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Abstract

Shape modeling and reconstruction from raw point

clouds of objects stand as a fundamental challenge in vi-

sion and graphics research. Classical methods consider

analytic shape priors; however, their performance is de-

graded when the scanned points deviate from the ideal con-

ditions of cleanness and completeness. Important progress

has been recently made by data-driven approaches, which

learn global and/or local models of implicit surface repre-

sentations from auxiliary sets of training shapes. Motivated

from a universal phenomenon that self-similar shape pat-

terns of local surface patches repeat across the entire sur-

face of an object, we aim to push forward the data-driven

strategies and propose to learn a local implicit surface net-

work for a shared, adaptive modeling of the entire surface

for a direct surface reconstruction from raw point cloud;

we also enhance the leveraging of surface self-similarities

by improving correlations among the optimized latent codes

of individual surface patches. Given that orientations of

raw points could be unavailable or noisy, we extend sign-

agnostic learning into our local implicit model, which en-

ables our recovery of signed implicit fields of local sur-

faces from the unsigned inputs. We term our framework as

Sign-Agnostic Implicit Learning of Surface Self-Similarities

(SAIL-S3). With a global post-optimization of local sign

flipping, SAIL-S3 is able to directly model raw, un-oriented

point clouds and reconstruct high-quality object surfaces.

Experiments show its superiority over existing methods.

1. Introduction

Surface reconstruction from point clouds is of signifi-

cance during the course of digitally representing the world

around us, especially when we have witnessed the devel-

opment of scanning devices that makes it easier to acquire

*Equal contribution
†Correspondence to Kui Jia <kuijia@scut.edu.cn>

Figure 1: 3D reconstructions from our proposed Sign-

Agnostic Implicit Learning of Surface Self-Similarities. For

each sculpture, we visualize the raw, un-oriented point

cloud on the left, and the reconstructed surface on the

right. The surface is reconstructed by interpolation from

the learned local implicit subfields, where we isolate some

of their zero-level sets for better understanding.

point cloud data. This problem is severely ill-posed [5],

since there could be infinite solutions of the continuous sur-

face given the discrete approximation of point clouds, es-

pecially when the points are noisy, irregularly distributed,

and/or incomplete. As such, proper priors of geometric reg-

ularity are necessary to tackle this problem. Classical meth-

ods adopt analytic priors such as local linearity and smooth-

ness [26, 7, 2]. However, performance of these methods is

degraded when encountering sensing imperfection, or un-

available of surface normals for the observed points.

More recently, deep neural networks are introduced to

learn geometric priors from auxiliary shapes [20, 33] in

a data-driven manner, which have shown their superiority

over classical methods. The pipeline starts from approaches

[33, 11, 31] that globally embed a shape into a latent shape

space based on auto-encoders. Encoding global shape pri-

ors might simplify the problem, which, however, is lim-

ited in generalizing the learned priors to unseen shapes.

To improve generalization, there has been some attempts
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[10, 18, 25, 8, 34] that learn local shape priors and model a

global shape as configuration of local shape parts. Indeed,

for surface shapes of a certain object category, decomposing

the global modeling into local ones prevents learning pri-

ors that are mostly concerned with the category-level shape

configuration. These methods rely on learning priors from

auxiliary training sets. This always risks their generaliza-

tion in cases that testing samples are out of the distributions

of the training ones. In this work, we aim to close the gener-

alization gap by learning the shape priors directly from the

input data themselves.

Our idea is motivated from an arguably universal phe-

nomenon that self-similar shape patterns of local surface

patches repeat across an entire object surface. Figure 1

gives an illustration. Such a phenomenon is similar to the

self-similarities of local patches in a 2D image, which has

motivated a plethora of methods in the literature of image

modeling and restoration [6, 14, 13].

To implement this phenomenon for modeling and recon-

structing a surface from raw observed points, a challenge

remains due to the possibly unreliable surface normals as-

sociated with the observed individual points. One may com-

pute approximate ones, which might not be precise enough

to support a fine surface recovery especially when points

are noisy or scanner information is absent. Learning to pre-

dict the surface normals [16, 21] is not applicable as well,

since we may only have the observed points at hand. To

this end, we propose in this paper a novel method, termed

Sign-Agnostic Implicit Learning of Surface Self-Similarities

(SAIL-S3), for modeling and reconstruction of a continu-

ous surface directly from a raw, un-oriented point cloud.

We note that the property of surface self-similarities is also

used in [23] to deform an initial mesh, where they implic-

itly leverage the property by training the mesh deformation

network. In contrast, our proposed SAIL-S3 is a completely

different local framework for sign-agnostic implicit surface

modeling.

Specifically, SAIL-S3 is by design a local model that par-

titions a global implicit surface field into an adaptive set of

overlapped, local subfields, each of which is expected to

cover a surface patch. We leverage the property of surface

self-similarities by incorporating the following designs into

SAIL-S3: (1) we use a shared implicit model to learn these

subfields, while allowing the individual latent representa-

tions of local subfields to be freely optimized, and (2) we

use a learning objective that promotes correlated latent rep-

resentations when their corresponding surface patches are

of similar shape (cf. Section 4.1). We extend sign-agnostic

learning [3] into our local framework, and propose prov-

ably model initialization that outputs a signed solution of

implicit field function given the unsigned learning objective

(cf. Section 4.2). The signed solutions of local implicit sub-

fields may not be consistent globally. With a global post-

optimization of local sign flipping, SAIL-S3 is able to di-

rectly model raw, un-oriented point clouds and reconstructs

high-quality object surfaces (cf. Section 4.3). We conduct

thorough experiments on the objects from ShapeNet [9] and

Threedscans [1] datasets. They include object instances

with natural and complex topologies. Experiments show

that given no auxiliary training set, our proposed SAIL-

S3 outperforms existing methods in terms of reconstruct-

ing smooth and sharp surfaces, even though the compara-

tive learning based methods use auxiliary training shapes.

Robustness tests with noisy inputs again confirm the effi-

cacy of our proposed method. We finally summarize our

technical contributions as follows.

• We propose a novel method of SAIL-S3 for surface

modeling and reconstruction from raw, un-oriented

point clouds. The method learns self-adaptive shape

priors by implementing a universal phenomenon that

an object surface contains self-similar shape patterns

of local surface patches.

• SAIL-S3 uses adaptively learned local implicit func-

tions to model the global implicit surface field. We

extend sign-agnostic learning into the local SAIL-S3

framework, by proposing provably model initializa-

tions that can be optimized to produce signed solutions

of local implicit function from the unsigned learning

objective.

• With a global post-optimization of local sign flipping,

SAIL-S3 is able to directly model raw, un-oriented

point clouds and reconstructs high-quality surfaces of

objects. Experiments demonstrate its superiority over

existing methods.

2. Related works

In this section, we briefly review existing methods for

surface modeling and reconstruction from raw point clouds.

We focus on those works closely related to the present one.

Classical Methods Using Analytic Shape Priors – There

have been a number of analytic priors proposed in the lit-

erature. Representative ones include Screened Poisson Sur-

face Reconstruction (SPSR) [26], Radius Basis Functions

(RBF) [7], and Moving Least Squares (MLS) [29]. SPSR

a kind of method based on global surface smoothness pri-

ors. It casts the reconstruction as a spatial Poisson problem

and solves it in the frequency domain. However, it relies on

oriented normals of surface points. Likewise, RBF is also

based on global surface smoothness priors. It produces re-

construction through a linear combination of radially sym-

metric basis functions. MLS [29] directly approximates the

input points as spatially-varying low-degree polynomials,

which adopts local surface smoothness as its priors.

Neural Priors for Explicit Surface Modeling – Given ob-

served points, deep neural networks are recently proposed
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to encode the points as a latent representation, and then de-

code it explicitly as a surface mesh. Among these methods,

AtlasNet [20] defines the surface as a set of atlas charts, and

trains a network to deform their vertices to form a complete

surface mesh. Subsequent methods [39, 22, 37, 38] extend

AtlasNet by deforming a single, initial mesh. Note that the

property of self-similarities is also used in [23] to deform

an initial mesh, where they assume these self-similarities

are implicitly leveraged by training the network for surface

deformation. However, mesh deformation cannot change

surface topologies, and it is difficult for such method to gen-

erate surface of complex topologies. As a remedy, topology

modification is proposed in [32] by pruning edges and faces

during the deformation process. In general, such methods

of explicit mesh deformation perform worse than those re-

constructing a surface by learning deep implicit fields.

Neural Priors for Implicit Surface Modeling – More re-

cently, learning deep networks as implicit surface fields is

found to be an effective approach for modeling continuous

surface [33, 11, 31], which should be extracted via [30, 28].

They typically learn a global surface field of Signed Dis-

tance Function (SDF) [33] or occupancy [31]. Subsequent

methods [10, 18, 25, 8, 34] extend them as local implicit

models for modeling local surface patches. For example,

BAE-NET [10] adopts branched decoders for adaptively

modeling surface parts; Deep Local Shape [8] and Convo-

lutional OccNet [34] utilize a 3D grid of voxels to represent

an SDF or occupancy field, which is memory-expensive; the

method [25] avoids voxel-based SDF representations, how-

ever, it still requires auxiliary shapes for model training.

Sign-Agnostic Surface Modeling – Practically scanned

raw points are usually short of oriented normals. Analytic

computation can only give approximate results. It is thus

appealing to model the raw points in a sign-agnostic man-

ner [3, 4]. Atzmon and Lipman study this problem of Sign-

Agnostic Learning (SAL). They propose unsigned objec-

tives, which, given proper initialization of network weights,

can produce signed solutions of implicit functions. Origi-

nal SAL works with global shape modeling. In this work,

we extend SAL into our local framework, and propose the

corresponding network initialization.

3. Problem Statement

Given a set of observed points P = {pi ∈ R
3}ni=1 that

represents a discrete sampling of an underlying object sur-

face S , we study a fundamental problem of modeling S
and reconstruct it from the observed P [5]. The problem

is severely ill-posed, since there could be infinitely many

solutions of the continuous S given the discrete approxima-

tion P; it becomes even more difficult considering that P
may be obtained from practical scanning, and due to im-

perfection of sensing, the scanned points may be noisy, ir-

regularly distributed, and/or incomplete. As such, proper

Shared MLP SDF
Adaptive
Covering

Transformed 
Subfield

Overview

Figure 2: An illustration of our proposed Sign-Agnostic Im-

plicit Learning of Surface Self-Similarities (SAIL-S3).

priors of geometric regularity is to be imposed in order to

recover meaningful solutions. Classical methods adopt ana-

lytic priors such as local linearity and smoothness [26, 7, 2];

however, their performance degrades with the increased lev-

els of sensing imperfection. These methods usually require

the availability of surface normals for the observed points,

which, however, are either unavailable or cannot be com-

puted accurately. It is recently shown that learned neu-

ral priors from an auxiliary set of training shapes provide

strong regularization on the recovery of continuous surface

shapes, particularly those based implicit models, e.g., SDF

[33] or occupancy field [31, 11], and those extending these

models as local ones [16, 25]. In this work, we also consider

modeling the observed P with implicit SDFs. We improve

over existing methods by learning directly from P itself,

without relying on the auxiliary training set.

4. The Proposed Method

Our proposed method is primarily motivated from a uni-

versal phenomenon that self-similar shape patterns of lo-

cal surface patches repeat across an entire object surface.

Figure 1 gives an illustration. Such a phenomenon is sim-

ilar to the self-similarities of local patches in a 2D im-

age, which has motivated a plethora of methods in the lit-

erature of image modeling and restoration, including the

representative non-local means [6], self-adaptive dictio-

nary learning [14], and BM3D [13]; they have success-

fully shown that clean images can be restored from distorted

images themselves. Motivated from the conceptually sim-

ilar surface self-similarities, we aim to address the prob-

lem stated in Section 3, and propose a novel method termed

Sign-Agnostic Implicit Learning of Surface Self-Similarities

(SAIL-S3). An illustration of it is shown in Figure 2. Details

are presented as follows.

4.1. Local Implicit Modeling of Surface Self­
Similarities

Denote G ⊂ R
3 as an implicit field of SDF, whose zero-

level set represents the underlying surface S from which

the observed points in P are sampled. Let f̂ : R3 × R
d →

R be the implicit model of G; it takes as input a sampled

point q ∈ R
3 in the 3D space and a latent representation
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ẑ ∈ R
d encoding the surface, and outputs a value of signed

distance between q and S . Instead of obtaining ẑ from any

learned encoder, we follow [33] and resort to latent code

optimization to fit with the observed P .

The pre-assumed property of surface self-similarities

suggests that some local surface patches of S are similar

in terms of shape pattern. Our design for leveraging this

property has the following two ingredients.

• Instead of directly learning f̂ for the global field G,

we consider a number N of overlapped, local implicit

subfields {Fi}
N
i=1, each of which is responsible for

a surface patch SFi
; we use a shared implicit model

fθ : R3 ×R
d → R, parameterized by θ, to learn these

subfields, while allowing the individual latent repre-

sentations {zi ∈ R
d}Ni=1 to be freely optimized.

• We use a learning objective that promotes correlated

latent representations when their corresponding sur-

face patches are of similar shape; for example, a pair of

correlated zi and zj outputs, through fθ , implicit sub-

fields Fi and Fj whose zero-level sets represent simi-

lar shapes.

While the latter ingredient is an explicit design to promote

surface self-similarities, the former one implicitly does so

by decoding the implicit subfield with the shared model

fθ . In this work, we implement fθ as a network of multi-

layer perceptron (MLP). Each subfield Fi, i ∈ {1, . . . , N},

is centered at ci ∈ R
3 and covers a local volume of size

ai×ai×ai. Both C = {ci}
N
i=1 and A = {ai}

N
i=1 are learn-

able parameters, which determine how {Fi}
N
i=1 distribute

in the global G; we expect their optimizations to make each

of {Fi}
N
i=1 cover a patch of the surface S (cf. Section 4.2.2

for the details). Let Z = {zi ∈ R
d}Ni=1. SAIL-S3 is for-

mally to learn the implicit SDF fθ : R3 × R
d → R, pa-

rameterized by (θ,Z, C,A) , by fitting to the observed P .

We note that defining implicits over cubes practically sup-

ports more convenient space partitioning (cf. Section 4.2.2)

and smoothing of the results in overlapped regions (cf. Sec-

tion 4.4). We present the sign-agnostic implicit learning of

SAIL-S3 as follows.

4.2. Sign­Agnostic Local Implicit Learning

An important challenge for shape modeling of raw point

clouds is the possibly unreliable surface normals associ-

ated with the observed points. Approximate ones may

be estimated from P via either covariance analysis [24]

or learning-based methods [16, 21]; however, their perfor-

mances usually degrade especially when inputs are noisy or

camera information is absent, which is hard to support ac-

curate surface recovery. SAL [3] is a promising solution

to cope with the issue; it is proposed to learn a global im-

plicit model to reconstruct an entire object surface, with no

requirement on the availability of surface normals. How-

ever, it remains absent for how to use it to model a surface

as a collection of local implicit subfields. In this work, we

extend the SAL technique [3] into our local framework of

SAIL-S3, as follows.

We first present the extension in a local implicit subfield

F . Before that, for any point q sampled in the global G, we

compute its unsigned distance s(q) ∈ R
+ to the surface S

of interest approximately as

s(q) = ‖q − p‖2 s.t. p = arg min
p′∈P

‖q − p′‖2. (1)

The distance (1) approaches the true one when the number

n of points in P goes to infinity. In practice, it would pro-

vide us an approximate supervision signal for learning the

implicit model. Its unsigned nature relaxes the requirement

on the knowledge of local surface orientations.

Assume that F contains a set PF of observed points in

a local neighborhood of P . We normalize any p ∈ PF ⊂
G as p̄ = (p − c)/a in a local coordinate system of the

subfield F , where c and a are the learnable center and side

length. We applies the same to any sampled point q ∈ F ⊂
G, resulting in q̄ after coordinate offset and scaling. We

thus have the unsigned distance s(q̄) = s(q)/a inside F .

Given the supervision from {q̄ ∈ F}, SAL [3] aims to find

a signed solution of the implicit function fθ , by solving the

following unsigned, bi-level optimization problem

min
θ,z

∑

q̄∈F

||fθ(q̄, z)| − s(q̄)| s.t. s(q̄) = s(q)/a, (2)

where we have temporarily assumed that a and c for the

subfield F are fixed, and {q̄ ∈ F} (equivalently, {q ∈ F})

are usually sampled around individual p ∈ PF with den-

sities inversely proportional to the distances. A signed

solution of (2) means that for an optimal z∗, we have

fθ∗(q̄, z∗) > 0 when q̄ lies by one side of the local sur-

face SF , and fθ∗(q̄, z∗) < 0 otherwise; in other words,

it produces signed distances to the surface even though the

supervision is unsigned. However, this is not always guar-

anteed given that a flipped sign of fθ(q̄, z) does not change

its absolute value, and consequently the loss (2). The prob-

lem becomes even more involved when coupled with the

simultaneous optimization of z.

Fortunately, it is suggested in [3] that a proper setting

of network weights θ0 would initialize a latent code-free

function fθ0(·) as a signed function, and it is also empiri-

cally observed that optimization from such an initialization

is stably in the signed local minima, without going across

loss barriers to the unsigned solutions. In this work, we ex-

tend the weight initialization scheme in [3] for learning a

signed solution of local implicit function from the loss (2),

as presented shortly.

A Proper Model Initialization for Signed Solutions For

the observed points {p̄ ∈ PF} in F , we first use least

squares to fit them with a surface patch on a radius-r̄ sphere

centered at t̄ (cf. the supplementary material for more de-

tails). The following corollary shows a scheme of initializ-
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Figure 3: An illustration on our model initialization.

ing θ0 and z0 that guarantees fθ0(q̄, z0) ≈ ‖q̄ − t̄‖ − r̄;

in other words, fθ0(·, z0) is initialized as a signed distance

function whose zero-level set is approximately a r̄-radius

sphere centered at t̄, and the sphere approximately covers

the local point set PF . We experimentally find that our

results are relatively stable w.r.t. LS sphere initialization.

Figure 3 gives an illustration.

Corollary 4.1. Let f : R
3+d → R be an l-layer

MLP with ReLU activation ν. That is, f(p, z) =
wT ν(W l(· · · ν(W 1

pp + W 1
zz + b1)) + bl) + c, where

W 1
p ∈ R

d1

out×3 and W 1
z ∈ R

d1

out×d denote the weight ma-

trices of the first layer, and b1 ∈ R
d1

out denotes the bias;

W i ∈ R
di

out×di−1

out and bi ∈ R
di

out denote parameters of the

ith layer; w ∈ R
dl

out and c ∈ R are parameters of the last

layer; p ∈ R
3 is the input point, and z ∈ R

d is the latent

code, whose elements follow the i.i.d. normal N (0, σ2
z).

Let w =
√

π
dl

out

1, c = −r̄, r̄ > 0, let all entries of W i

(2 ≤ i ≤ l) follow i.i.d. normal N (0, 2
di

out
), let entries

of W 1
p follow i.i.d. normal N (0, 2

d1
out
), and let bi = 0

(2 ≤ i ≤ l). If W 1
z = W 1

p [I ∈ R
3×3,0 ∈ R

3×(d−3)]
and b1 = −W 1

p t̄, then limσz→0 f(p, z) = ‖p − t̄‖ − r̄.

That is, f is approximately the signed distance function to

a 3D sphere of radius r̄ centered at t̄.

The proof to Corollary 4.1 is provided in the supplementary

material.

4.2.1 Learning over a Collection of Local Implicit Sub-

fields

We have so far presented how to learn an implicit func-

tion individually for a local subfield. For learning over

the collection {Fi}
N
i=1, we remind that SAIL-S3 shares the

function fθ for these subfields, where θ is initialized and

optimized for all the N subfields, while the latent codes

{zi}
N
i=1 are adaptively optimized. This brings an incon-

sistency when initializing the implicit function separately

for each subfield based on Corollary 4.1. In practice, we

circumvent this inconsistency by first initializing θ0 as sug-

gested by Corollary 4.1, and {z0
i }

N
i=1 as the samples drawn

from a Gaussian distribution with small standard deviation,

which essentially defines the zero-level set of fθ0(·, z0
i ) as a

radius-R sphere centered at the origin, where R is a hyper-

parameter; for the ith subfield, we then transform its sam-

pled point q̄i ∈ Fi as

q̃i = R(q̄i − t̄i)/r̄i, (3)

where we use superscript i in q̄i (and q̃i) to indicate that it

is the transformed coordinates of q in the ith subfield (note

that a sampled q may appear in different subfields), and t̄i
and r̄i associated with the subfield Fi are the center and ra-

dius of a sphere obtained by solving a least square fitting

problem. Note that by (3), any observed point p̄ ∈ PFi

is transformed in the same way as p̃; this means geomet-

rically that each subfield is transformed such that its con-

tained point observations approximately fit with a surface

patch on the initialized zero-level sphere of radius R. Fig-

ure 3 gives the illustration.

Given {q̃i ∈ Fi} sampled from each local subfield, we

have the following loss function for modeling the underly-

ing surface S over the collection {Fi}
N
i=1

LModeling(θ,Z, C,A) =
N
∑

i=1

∑

q̃i∈Fi

∣

∣

∣

∣fθ(q̃
i(ci, ai), zi)

∣

∣− s(q̃i)
∣

∣

+ λ‖Z‖∗,

(4)

where s(q̃i) = s(q)R/(r̄iai), and Z =
[z1/‖z1‖2; · · · ; zN/‖zN‖2] is collection of all the

normalized latent codes. We use nuclear norm penalty to

improve correlations among latent codes, which ensures the

self-similarities learned from the input itself. Besides, the

above modeling loss can be further improved by leveraging

the first derivative of function fθ(·, zi) as detailed in [4].

4.2.2 An Adaptive Field Covering

Our motivation for modeling S with local self-similarities

expects that each individual subfield F covers a roughly

similar volume of the entire G, and the covering would

be evenly distributed along the surface S . To this end,

we initialize parameters {(ci, ai)}
N
i=1 of local implicit sub-

fields as follows. Given the observed P , we use farthest

point sampling [15] of P to initialize the subfield centers

{ci}
N
i=1; we then initialize the covering size of subfield as

ai = αminj∈{1,...,N}/{i} ‖ci − cj‖2, where we set α ≥ 1
such that each observed point in P is covered by at least

one subfield and these subfields have a certain amount of

overlapping. This initialization can roughly meet our ex-

pectation; however, directly solving the objective (4) may

update {(ci, ai)}
N
i=1 such that a very few of the subfields

are enlarged to cover large portions of the surface, while

the remaining ones are moved to cover duplicate surface

patches. To avoid these undesired solutions, we propose the

following loss terms to constrain the optimization

Volume loss – We prevent undesirable enlarging of indi-

vidual subfields by penalizing the volume of each subfield

LVolume(A) =

N
∑

i=1

max{ai, 0}. (5)

Placing loss – Given the constraint from (5), we further en-
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courage an even distribution of the subfields {Fi}
N
i=1 on the

surface by penalizing the Chamfer Distance [17] between

each observed p ∈ P and its closest subfield center, i.e.,

LPlacing(C) =
∑

p∈P

min
ci∈C

‖p−ci‖
2
2+

∑

ci∈C

min
p∈P

‖p−ci‖
2
2. (6)

Covering loss – To cover all the observed points in P , we

use the exterior signed distance field to penalize those un-

covered point p, i.e.

LCovering =
∑

p∈P
p/∈G

√

√

√

√ min
i∈{1,...,N}

3
∑

j=1

max{|πj(p− ci)| − ai, 0}2,

(7)

where πj is an operator that selects the jth element from a

vector.

4.2.3 The Combined Learning objective

Given the observed P , we use the following combined ob-

jective to reconstruct its underlying surface S via sign-

agnostic implicit learning of surface self-similarities

LSAIL-S3 = LModeling + λ1L
Volume + λ2L

Placing + λ3L
Covering (8)

where λ1, λ2, and λ3 are penalty parameters. Starting from

initializations, as presented above, the objective (8) can be

optimized simply via stochastic gradient descent. Penalty

parameters λ1, λ2, and λ3 can be found via grid search, and

they are practically insensitive to all kinds of experimental

settings.

4.3. A Global Post­Optimization of Local Sign Flip­
ping

Solving the objective (8) produces N local implicit func-

tions fθ(·, zi), i = 1, . . . , N , which may be used for ex-

traction of their zero-level iso-surfaces. For any q ∈ G cov-

ered by a pair of neighboring ith and jth functions, how-

ever, their function evaluations may not be consistent in

their signs because each subfield is optimized individually.

Motivated by the procedure of reorienting point cloud in

[24], we propose a post-optimization of local sign flipping

to address this issue. More specifically, we treat each local

implicit subfield F as a vertex, and construct a connected,

undirected graph over the vertices as G = (V, E), where

V = {v1, . . . , vN} and an edge ei,j ∈ E is connected once

the subfields Fi and Fj have an overlapped region in the

field G. We associate each edge ei,j with a pair of weights

defined as

w1
i,j(ei,j) =

∑

q∈Fi∩Fj

∣

∣fθ(q̃
i, zi)− fθ(q̃

j , zj)
∣

∣ ,

w0
i,j(ei,j) =

∑

q∈Fi∩Fj

∣

∣fθ(q̃
i, zi) + fθ(q̃

j , zj)
∣

∣ .

This gives two weight sets W1 and W0 with |W0| =
|W1| = |E|, and we write W = W0 ∪ W1. We endow

each vertex v ∈ V with a sign variable h(v) ∈ {1,−1}, and

use minimum spanning tree (MST) to determine {h(vi)}
N
i=1

(details are given in the supplementary material).

We finally flip local implicit functions as h(vi)fθ(·, zi)
(or equivalently, h(Fi)fθ(·, zi)), i = 1, . . . , N . Our MST

is based on the Prim’s algorithm [35], which is guaranteed

to find a solution of minimal cost; we empirically observe

that it works well in practice.

4.4. Inference via Interpolation of Local Fields

After post-optimizing the local sign as described in Sec-

tion 4.3, the predictions for some point q ∈ G are not

expected to be consistent since each prediction may have

slight error. We extend trilinear interpolation to the case of

arbitrary number of overlapping regions. The weights for

interpolating are calculated by the following. For any q ∈ G
falling in a number M of overlapped subfields {Fj}

M
j=1, we

evaluate its signed distance to the underlying surface S as

the following averaged one

f̂(q) =
M
∑

j=1

ωj(q) · h(Fj) ·
r̄jaj
R

fθ(q̃
j , zj) (9)

s.t.ωj(q) =

∣

∣

∣

∣

max
k∈{1,2,3}

|πk(q − cj)| − aj

∣

∣

∣

∣

∑M
j′=1

∣

∣

∣

∣

max
k∈{1,2,3}

|πk(q − cj′)| − aj′

∣

∣

∣

∣

,

Instead of directly using the inverse distance weighted av-

erage method mentioned in [36], the proposed interpola-

tion ensures truly smooth transitions between different over-

lapped regions without discontinuity of the first kind when

switching the neighbors. Such an inference via interpola-

tion has the benefit of smoothing out the less consistent lo-

cal subfields inferred from individual functions. We practi-

cally observe that training procedure will slow down if ap-

plying (9) during training, compared to simply adopting (4).

Experiments confirmed the efficacy of our choice to use (9)

as a post-processing method during inference.

Given the signed distance evaluation (9), we finally use

marching cubes [30] to extract the zero-level set that recon-

structs the surface S .

5. Experiments

In this section, we present setups, comparative results,

and robustness test to verify the efficacy of our proposed

SAIL-S3, by comparing with the state-of-the-art methods

for surface reconstruction from raw point clouds. Ablation

studies are given in the supplementary material.

Datasets – We conduct experiments on the ShapeNet [9]

and ThreeDScans [1] datasets that respectively contain syn-

thetic objects and objects of real scans. For ShapeNet, we

randomly select 100 objects of chair; for ThreeDScans, we

randomly select 30 sculptures. These objects are selected
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due to their complex shape topologies. In addition, we

evaluate the robustness of our method by adding point-wise

Gaussian noise to sculptures from ThreeDScans. We pre-

process these object surfaces by centering their origins and

scaling them uniformly to fit within the unit sphere. We then

sample points at densities of 50, 000 and 100, 000 respec-

tively from each instance of ShapeNet and ThreeDScans as

the raw inputs. For comparative methods that require ori-

ented surface normals, we compute the normals via tangent

plane estimation [24] and reorient the directions via mini-

mal spanning tree, which follows [24].

Implementation Details – We adopt a 6-layer MLP as our

local implicit model, and initialize it according to Section

4.2. We initialize elements in the latent z by sampling from

N (0, (1×10−3)2). During learning, we optimize the objec-

tive (8) for 40, 000 iterations using Adam [27], with initial

learning rates of 1 × 10−3 for θ and z, and 3 × 10−4 for

subfield center c and scale a. The learning rates decay by

0.2 at 20, 000, 30, 000, 35, 000 and 38, 000 iterations. We

set λ1 = 3× 10−4, λ2 = 1.0, λ3 = 1.0 in the objective (8).

It takes around 70ms per iteration, and better results require

more iterations.

Evaluation Metrics – We randomly sample 100, 000
points respectively on the ground truth and reconstructed

mesh, and use the metrics of Chamfer Distance (CD), Nor-

mal Consistency (NC) and F-score (F) to quantitatively

evaluate different methods, where F is evaluated under the

threshold of 0.005.

Comparative Methods – We compare our method with

three categories of existing methods, including the Screened

Poisson Surface Reconstruction (SPSR) [26], global fit-

ting methods such as Implicit Geometric Regularization

(IGR) [19] (with normal data) and Sign Agnostic Learning

(SAL) [3] (without normal data), and locally learned meth-

ods such as Local implicit Grid (LIG) [25], Convolutional

Occupancy Networks (CON) [34], and Points2Surf (P2S)

[16]. We implement SPSR in MeshLab [12] with the de-

fault hyper-parameters. For IGR and SAL, we directly fit

the training points without learning from auxiliary data; for

LIG, CON and P2S, we use the provided pre-trained models

and the default settings from the original papers. Note that

global fitting methods require no auxiliary data, which is the

same as our method. We summarize working conditions of

different methods in Table 1.

5.1. Comparative Results

To demonstrate the efficacy of our method to recon-

struct high-fidelity surfaces from raw point clouds, we con-

duct surface reconstruction experiments on chair objects in

ShapeNet [9] and sculptures in ThreeDScans [1]. Qualita-

tive results are shown in Figure 4. For the methods relying

on global representations, such as IGR [19] and SAL [3],

they fail to generalize to the complex topologies. Conv. Oc-

cNet (CON) [34] and Point2Surf (P2S) [16] perform much

Methods
No requirement on

surface normals

No requirement on

auxiliary data

Local

model

SPSR [26] × X X

IGR [19] × X ×
SAL [3] X X ×

LIG [25] × × X

CON [34] ∗ × X

P2S [16] ∗ × X

SAIL-S3 X X X

Table 1: Working condition summary of different methods.

Note that ∗ indicates that the method does not require sur-

face normals during inference but does require during train-

ing. Our proposed SAIL-S3 requires neither surface nor-

mals nor auxiliary training data.

better, almost recovering the topologies of different chairs

and sculptures; however, their details are either missing

or rugged. Results from those methods requiring accurate

surface normals, such as SPSR [26], IGR [19], and LIG

[25], have unpredictable errors including non-watertight or

wrongly folded meshes, since estimated normals might not

be accurate enough. In contrast, our proposed SAIL-S3 re-

covers both the correct topologies and surface details from

the raw, un-oriented input points, without requiring any

auxiliary data. Quantitative results in Table 2 further con-

firm the superiority of our method over existing ones.

Datasets ShapeNet[9] ThreeDScans [1]

Methods CD ↓ NC ↑ F ↑ CD ↓ NC ↑ F ↑

SPSR [26] 0.009 0.966 0.832 0.003 0.968 0.864

IGR [19] 0.011 0.955 0.774 0.007 0.942 0.773

SAL [3] 0.015 0.897 0.360 0.009 0.899 0.332

LIG [25] 0.006 0.940 0.756 0.005 0.920 0.727

CON [34] 0.011 0.876 0.269 0.010 0.852 0.258

P2S [16] 0.003 0.928 0.798 0.005 0.869 0.669

SAIL-S3 0.003 0.981 0.884 0.003 0.972 0.871

Table 2: Quantitative results of chair instances in ShapeNet

[9] and sculptures in ThreeDScans [1]. For CD, the smaller,

the better; for NC and F, the larger, the better.

5.2. Robustness Evaluation

We further evaluate the robustness of different methods

against noisy inputs. We use sculptures from ThreeDScans

[1], and add point-wise Gaussian noise of varying levels. As

shown in Figure 5, adding noise to the input points indeed

degrades the performance of different methods, particularly

for those methods that require estimation of surface nor-

mals. Our proposed SAIL-S3 stays more robust against the

noise. Quantitative comparisons with different noise levels

are given in the supplementary material.
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Input PC SPSR [26] IGR [19] SAL [3] LIG [25] CON [34] P2S [16] SAIL-S3 GT

Figure 4: Qualitative results of different methods on chair instances in ShapeNet [9] (top two rows) and sculptures in

ThreeDScans [1] (bottom three rows). Black points on the five inputs denote incorrect estimations of normal orientations.

Note that IGR and SAL belong to global fitting methods, and LIG, CON, and P2S belong to locally learned methods. Refer

to the supplementary material for more qualitative results.

Input PC SPSR [26] IGR [19] SAL [3] LIG [25] CON [34] P2S [16] SAIL-S3 GT

Figure 5: Qualitative results of different methods when adding point-wise Gaussian noise of standard deviation 0.01 to input

points of sculptures in ThreeDScans [1]. Black points on the three inputs denote incorrect estimations of normal orientations.

Note that IGR and SAL belong to global fitting methods, and LIG, CON, and P2S belong to locally learned methods.
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