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Abstract

Image-to-image translation aims to preserve source con-

tents while translating to discriminative target styles be-

tween two visual domains. Most works apply adversarial

learning in the ambient image space, which could be com-

putationally expensive and challenging to train. In this pa-

per, we propose to deploy an energy-based model (EBM)

in the latent space of a pretrained autoencoder for this

task. The pretrained autoencoder serves as both a latent

code extractor and an image reconstruction worker. Our

model, LETIT
1, is based on the assumption that two do-

mains share the same latent space, where latent represen-

tation is implicitly decomposed as a content code and a

domain-specific style code. Instead of explicitly extracting

the two codes and applying adaptive instance normaliza-

tion to combine them, our latent EBM can implicitly learn

to transport the source style code to the target style code

while preserving the content code, an advantage over exist-

ing image translation methods. This simplified solution is

also more efficient in the one-sided unpaired image trans-

lation setting. Qualitative and quantitative comparisons

demonstrate superior translation quality and faithfulness

for content preservation. Our model is the first to be ap-

plicable to 1024×1024-resolution unpaired image trans-

lation to the best of our knowledge. Code is available

at https://github.com/YangNaruto/latent-

energy-transport.

1. Introduction

The unpaired image-to-image translation aims to learn

pairwise domain mappings without being aware of any

paired-image information. Suppose a task of translating

between two domains of male and female, denoted as X
and Y and illustrated in Figure 1. Ideally, one should be

able to retain the shared contents, e.g., the irrelevant back-

ground and the rough facial skeleton, and only focus on

transferring discriminative styles, e.g., hair and beard. Most
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existing models adopt generative adversarial nets (GANs)

[12, 17] to enforce the translated style of source instances to

be indistinguishable from that of the target domain, which

typically relies on an explicit cycle consistency regularizer

[42, 46, 22] to maintain the content. However, the enforced

cycle consistency is often restrictive, and the learning of

two roughly invertible mappings, to some extent, can hin-

der model optimization efficiency. CUT [31] resorts to con-

trastive learning as an alternative in the one-sided transla-

tion setting. Still, GAN-based approaches need to learn at

least one set of an encoder-decoder structured generator and

an encoder-based discriminator, which is usually computa-

tionally expensive to train [45].

Apart from GAN-based solutions, CF-EBM [45], one

of the most recent works, applies the energy-based model

(EBM) to realize implicit image translation by direct maxi-

mum likelihood estimation (MLE). However, EBM learning

leverages the Langevin dynamics for Markov Chian Monte

Carlo (MCMC) sampling in the ambient data space, which

usually distorts image pixels and is challenging to scale up.

Besides, it is unclear whether EBM can learn a disentan-

gled representation of the content and style for better image

translation [25].

To overcome the above issues, we propose a plug-and-

play EBM-based model in the latent space. Specifically, we

first pretrain an autoencoder (or use an existing one) and

then plug the EBM into the latent space to manipulate the

extracted latent code to realize image translation. Our latent

EBM models an explicit density distribution of latent vari-

ables by training a bottom-up latent energy function, which

always assigns lower energy to latent variables of the tar-

get domain data and higher energy to those of the source

domain data. Hence, when sampling from the EBM via

Langevin dynamics, the energy gradient (score function)

describes a path to transport the latent codes from source

to target domains. Most interestingly, we demonstrate that

the score function can implicitly and automatically sepa-

rate both the content and style codes from the whole latent

embedding. Thus image translation corresponds to simply

evolving the style code. As can be seen in Figure 1, only the

style appearance is translated while the content information
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Figure 1. Unpaired image-to-image translation on 1024×1024-resolution images. (Left) female to male; (Right) male to female.

(the background) is preserved.

Extensive experiments and analysis show that our con-

tributions can be summarized in the following five aspects:

• Universality: Our plug-and-play of latent EBM is a

universal framework, which can be applied to most au-

toencoders without introducing any auxiliary networks

and engineered loss functions.

• Efficiency: Our latent EBM learning is extraordinar-

ily efficient. For example, after pretraining an autoen-

coder, a very light-design choice of multiple layer per-

ceptron for the latent EBM is adequate to outperform

state-of-the-art methods, with only less than one thou-

sand iterations for learning.

• Transferability: A pretrained autoencoder can be

reused for multiple image translation datasets, even

when pretrained on the human facial dataset and aim-

ing to translate between apples and oranges.

• Scalability: Without being restricted by the U-shape

design of GANs, we can effortlessly scale the model

up for translating images of 1024×1024 resolution, as

demonstrated in Figure 1.

• Faithfulness: Our model can learn faithful translation

mappings, where a translated image not only is styl-

ized but also preserves the original content. Take the

third column of Figure 1 for instance, the facial color

and background are perfectly preserved when translat-

ing from female to male.

The rest of paper is organized as follows. Section 2 re-

views and differentiates related works. Section 3 outlines

the EBM learning preliminaries. Section 4 describes our

proposed method in detail. Section 5 presents extensive

experiments on various kinds of autoencoders to validate

our approach. Section 6 concludes our work and highlights

some future research directions.

2. Related Work

2.1. Image­to­Image Translation

The solution to unpaired image-to-image translation

is usually decomposed into two cooperative paths, the

domain-level distribution style matching and the instance-

level content preservation. Current notable research efforts

can be broadly categorized into two types: GAN-based

model and energy-based model.

GAN-based Models MUNIT [16], DRIT [25], U-GAT-

IT [21] and StarGAN [4, 5]. However, most of these works

need to leverage cycle consistency to constrain the domain

mapping and enforce the content to be unchanged. The

cycle consistency regularizes the training by reconstruct-

ing an original image from its backward translated image

at the instance level. Thus, these schemes generally re-

quire a combination of generators, discriminators or style

encoders [25, 4, 5, 44], and complicate engineered loss de-

signs. Efforts for one-sided unpaired image-to-image trans-

lation also have been made, e.g., DistanceGAN [1], Gc-

GAN [10] and CUT [31]. These models apply geometry

constraints or contrastive constraints to improve cycle con-

sistency.

Energy-based Model Recently, energy-based generative

models have drawn significant attention [40, 39, 9, 29, 7, 11,

43, 41]. A recent work CF-EBM [45] demonstrates EBM

as a powerful tool to simplify the conditional image genera-

tion problem for image translation. In CF-EBM, the source

data is taken as the condition, which moves along the en-

ergy decay direction via Langevin dynamics [24, 37]. The

aforementioned two-level matching is implicitly integrated

through MLE-based EBM learning.

Our proposed approach differs from all the above meth-

ods. We summarize the learning schemes in Table 1.

Though our practice falls into the EBM learning scheme, it

is defined in the high-level lower-dimensional latent space

rather than the low-level high-dimensional data space. In

this way, the learned latent EBM is better at capturing
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domain discrepancy to facilitate conditional learning with

much fewer iterations because the MCMC sampling is

much more efficient.

Approaches Distribution Instance Transferability

CycleGAN [46] adversarial cycle ✗

DRIT [25] adversarial cycle ✗

(M)UNIT [26, 16] adversarial cycle ✗

StarGAN [4, 5] adversarial cycle ✗

Distance [1] adversarial cycle+distance ✗

CUT [31] adversarial contrastive ✗

CF-EBM [45] mle implicit ✗

Ours mle (latent) implicit ✓

Table 1. Feature-by-feature comparisons of unpaired image-to-

image translation models.

2.2. Autoencoders

To extract the latent code, we adopt the autoencoder,

where an encoder is used to encode an image into a la-

tent code, and a decoder then reconstructs it back to the

image space. The recent focus, on the one hand, has been

on providing a probabilistic manner to predict the poste-

rior distribution over the latent variables such that the au-

toencoder is turned into a competitive generative model,

e.g. Variational AE (VAE) [23], Vector Quantized VAE

(VQ-VAE) [36, 33] and NVAE [34]. On the other hand,

the unsupervised disentanglement representation learning is

trending, e.g. β-VAE [14, 15], Factor-VAE [20], Guided-

VAE [8], TCVAE [20] and Adversarial Latent AE [32].

The goal is to learn factorized and interpretable latent repre-

sentations that can encode different generative factors, e.g.,

hair, gender, and age in the human faces dataset. We refer

readers to an excellent repository for more details on this

topic2. This paper validated our approach on different AE

variations, including a vanilla VQ-VAE-2 [33] without any

generative capability and disentangled generative AEs with

other objectives, e.g., β-VAE and ALAE.

3. MCMC-based Maximum Likelihood Learn-

ing of EBM

Given an observed image x ∈ R
D sampled from a data

distribution pdata, an energy-based model follows:

pθ(x) =
1

Z(θ)
exp(−Eθ(x)), (1)

where Eθ(x): R
D → R is the scalar energy function

parameterized by θ and Z(θ) =
∫

exp(−Eθ(x))q(x)dx
is the intractable partition function. Given N observed

data points {xi}
N
i=1 from the data distribution, the model

can be trained by maximizing the log-likelihood L(θ) =

2https://github.com/matthewvowels1/Awesome-VAEs

1

N

∑N

i=1
log pθ(xi) ≈ Ex∼pdata

log(pθ(x)). The derivative

of the negative log-likelihood is

−
∂L(θ)

∂θ
= Ex∼pdata

[
∂

∂θ
Eθ(x)]− Ex̃∼pθ

[
∂

∂θ
Eθ(x̃)], (2)

where the second expectation term under pθ is intractable.

We will approximate it via MCMC such that the EBM can

be updated by gradient descent. To sample x̃ ∼ pθ via

MCMC, we rely on Langevin dynamics that recursively

computes the following step

x̃t+1 = x̃t −
ηt

2

∂

∂x̃t
Eθ(x̃

t) +
√

ηtǫt, ǫt ∼ N (0, I), (3)

where ηt is the step size typically with polynomially decay

to ensure convergence [37]; ǫt is a Gaussian sample to cap-

ture the data uncertainty and ensure sample convergence.

4. The Proposed Framework

4.1. Model

From a probabilistic perspective, given two image do-

mains X and Y , our goal of unpaired image translation is to

infer a joint distribution based on the marginal distributions

PX (x) and PY(y) without awareness of paired instances of

the two domains. We impose some desired properties on the

joint distribution space.

Assumption: Suppose we want to translate from X to Y .

We can achieve this by performing image-to-image transla-

tion in both the ambient data space and latent space:

(i) In the data space, the goal can be achieved in a straight-

forward way to learn an image-to-image mapping F : X →
Y . The mapping F should satisfy two conditions: content

preservation and style transfer.

(ii) Let the associated two latent spaces corresponding to X
and Y be ZX and ZY respectively. For our purpose, a latent

code should contain both the latent content and latent style

information. We thus formulate the problem as learning a

mapping G: ZX → ZY such that it satisfies two conditions:

latent content preservation and latent style transfer.

As we claimed before, most existing works are based on

the first framework, which is computationally expensive in

training and requires complicated loss design to satisfy both

conditions. Our approach is based on the second frame-

work. As the latent space is an abstract-level and com-

pact representation of the data, it is reasonable to assume

that two domains X and Y share the same latent space Z ,

with each code z decomposed into a content code c and a

domain-specific code sX for X or sY for Y , i.e., z = [c, sX ]
or z = [c, sY ]. For a source instance x with a latent code

zx = [c, sx], the translation aims at only transforming the

source style code sx to the target style code space sY . We
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will demonstrate emperically that our model achieve auto-

matically learn to do this without explicitly specifying out

the content code and domain-specific code.

Note our setting is essentially different from the pur-

pose of the partially shared latent space assumption in MU-

NIT [16], which aims to ease the learning of a pair of un-

derlying encoder and decoder. In our model, our assump-

tion enables one to directly learn the latent code mapping

between two domains to realize image translation.

Method: As described above, we aim to transport latent

codes via EBM directly and postulate (but verify empiri-

cally) that the latent EBM can transport the source style

code sx into the target style space sY while preserving

source content codes c. To achieve this, one needs an en-

coder to extract the latent code and a decoder to recon-

struct the target image. The model is illustrated in Figure 2.

Figure 2. The proposed model: data flow and energy transport.

The dashed data flow only exists in the autoencoder pretraining

stage; u could be either x or y.

Specifically, we consider a pretrained autoencoder, includ-

ing an encoder Enc(·) and a decoder Dec(·). The pretrain-

ing procedure follows:

Encoding : z = Enc(u), u ∼ PX ∪ PY (4)

Decoding : ũ = Dec(z)

Reconstruction loss : Lrec = Eu∼PX∪PY
||u− ũ||2

Suppose the task is to adapt PX to PY , we aim to learn an

EBM Ex→y satisfying:

pθ(zy) =
1

Z(θ)
exp(−Ex→y(zy)), zy = Enc(y). (5)

The learning process of Ex→y is very simple by adopting

(3). To sample from the EBM Ex→y , we modify (3) as:

z̃t+1
y = z̃ty −

ηt

2

∂

∂z̃ty
Ex→y(z̃

t
y) +

√

ηtǫt, (6)

where z̃0y = zx = Enc(x) and x ∼ PX . The optimization

of Ex→y exactly follows (2). After T Langevin steps, the

reconstructed Dec(zTy ) will serve as the translation of x.

Note the above learning only requires optimization of the

EBM; thus, it is very computationally efficient.

In practice, it might happen that reconstructions from

the decoder exhibit a blurry effect. Existing works intro-

duce an additional EBM to refine the reconstructed output.

This approach has proved successful in the recent proposed

VAEBM [38]. [30] also provides a promising method to

learn a generator and the latent EBM cooperatively. By

contrast, our model does not consider this extra effort, as

we want to focus on the simple plug-and-play setting, and

our results already demonstrate excellent image quality.

4.2. Proof­of­Concept Verification

We conduct a proof-of-concept verification on our as-

sumption with two synthetic domains, the red pie and the

blue pie as shown in Figure 3. Following the proposed ap-

proach, we firstly pretrain until convergence a one-layer au-

toencoder and set the latent dimension to 8. A two-layer

EBM is then learned to transport the latent code from one

domain to the other using a 10-step MCMC. In Figure 3,

we visualize the process of sample transportation from the

black dots of the red pie to the blue pie in the data space.

We observe that the proposed approach indeed can trans-

late between the domains. To illustrate that our model can

also automatically learn to distinguish the content and style

codes, we calculate the aggregated absolute latent code

shift, which is defined as the sum of absolute gradients dur-

ing MCMC in (6), i.e.,
∑

t ‖∇zt
y
E(zty)‖. As shown in the

heatmap of Figure 3, the model does not learn a uniform

shift among all latent dimensions. Instead, the 5-th la-

tent dimension of most samples exhibits almost zero shift,

meaning that this dimension can be considered as the shared

content code.

Figure 3. Domain evolving process from red pie to blue pie on syn-

thetic data. (Left) Latent code transition corresponding to epochs

0, 5 and 50. (Right) The latent code shift after 10 Langevin steps.

5. Experiments

We evaluate our approach across several image-to-image

translation datasets with three autoencoder structures.

Autoencoders: We adopt three autoencoder structures,

with key characterizations listed in Table 2.

• β-VAE [15]: It is a well-known unsupervised disen-

tangle representation learning model. It modifies the
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objective – the evidence lower bound (ELBO), of vari-

ational autodencoder [23] and enforces the latent bot-

tleneck (weighted Kullback–Leibler (KL) divergence)

to encourage a factorized representation.

• ALAE [32]: It leverages the adversarial data dis-

tribution learning and latent distribution learning in

AE. It learns a descent disentangle representation and

demonstrates comparable sample quality with GAN.

Thus, it is reasonable to compare it with state-of-

the-art image translation models directly. And it is

also beneficial for the plug-and-play of much higher-

resolution models.

• VQ-VAE-2 [33]: We treat it as a vanilla autoencoder

without generative ability if it is trained only with

the reconstruction loss and the second-stage PixelCNN

prior training is discarded [35]. Hence, the decoder can

only remember specific latent codes but not learn a dis-

tribution mapping like that of a generator. The reasons

why we consider it is: (i) the latent space is built on

several feature maps which are more challenging than

1-d vector; (ii) the reconstruction performance is in

the lead; (iii) most importantly, we use VQ-VAE-2 to

demonstrate the strong transferability of image trans-

lation via latent energy transport after it is pretrained

on a large-scale or essentially irrelevant dataset.

Models Data Latent Generative? Disentangle?

β-VAE ELBO* KL ✓ ✓

ALAE Adversarial MSE ✓ ✓

VQ-VAE-2 MSE Quantization ✗ ✗

Table 2. Comparison of the three autoencoder models.

Datasets: For β-VAE, we apply the CelebFaces At-

tributes Dataset (CelebA) [27] with over 200K celebrity fa-

cial images. The dataset is also widely used in disentangled

representation learning. We resize the images into 64 × 64
resolution and divide the dataset into male and female ac-

cording to the gender attribute for translation.

To compare our model with StarGAN v2, where we

directly adopt the two high-fidelity image-to-image trans-

lation datasets that are used in its experiment: CelebA-

HQ [18] and Animal Faces (AFHQ) [5]. (i) CelebA-HQ:

it contains 30k celebrity facial images, which are manu-

ally split into 17,943 female faces and 10,057 male faces

for training [5]. The rest 2000 images are evenly divided as

testing data. We conduct experiments on both 256×256 and

1024×1024 resolutions. (ii) AFHQ (256×256): it includes

15k animal faces and is evenly distributed into three chal-

lenging domains, cat, dog and wildlife. Each domain uses

500 images for testing and the rest for training.

To investigate the generalization capability through the

combination of the latent energy transport and VQ-VAE-2,

we conduct experiments across a couple of datasets used

in CycleGAN [46]: apple2orange and two painting style

transfer datasets, vangogh2photo and ukiyoe2photo. More

details are given in the Appendix.

For the large-scale pretraining, we use the following

two datasets: (i) The Flickr-Faces-HQ (FFHQ) dataset [19]

which consists of 70k high-quality images (1024× 1024)

with more variations than CelebA-HQ in terms of acces-

sories, age, ethnicity and image background; (ii) ImageNet-

1k [6] dataset containing over 1 million images of 1000 dis-

tinct classes. The images are resized to 256×256.

Evaluation Metrics: We consider two commonly used

metrics for evaluating image synthesis quality and human

perceptual study for visual quality evaluation.

(i) FID [13] compares the statistics (mean and variances

of Gaussian distributions) between generated samples and

real samples. FID is consistent with increasing disturbances

and human judgment. Lower scores indicate that a model

can create higher quality images.

(ii) KID [2] improves FID as an unbiased estimator,

making it more reliable when fewer test images are avail-

able. We use generated images translated from all test im-

ages in the source domain vs. test images in the target do-

main to compute KID. Lower KID values indicate that im-

ages are better translated.

(iii) We use the Amazon Turker (AMT) for human per-

cpetual study.

5.1. Analysis on β­VAE

β-VAE is learned by maximizing a lower bound:

ELBO = −Lrec − βKL(q(z|u)||p(u)) (7)

where p(z) is the Gaussian prior and q(z|u) is the approx-

imate posterior; β is the adjustable hyperparameter and

when β = 1, it recovers the original VAE [23]. Generally,

choosing a different value of β leads to a trade-off between

the reconstruction quality and the disentangled latent space.

Implementation Since we focus on the latent energy

transport aspect for the unpaired image translation task, we

simply choose a random β = 10 for evaluation. We set

dim(z) = 32 and construct the EBM with a 1-layer MLP.

More detailed experimental settings are given in the Ap-

pendix. Note that after the pretraining of β-VAE3, the la-

tent EBM only requires around 200 additional training it-

erations (takes 1 minute on TITAN XP) to find a descent

translation path on the latent space. Figure 4 shows the re-

sults of the two-direction image translation on CelebA. It

3https://github.com/1Konny/Beta-VAE
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is observed that the discriminative features, like hair, beard

and facial-skeleton, can be effectively uncovered for image

translation via latent energy transport. Note we do not ex-

pect this model to generate high-quality images as β-VAE

itself is not a good model for this purpose. The other two

models will achieve high-quality images.

Figure 4. Uncurated image translation results based on β-VAE in

CelebA. x: the input, x̃: the reconstruction, y: the translated out-

put. (Top) female to male. (Bottom) male to female.

Figure 5. Visualization of the latent code shift via MCMC, which

is acquired from 1,000 test images.

Behavior of latent space We use this model to visualize

the aggregated absolute latent code shift via MCMC, plot-

ted in Figure 5. We find translations of the two directions

reveal nearly identical responses to the same latent dimen-

sions, meaning the models have been likely to learn two

almost mutually inverse mappings of the two domains, al-

though two EBMs are learned separately without explicitly

enforced cycle consistency. Specifically, dimensions 15, 16

(green arrow) are activated, representing style codes, while

dimension 24 (gray arrow) stays inactivated, representing

content code. Moreover, it is observed that image transla-

tion through manipulating the encoded latent code is done

by the cooperation of various latent dimensions instead of

one single dimension. This experiment validates our as-

sumption and the effectiveness of latent energy transport.

5.2. Analysis on ALAE

Implementations We follow all the experiment settings

in [32] and pretrain ALAE4 on CelebA-HQ, AFHQ and

FFHQ datasets. We test the unpaired image-to-image trans-

lation on CelebA-HQ and AFHQ datasets. The latent di-

mension of ALAE is 512. The latent EBM has one hidden

layer (512-2048-1) activated by LeakyReLU. We find that

the performance is not very sensitive to the architecture. To

optimize the EBM, we apply the stochastic gradient descent

(SGD) with a learning rate 0.1. We set the batch size to 32

and train the EBM for 2000 iterations. We run 20 Langevin

steps with a step size of 1.0.

Qualitative results: StarGAN v2 [5] is the current state-

of-the-art image-to-image translation approach on AFHQ

and CelebA-HQ. We show the qualitative comparison be-

tween our method and StarGAN v2 in Figure 6 and Fig-

ure 7. For StarGAN v2, we feed all the reconstructed im-

ages from ALAE for translation and pick the best image

from its diverse results. It’s fair for us to use the recon-

structed image from ALAE as inputs because we are ma-

nipulating the latent space with the proposed approach and

the change will be reflected in the reconstruction. Figure 6

presents two variants of outcomes from our approach: one

ALAE is pretrained on CelebA-HQ and the other on FFHQ.

We observe that both results give faithful and high-fidelity

translations. In particular, compared with StarGAN v2, our

approach obviously works better at preserving the facial

color and backgrounds while translating between males and

females. Similar observations are also seen in AFHQ as

shown in Figure 7.

Models CelebA-HQ AFHQ

MUNIT [16] 31.4 41.5

DRIT [25] 52.1 95.6

MSGAN [28] 33.1 61.4

StarGAN v2 [5] 13.7 16.2

LETIT (Ours) 12.5 15.9

Table 3. Quantitative comparison with baselines. All numbers ex-

cept for our approach are from StarGAN v2 [5].

Quantitative results: We report the FID scores on sev-

eral models in Table 3. On both CelebA-HQ and AFHQ

datasets, our approach consistently performs better than the

baselines. For the AMT perceptual study, each image is

judged by six users, who are asked to select the best qual-

itative translated image with two standards considered: the

visual Quality and the Faithful translation measured by the

4https://github.com/podgorskiy/ALAE
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Figure 6. Faithful unpaired image-to-image translation on CelebA-HQ. The third row (Ours) presents the results from the model pretrained

on CelebA-HQ whereas the fourth row (Ours-T) gives the transferred translations from the model that is pretrained on FFHQ.

Figure 7. Faithful unpaired image-to-image translation on AFHQ.

Models
CelebA-HQ AFHQ

Quality Faith Quality Faith

StarGAN v2 25.6 2.2 56.3 38.4

LETIT (Ours) 35.4 51.7 43.7 61.6

LETIT (Ours-T) 39.0 46.1 - -

Table 4. Human perceptual study regarding translation quality and

faithfulness.

extent of source content preservation, including background

and expression. We inform the participants of the name of

the target domain and six example images of the target do-

main as a visual illustration. The result is shown in Table 4,

where our models again outperform StarGAN v2.

High-resolution translation We conduct the image-to-

image translation on CelebA-HQ with a resolution of

1024× 1024. To the best of our knowledge, this is the first

trial on such a high-resolution setting. The autoencoder is

pretrained on FFHQ-10242. Other implementation details

are the same as CelebA-HQ, except that the batch size is

made to 16 to fit the GPU memory. Since the model only

deals with the latent space, the cost is similar as translat-

ing 256 × 256 images. Some visualized results are shown

in Figure 1. We additionally visualize the smooth transla-

tion evolution in the data space as the latent code evolves

in the latent space. Some example images are shown in

Figure 8, from which we can see how images are smoothly

transported to the target domains. More results are included

in the Appendix.

5.3. Analysis on VQ­VAE­2

Implementations: We use the original VQ-VAE-2 imple-

mentation [33] with source code. To accelerate the pretrain-

ing and facilitate the latent EBM learning, we make several

modifications to the original architecture [33], including (i)
We adopt two-level latent maps, bottom and top, such that

the EBM is defined on the latent space just before the en-

trance to the bottom decoder. (ii) We inject layer-wise ran-

dom Gaussian noise to the decoder for more flexibility. (iii)
We adjust the codebook dimension and codebook size. Note

that both bottom and top codebooks use the same configu-

ration. The impact on reconstruction quality regarding the

Mean Squared Error (MSE) is given in Table 8. We set

the codebook dimension to 32 and codebook size to 256

such that the latent dimension is 64 × 64 × 64 [33]. The

detailed latent EBM architecture and training settings are

given in Appendix. We compare our model with two one-

sided translation models, CF-EBM and CUT.
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Figure 8. Smooth unpaired image translation dynamics driven by MCMC, on 1024×1024-resolution images.

Qualitative results: Figure 9 visualizes some results

from different approaches. In the top row of Figure 9, we

show the outcomes from different pretrained autoencoders

on photo→vangogh. We observe, although the autoencoder

is pretrained on irrelevant datasets, that our model can still

generate reasonable translations. However, the most com-

petitive results come from the pretrained autoencoders with

the same dataset, which has better color controllability. The

bottom row in Figure 9 compares CUT with our model on

AFHQ cat→dog. Additional results are given in Appendix.

Figure 9. Qualitative comparisons based on VQ-VAE-2. Ours-T

means this autoencoder is pretrained on AFHQ.

Quantitative results: We firstly compare our approach

with the recent CF-EBM mode [45] on photo→vangogh.

As shown in Table 5, our approach requires much less time

than CF-EBM while achieving comparable KID. We pos-

tulate that: (i) A slightly higher KID is due to the blurry

output from the decoder; (ii) The latent code is a high-level

compact representation compared with the raw data so that

our latent EBM requires less iterations to train. CUT is the

current stat-of-the-art one-sided image translation approach

on AFHQ cat→dog. We compare the performance includ-

ing the sample quality and memory requirement. As shown

in Table 5, our method achieves greatly better FID score

while requiring much less GPU memory. The GPU mem-

ory is measured when both methods set the batch size to 1

on GTX 1080Ti.

Models
photo → vangogh cat → dog

KID↓ Days FID↓ Mem(GB)

CF-EBM [45] 4.25 0.6 55.1 2.50

CUT [31] 4.81 0.7 76.2 3.03

LETIT (Ours) 4.42 0.1 45.2 1.24

Table 5. VQ-VAE-2-based model comparison with CF-EBM and

CUT. We only report available numbers from the original papers.

5.4. Training Cost

We compare the training cost between our approach and

the two strong baselines, StarGAN v2 [5] and CUT [31]. As

seen in Table 5, the time budget for training the latent EBM

is incredibly low. Our model is still much more efficient

even if the autoencoder training cost counts. Therefore, our

approach is a light-weight and practical choice in scenarios

where the computational resources are limited.

Models #Param(M) Time(days) GPU

StarGAN v2 [5] 79 3.0 TITAN V100

CUT [31] 15 2.0 GTX 1080Ti

EBM-VQ-VAE-2 (ours) 17 +1.4 0.6 +0.3 GTX 1080Ti

EBM-ALAE (ours) 54 +1.6 1.1 +0.05 TITAN XP

Table 6. Comparison of computational cost on AFHQ. a+b denotes

the time for pretraining is a, and b for training the EBM.

6. Conclusion

We propose an efficient and readily plug-and-play ap-

proach for one-sided unpaired image-to-image translation,

via latent energy transport in a pretrained latent space. The

introduced latent EBM learns to implicitly and simultane-

ously transfer styles and preserve content, without relying

on a complicated cycle constraint. Extensive experiments

on various autoencoder structures and datasets have demon-

strated the strong performance, remarkable efficiency, prac-

tical faithfulness and scalability of the proposed universal

approach.
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