

we randomly block different regions on it as inputs. The figure

illustrates the results produced by our model. We can observe that

whatever the whole human part is masked or several human parts

are partially masked, the model can generate plausible results.

5. Conclusion

In this paper, we propose a novel framework to recover

corrupted single person images. We found that leveraging

human semantic segmentation maps could better guide the

model to generate plausible results in both structure and

texture. We design a structural and textural memory bank

module, which enables the model to infer the missing con-

tent with the visible region in the image and query from the

outside information. We also design multi-scale structure

discriminators to regularize the model to generate a rea-

sonable topological structure of human bodies. Extensive

experiments show that our method outperforms others and

produce more decent images.
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