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Abstract

Inspired by the great success of deep neural net-

works (DNNs), many unfolding methods have been pro-

posed to integrate traditional image modeling techniques,

such as dictionary learning (DicL) and sparse coding, into

DNNs for image restoration. However, the performance of

such methods remains limited for several reasons. First,

the unfolded architectures do not strictly follow the image

representation model of DicL and lose the desired physical

meaning. Second, handcrafted priors are still used in most

unfolding methods without effectively utilizing the learn-

ing capability of DNNs. Third, a universal dictionary is

learned to represent all images, reducing the model repre-

sentation flexibility. We propose a novel framework of deep

convolutional dictionary learning (DCDicL), which follows

the representation model of DicL strictly, learns the pri-

ors for both representation coefficients and the dictionar-

ies, and can adaptively adjust the dictionary for each in-

put image based on its content. The effectiveness of our

DCDicL method is validated on the image denoising prob-

lem. DCDicL demonstrates leading denoising performance

in terms of both quantitative metrics (e.g., PSNR, SSIM) and

visual quality. In particular, it can reproduce the subtle im-

age structures and textures, which are hard to recover by

many existing denoising DNNs. The code is available at:

https://github.com/natezhenghy/DCDicL_

denoising.

1. Introduction

How to represent an image signal plays a key role in tra-

ditional image processing applications [9, 41, 42, 15, 14].

One popular approach is to represent an image patch vec-

tor y∈Rm as a linear combination of atomic bases, i.e., y=
Dx, where D∈Rm×d is the dictionary of atoms, and x∈Rd

is the representation coefficient vector. In the early stage,

cosine functions [4], wavelets [5] and contourlets [11] are
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commonly used as the dictionary atoms. However, such

dictionaries are manually designed under some mathemati-

cal constraints and are not flexible enough to represent the

complex natural image structures. Later on, researchers

turned to learn the dictionary directly from image data, and

many dictionary learning (DicL) methods have been devel-

oped [30, 56, 71, 64].

The DicL model can be formulated as follows:

minD,X
1
2‖DX−Y‖

2

2+λXψ(X)+λDφ(D) (1)

where Y∈Rm×N is a set of N training samples and each

column of it is a stretched image patch vector; X∈Rd×N is

the representation coefficient matrix of Y over dictionary

D; ψ(·) denotes the prior on coefficient X and φ(·) de-

notes the regularization term on D (e.g., ‖D‖
2

2); λX and λD
are the regularization parameters for X and D, respectively.

The most widely used priors of ψ(·) are sparsity priors, such

as ‖X‖0 and ‖X‖1, and the corresponding DicL models are

often called Sparse DicL. K-SVD [3, 71] is the most rep-

resentative Sparse DicL method. It alternatively performs

two steps to learn the dictionary: fix D and perform sparse

coding (SC) to compute X, and update D through singular

value decomposition (SVD).

Inspired by K-SVD, many DicL methods have been pro-

posed [36, 65, 14, 71, 27, 46, 45] and successfully used

in various image restoration applications, such as denois-

ing [16, 9] and super-resolution [63, 62, 61]. One prob-

lem of the patch-based DicL model in Eq. (1) is its lack of

shift-invariant property, and convolutional dictionary learn-

ing (CDicL) [19] was proposed to address this issue by us-

ing the convolution operation to replace the matrix multi-

plication in signal representation. Specifically, the objective

function of CDicL can be written as:

min
D,{Xi}

1
N

∑N
i=1

1
2‖D⊛Xi−Yi‖

2

2+λXψ(Xi)+λDφ(D)

(2)

where D⊛Xi=
∑C

c=1Dc∗Xi,c, ∗ is the 2D convolution

operator, and C is the number of channels; D={Dc}
C
c=1

is the convolutional dictionary and Dc∈R
k×k is the c-

th 2D dictionary atom (i.e., filter); Xi={Xi,c}
C

c=1 is the

representation coefficient (also called feature map) of im-

age Yi∈R
h×w and Xi,c∈R

h×w is the c-th channel of Xi.
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In CDicL, the sparse prior is commonly used for the fea-

ture map Xi (e.g., ‖Xi‖1) and convolutional sparse cod-

ing (CSC) [8, 58] is used to solve the feature map. CDicL

has demonstrated its advantages over patch-based DicL in

several image processing tasks [34, 19, 21, 32].

With the rapid development of deep learning (DL) tech-

niques in recent years, many deep neural network (DNN)

based image restoration methods have been proposed [67,

69, 22, 13, 12]. Driven by a large amount of training data

and the strong learning capacity of DNN, these methods

have surpassed traditional image restoration methods, in-

cluding those DicL based ones, by a large margin. Nonethe-

less, due to the black-box nature of DNN, there lacks a clear

interpretation for its success in image restoration, while

DicL has good interpretability. Therefore, researchers have

attempted to integrate DicL, SC and DL for both good per-

formance and clear physical meaning. These methods, of-

ten called deep unfolding methods, unfold the traditional

SC and DicL models through certain algorithms, and pa-

rameterize the model by DNN in an end-to-end learning

manner. Representative methods include DKSVD [47],

Learned-CSC [52], CSCNet [50], DCSC [18], etc.

However, the existing deep unfolding methods usually

fail to compete with DL methods for several reasons. First,

the unfolded architectures do not strictly follow the orig-

inal DicL models, which impairs the physical meaning

and sacrifices the advantages of DicL. Second, most of

them [52, 50, 18] still use the handcrafted priors, e.g.,

L1 (sparsity) prior, instead of learning the priors from data,

wasting the learning capacity of DNN architectures. Third,

they usually learn a universal dictionary for all images, re-

ducing the model’s representation capability. In this work,

we propose a new unfolding framework, called deep convo-

lutional dictionary learning (DCDicL), which resolves the

above issues of previous unfolding methods. The contribu-

tions of this paper are summarized as follows:

• DCDicL learns the priors for both dictionary and rep-

resentation coefficients from the training data, over-

coming the disadvantages of handcrafted priors.

• DCDicL learns a specific dictionary for each image,

which is adaptive to the image content. This endows

DCDicL with more powerful capability for recovering

image subtle structures.

• To testify the effectiveness of our framework, we ap-

ply DCDicL on the image denoising task. It achieves

leading denoising performance over not only previous

unfolding methods but also DL methods.

2. Related Works

2.1. Dictionary learning

Dictionary learning (DicL) is an important image mod-

eling and representation learning approach and it has been

widely studied in image restoration [63, 16, 19, 21, 32].

DicL aims to optimize a dictionary of atoms for represent-

ing the signal with handcrafted priors such as the sparsity

prior on representation coefficients. In the seminal work

of K-SVD [3, 71], the dictionary is optimized alterna-

tively in two steps. The SC step employs the greedy or-

thogonal matching pursuit method to estimate the coeffi-

cients with L0 constraint, while the singular value decom-

position is used in the second step to update the dictio-

nary. Many methods have been proposed to improve K-

SVD [36, 65, 14, 71, 27, 46, 45]. For example, Mairal et

al. [36] extended K-SVD to color image restoration. Zhang

et al. [65] used group sparsity to make the learned dictio-

nary more structured. Dong et al. [14] introduced the non-

local self-similarity prior into DicL for image restoration.

DicL is a patch-based image modeling method and it

lacks the shift-invariant property. Convolution dictionary

learning (CDicL) [19] was proposed to address this issue.

It replaces the dictionary atoms with a set of filters and re-

constructs the original image by convolutional operation in-

stead of matrix multiplication. The sparsity priors are im-

posed on the convolution feature maps, which can be solved

by CSC [8, 58]. CDicL takes advantage of shift-invariant

property and exploits better the image global information,

exhibiting better performance than patch-based DicL in var-

ious image restoration applications [34, 19, 48, 21, 32].

2.2. Deep learning

The great success of deep learning (DL) in image

recognition [31, 51, 23] facilitates its application to im-

age restoration and enhancement tasks. Mao et al. [37]

proposed a residual encoder-decoder network for image

restoration. Dong et al. [12] proposed to use a 3-layer con-

volutional neural network (CNN), called SRCNN, for sin-

gle image super-resolution (SISR). With the rapid develop-

ment of deep neural network (DNN) training techniques,

in [28] a 20-layer CNN, namely VDSR, was trained, which

outperforms significantly traditional SISR methods. Zhang

et al. [67] proposed the DnCNN model, which is a mile-

stone of image denoising. The FFDNet [69] was devel-

oped for fast and flexible image denoising with multiple

noise levels. Tai et al. [53] proposed the persistent mem-

ory network (MemNet) for image restoration. Jia et al. [26]

proposed FOCNet, which solves a fractional optimal con-

trol problem for image denoising. N3Net [40], NLRN [33],

RNAN [72] adopt the non-local modules to exploit the non-

local image prior for noise removal.

Generally speaking, the above DNN models act as an

implicit regularizer and learn the image priors from training

data, surpassing the handcrafted priors used in traditional

methods by a large margin. Nonetheless, most of the DNN

based image restoration methods lack good interpretability.
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2.3. Deep unfolding

Deep unfolding methods attempt to integrate the mer-

its of model-based SC and DicL methods (e.g., good in-

terpretability) and the merits of DL (e.g., strong learn-

ing capability). They unfold certain optimization algo-

rithms, such as iterative shrinkage-threshold [6, 50, 18], al-

ternating direction method of multipliers [7], half-quadratic

splitting [2, 66] and primal-dual [1], parameterize the un-

folded model, and update the learnable parameters by DNN.

For the deep unfolding of DicL, the iterative shrinkage-

threshold algorithm (ISTA) is usually used in the unfold-

ing process. The DKSVD [47] model first replaces the L0

prior in K-SVD by L1 prior, then unfolds the SC process by

ISTA iterations. Finally, it parameterizes the dictionaries

by multi-layer perceptron (MLP) modules. The Learned-

CSC [52] unfolds the CSC process by ISTA, which can

be integrated with DNN. Simon et al. [50] improved the

Learned-CSC through strided convolution. Fu et al. [18]

introduced a multi-scale feature extraction module before

ISTA unfolding, and applied it to JPEG artifacts removal.

Though improving the interpretability of DL, current

deep unfolding methods have some problems and their per-

formances still lag behind DL based methods. For example,

the unfolded structures mismatch the original DicL model,

fixed priors are adopted without fully utilizing the learning

capability of DNN, and the learned dictionary is universal

but not image adaptive. We will discuss these issues in Sec-

tion 3 and present a new framework of deep unfolding.

3. Methodology

3.1. Problems of current deep unfolding methods

Most of the deep unfolding methods for DicL [47] and

CDicL [52, 50, 18] assume L1 prior on coefficient X. With-

out loss of generality, we focus on the unfolding of CDicL

in the following discussion. The objective function is a spe-

cial case of Eq. (2), which can be written as:

minD,{Xi}
1
N

∑N
i=1

1
2‖D⊛Xi−Yi‖

2

2+λX‖Xi‖1 (3)

With a set of N training sample pairs
{

Yi,Y
gt
i

}

, where

Y
gt
i is the clean ground truth of noisy image Yi. Eq. (3)

can be formulated as a bi-level optimization problem:

minD 1
N

∑N
i=1L

(

D⊛Xi,Y
gt
i

)

(4a)

s.t. Xi=argminX
1

2σ2

i

‖D⊛X−Yi‖
2

2+λX‖X‖1 (4b)

where L(·,·) measures the loss and σi is the noise level of

image Yi. Eq. (4b) can be solved by ISTA [10] iteratively:

X=Sλ,η

(

X− 1
η

rot180(D)⊛(D⊛X−Yi)
)

(5)

where S is the shrinkage function, λ and η are hyper-

parameters, and rot180(D) rotates D by 180◦. Exist-

ing deep unfolding methods [47, 52, 50, 18] parameterize

rot180(D) and D by two DNN modules to build the archi-

tecture. In the forward pass, Eq. (4b) is solved to estimate

X. In the backward pass, L(·,·) is calculated to update dic-

tionary D as weight matrices of convolutional layers.

The above unfolding scheme, however, has some inher-

ent problems as listed below:

• First, rot180(D) and D are parameterized as two in-

dependent Conv modules, violating the mathematical

constraint (i.e., rot180(D) and D are the rotation of

each other) and losing the physical meaning of CDicL.

• Second, the learning capability of DNN is misused. In

Eq. (3), given the coefficient X and the signal Yi, the

dictionary D can be solved explicitly and there is no

need to update them using DNN. On the other hand,

the DNN should be used to learn the complex priors of

X, whereas the handcrafted sparsity priors (e.g., L1-

sparsity) are used, which is far less effective.

• Third, a universal dictionary D is parameterized to

represent all images in the existing unfolding scheme,

which impairs the flexibility of image representation.

The above three problems of deep CDicL unfolding limits

its performance in image restoration, lagging behind those

standard DNN based methods.

3.2. Deep convolutional dictionary learning

To solve the limitations of current deep CDicL unfold-

ing methods, we propose a new deep unfolding framework,

namely DCDicL, which can effectively integrate the advan-

tages of CDicL and DL. Instead of unfolding the objective

function in Eq. (3), which enforces handcrafted priors on X

and employs a universal D, we unfold the general objec-

tive function in Eq. (2), employ adaptive D on each image,

and learn the deep priors of both X and D from data. The

learning model of DCDicL can be written as:

min
{Di,Xi}

1
N

∑N
i=1

1
2‖Di⊛Xi−Yi‖

2

2+λXψ(Xi)+λDφ(Di)

(6)

We rewrite Eq. (6) as the bi-level optimization problem:

minθ 1
N

∑N
i=1L

(

Di⊛Xi,Y
gt
i

)

(7a)

s.t. {Di,Xi}=argminD,X
1

2σ2

i

‖D⊛X−Yi‖
2

2 (7b)

+λXψ(X)+λDφ(D)

where θ is the learnable parameters.

The architecture of DCDicL can be derived by unfold-

ing the inner objective in Eq. (7b). For the convenience of

expression, we omit the subscript “i” in the following de-

velopment. To separate the data term and prior term, we

introduce two auxiliary variables X′ and D′, and solve the

following two objective functions:

minX,X′
1

2σ2 ‖D⊛X′−Y‖
2

2+λXψ(X), s.t. X=X′ (8a)

minD,D′
1

2σ2 ‖D
′
⊛X−Y‖

2

2+λDφ(D), s.t. D=D′ (8b)
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Figure 1: Left: the overall architecture of DCDicL. Right: the architecture of one stage in DCDicL.

According to the Half Quadratic Splitting (HQS) algo-

rithm [24], solving Eq. (8) is equivalent to minimizing the

following objective functions:

min
X,X′

1
2σ2 ‖D⊛X′−Y‖

2

2+λXψ(X)+µX

2 ‖X−X′‖
2

2 (9a)

min
D,D′

1
2σ2 ‖D

′
⊛X−Y‖

2

2+λDφ(D)+µD

2 ‖D−D′‖
2

2 (9b)

where µD and µX are the penalty parameters for D and

X, respectively. When µD and µX are large enough, the

constraint in Eq. (8) can be met.

Eq. (9) can be solved iteratively. In the t-th iteration

(stage), X′
(t), X(t), D

′
(t), D(t) are solved as follows:

X′
(t)=SolveX

(

Y,D(t-1),X(t-1),αX

)

(10a)

=argminX⋆
1
2

∥

∥D(t-1)⊛X⋆−Y
∥

∥

2

2
+αX

2

∥

∥X⋆−X(t-1)

∥

∥

2

2

X(t)=NetX

(

X′
(t),βX

)

(10b)

=argminX⋆ ψ(X⋆)+βX

2

∥

∥

∥
X′

(t)−X⋆
∥

∥

∥

2

2

D′
(t)=SolveD

(

Y,D(t-1),X(t),αD

)

(10c)

=argminD⋆
1
2

∥

∥D⋆
⊛X(t)−Y

∥

∥

2

2
+αD

2

∥

∥D⋆−D(t-1)

∥

∥

2

2

D(t)=NetD

(

D′
(t),βD

)

(10d)

=argminD⋆ φ(D⋆)+βD

2

∥

∥

∥
D′

(t)−D⋆
∥

∥

∥

2

2

where {αX,αD,βX,βD}=
{

µXσ
2,µDσ

2,µX

λX

,µD

λD

}

. For

data term subproblems in Eqs. (10a) and (10c), we have

closed-form fast solutions, which will be presented in Sec-

tions 3.3 and 3.4. For prior term subproblems in Eqs. (10b)

and (10d), we learn two DNNs to solve them. For

hyper-parameters {αX,αD,βX,βD}, we use a simple net-

work (HypaNet) with input σ to predict them for each stage.

The unfolding process of DCDicL is depicted in Algo-

rithm 1. We use a simple network (HeadNet) to get an ini-

tial estimation for X0 and simply use the zero initialization

for D0. The overall architecture of DCDicL is illustrated in

Fig. 1. During the forward pass, DCDicL solves Eq. (7b)

Algorithm 1: Unfolding process of DCDicL

Input : Noisy image Y, number of stages T

Output: Predicted image Ypred

X0=HeadNet(Y,σ), D0=0;

for t=1,...,T do
{

αX(t),αD(t),βX(t),βD(t)

}

=HyperNet(t)(σ);

X′
(t)=SolveX

(

Y,D(t-1),X(t-1),αX(t)

)

;

X(t)=NetX

(

X′
(t),βX(t)

)

;

D′
(t)=SolveD

(

Y,D(t-1),X(t),αD(t)
)

;

D(t)=NetD

(

D′
(t),βD(t)

)

;

Ypred=D(T )⊛X(T )

by addressing the four subproblems in Eq. (10) iteratively,

and obtains the final estimations of X and D for each im-

age adaptively. While during the backward pass, DCDicL

calculates L(D⊛X,Ygt) and solves Eq. (7a), via which the

image priors are updated from training data. The details of

the network design will be presented in Section 3.5.

3.3. Solving X

For the convenience of expression, we omit the subscript

“(t)” in the following development. The closed-form so-

lution of X′ can be derived by solving Eq. (10a). Accord-

ing to [8], Eq. (10a) can be efficiently solved using Fast

Fourier Transform (FFT). Denote by F(·) the 2D FFT, and

let D= F(D), X ⋆= F(X⋆), Y= F(Y) and X= F(X).
Taking the derivative of Eq. (10a) w.r.t. X⋆, letting the

derivative be zero and using the Sherman-Morrison for-

mula [49], we have the following closed-form solution:

X′= 1
αX

F−1

{

Z−D◦

(

(

D̄ ⊙Z
)

αX+
(

D̄ ⊙D
) ↑C

)}

(11)

where Z=D◦(Y↑C)+αXX , F−1(·) denotes the inverse

FFT, D̄ denotes complex conjugate of D, ◦ is the

Hadamard product, A⊙B=
∑C

c=1Ac◦Bc, A↑C expands

the channel dimension of A to C, and ·
· is the Hadamard
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Figure 2: Sub-network architectures of DCDicL.

division. The detailed derivation can be found in the sup-

plementary file.

3.4. Solving D

As in practice the dimension of D′ is much lower than

that of X, the system is overdetermined and can be solved

by least squares method. To utilize the modern least squares

solvers, we unfold Eq. (10c) from the form of convolution

into the form of matrix multiplication. The details can be

found in the supplementary file. Here, we use X and Y to

denote the unfolded results of original matrices X and Y.

The objective function in Eq. (10c) can be re-written as:

argmind⋆
1
2‖Xd−Y‖

2

2+
αD

2 ‖d⋆−d‖
2

2 (12)

where d⋆=vec(D⋆), d=vec(D), and vec(·) is the vector-

ization operator.

By taking the derivative of the above objective function

w.r.t. d⋆ and letting the derivative be zero, we can obtain the

closed-form solution of D′:

D′=vec−1

{

(

XTX+αDI
)−1(

XTY+αDd
)

}

(13)

where vec−1(·) reverses the vectorization. Eq. (13) can be

efficiently solved by modern least square solvers such as

LU solver provided by PyTorch. Notice that unfolding X

to X would increase the memory overhead by k2, which

is not desirable in practice. Fortunately, we can efficiently

compute XTX and XTY from X and Y without explicitly

storing X. The details are in the supplementary file.

3.5. Network design

As shown in Fig. 1, our proposed DCDicL framework

has four sub-networks, including HeadNet, NetX, NetD and

HypaNet, whose architectures are illustrated in Fig. 2.

HeadNet takes the noisy image Y and noise level σ as

input to initialize coefficient X0. It consists of 2 Conv lay-

ers (64 channels each layer) with ReLU activation.

NetX learns the prior on coefficients X. It acts as an

implicit regularizer as those end-to-end networks in DL

based denoising methods [67, 69, 26, 40]. We adopt the U-

Net [43] architecture for its effectiveness in image restora-

tion tasks [66, 73, 57]. Specifically, our NetX consists of

7 blocks. The first 3 blocks down-sample the feature maps

through strided convolution, and the last 3 blocks up-sample

the feature maps by transposed convolution. Each block

consists of several residual units, while each residual unit

consists of 2 Conv layers with ReLU activation and a skip

connection. The Conv layers in the first 4 blocks have 64,

128, 256 and 512 channels, respectively. The selection of

the number of residual units is discussed in section 4.2.

NetD learns the prior on dictionary D. As D has a much

smaller spatial size than X, a shallower network is enough

to provide sufficient receptive field and learning capability.

Our NetD consists of 6 Conv layers with ReLU activation,

and there is no ReLU after the last Conv layer. Each Conv

layer has 16 channels, and there is a skip connection be-

tween the first and the last units.

HypaNet takes noise level σ as inputs and predicts the

hyperparameters for each stage. It consists of 2 Conv layers

(kernel size 1) and a SoftPlus layer, ensuring all hyperpa-

rameters are positive.

4. Experiments

4.1. Training details

We follow [39] to use the combination of WED [35],

DIV2K training set [55] and BSD400 [38, 67], for training.

The noisy image Y is obtained by adding additive white

Gaussian noise of standard deviantion σ on the ground truth

image Ygt. Patches of size 128×128 are randomly cropped

from Ygt and Y image pairs for training.

L1 loss is used as the loss function L(·,·) on the output of

each stage. As in previous multi-stage learning work [60],

we set the weight of the loss imposed on the last stage as

1, and set the weight as 1
T−1 for all the other T−1 stages.

The Adam optimizer [29] is used for updating the learnable

parameters. The batch size is 32 and we train it for 1e6
iterations. The learning rate starts from 1e-4 and decays by

a factor of 0.5 for every 2e5 iterations. In order to speed up

and stabilize the training, we first train a 1-stage model and

reload its weights into the T -stage model for fine-tuning.

(The selection of T is discussed in Section 4.2.) All the

T stages share the same parameters and we train a shared

model for all noise levels, which are set to {15,25,50} as

in [67, 26, 69]. The number of atoms in D is determined

by the number of feature maps in NetX (i.e., 64), while the

spatial size of each atom is discussed in Section 4.2.
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Table 1: Grayscale image denoising results in PSNR(dB)/SSIM(%). “-” means that the result is not available.

Datasets σ BM3D WNNM DnCNN N3Net NLRN RNAN FOCNet IRCNN FFDNet DKSVD CSCNet DCDicL

Set12
15 32.37/89.52 32.70/89.82 32.86/90.24 - 33.16/90.70 - 33.07/- 32.76/90.06 32.75/90.24 32.61/- 31.46/89.96 33.34/91.15

25 29.97/85.04 30.28/85.57 30.44/86.17 30.55/86.68 30.80/86.89 - 30.73/- 30.37/85.98 30.43/86.31 30.22/- 28.88/85.79 31.03/87.48

50 26.72/76.76 27.05/77.75 27.18/78.28 27.43/79.31 27.64/79.80 27.70/80.09 27.68/- 27.12/78.04 27.32/78.99 26.13/- 25.56/78.31 28.00/81.22

BSD68
15 31.07/87.17 31.37/87.66 31.73/89.07 - 31.88/89.32 - 31.83/- 31.63/88.82 31.63/89.02 31.48/88.35 31.57/88.79 31.95/89.57

25 28.57/80.13 28.83/80.87 29.23/82.79 29.30/83.77 29.41/83.31 - 29.38/- 29.15/82.48 29.19/82.88 28.96/81.71 29.11/82.57 29.52/83.79

50 25.60/68.64 25.87/69.82 26.23/71.89 26.39/73.21 26.47/72.98 26.48/73.03 26.50/- 26.19/71.69 26.29/72.39 25.97/70.35 26.24/72.02 26.63/73.95

Urban100
15 32.35/92.20 32.97/92.71 32.64/92.46 - 33.45/93.54 - 33.15/- 32.46/92.36 32.40/92.65 - 32.31/92.34 33.59/93.88

25 29.70/87.77 30.39/88.85 29.95/87.81 30.19/89.26 30.94/90.18 - 30.64/- 29.80/88.31 29.90/89.79 - 29.76/88.21 31.30/91.08

50 25.95/77.91 26.83/80.47 26.26/78.56 26.82/81.48 27.49/82.79 27.65/83.32 27.40/- 26.22/79.18 26.50/80.47 - 26.23/79.69 28.24/85.49

Table 2: Color image denoising results in PSNR(dB)/SSIM(%). “-” means that the result is not available.

Datasets σ CBM3D RNAN RPCNN BRDNet DSNet DnCNN IRCNN FFDNet CSCNet DCDicL

CBSD68
15 33.50/92.15 - - 34.10/92.91 33.91/- 33.89/92.90 33.87/92.85 33.87/92.90 33.83/- 34.36/93.48

25 30.69/86.72 - 31.24/88.80 31.43/88.47 31.28/- 31.23/88.30 31.18/88.24 31.21/88.21 31.18/- 31.75/89.30

50 27.36/76.26 28.27/80.18 28.06/79.90 28.16/79.42 28.05/- 27.92/78.96 27.88/78.98 27.96/78.87 28.00/- 28.57/81.07

Kodak24
15 34.26/91.47 - - 34.88/92.49 34.63/- 34.48/92.09 34.69/92.09 34.63/92.24 - 35.38/93.00

25 31.67/86.70 - 32.34/88.40 32.41/88.56 32.16/- 32.03/87.75 32.15/87.79 32.13/87.91 - 32.97/89.28

50 28.44/77.60 29.58/81.18 29.25/80.50 29.22/80.40 29.05/- 28.85/79.17 28.94/79.43 28.98/79.52 - 29.96/82.19

McMaster
15 34.03/91.14 - - 35.08/92.69 34.67/- 33.44/90.35 34.58/91,95 34.66/92.16 - 35.50/93.35

25 31.63/86.99 - 32.33/89.00 32.75/89.43 32.40/- 31.51/86.94 32.18/88.18 32.35/88.61 - 33.26/90.48

50 28.48/79.11 29.72/83.29 29.35/82.60 29.52/82.65 29.28/- 28.61/79.86 28.93/80.69 29.18/81.49 - 30.22/84.94

Urban100
15 33.93/94.08 - - 34.42/94.62 - 32.98/93.14 33.78/93.14 33.83/94.18 - 34.90/95.11

25 31.36/90.92 - 31.81/91.90 31.99/91.94 - 30.81/90.15 31.20/90.88 31.40/91.20 - 32.77/93.00

50 27.93/84.04 29.08/87.03 28.62/86.20 28.56/85.77 - 27.59/83.31 27.70/83.96 28.05/84.76 - 29.88/88.84

(a) (b)

Figure 3: Ablation studies on (a) k; (b) nr and T .

4.2. Ablation studies

In DCDicL, the hyperparameters can be end-to-end

learned by HypaNet. In this section, we perform ablation

studies on the selection of spatial size k of D, the no. of

stages T , and the no. of residual units, denoted by nr. We

perform the ablation study on the Set12 dataset with noise

level σ=25. The results are illustrated in Fig. 3.

Selection of k. We select k among {3,5,7}. It can be seen

that the PSNR index rises with the increase of k; however,

the improvement becomes minor when k=7. On the other

hand, the inference time boosts when k=7. To balance the

performance and efficiency, we set k=5 in the experiment.

Selection of T and nr . The depth of our DCDicL model

can be adjusted by 2 key factors. The first factor is the no.

of unrolling stages T . The second factor is the size of sub-

networks. Since NetD, HeadNet and HypaNet are much

smaller than NetX, we can simply control the model size by

adjusting the no. of residual units nr, which consists of 2

Conv layers, in each block of NetX.

It can be seen that the PSNR index rises with the in-

creases of both nr and T . However, the improvement be-

comes minor when nr=6 and T=6. To guarantee the effi-

ciency, we set nr=4 and T=4 in the experiment.

4.3. Comparison with state of the arts

In this section, we compare DCDicL with state of the art

image denoising methods. Since some competing methods

only provide the codes or results for grayscale images or

color images, we compare DCDicL with different methods

on different datasets. Since the sizes of testing images are

often different from that of training patches (i.e., 128×128),

the regularization strength on D in Eq. (10c) should be dif-

ferent. Hence, in testing we scale αD by htest×wtest

128×128 to nor-

malize the regularization strength, where htest andwtest are

the spatial sizes of testing image.

For grayscale image denoising, we adopt 3 widely used

testing datasets, including Set12, BSD68 [44] and Ur-

ban100 [25], in the experiments. We compare the pro-

posed DCDicL with representative model-based methods

(i.e., BM3D [9], WNNM [20]), DL based methods (i.e.,

DnCNN [67], N3Net [40], NLRN [33], RNAN [72], FOC-

Net [26], IRCNN [68], FFDNet [69]), and deep unfold-

ing methods (DKSVD [47], CSCNet [50]). The experi-

mental results are shown in Table 1. For color image de-
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Noisy input (σ=50) BM3D (24.12dB/71.68) DnCNN (25.64dB/77.22) N3Net (26.00dB/79.41) NLRN (26.37dB/79.57)

RNAN (26.18dB/79.00) IRCNN (25.48dB/76.75) FFDNet (25.68dB/77.50) CSCNet (25.49dB/76.82) DCDicL (26.72dB/80.88)

Figure 4: Denoising results on image 04 in Set12.

Noisy input (σ=50) RNAN (34.65dB/90.66)

BRDNet (34.13dB/87.98) IRCNN (33.14dB/88.43)

FFDNet (33.83dB/89.98) DCDicL (35.52dB/91.65)

Figure 5: Denoising results on image 13 in McMaster.

noising, four widely used color image datasets, including

CBSD68 [44], Kodak24 [17], McMaster [70] and Urban100

are used here. We compare DCDicL with model-based

method (i.e., CBM3D), DL based methods (i.e., DnCNN,

IRCNN, FFDNet, RNAN, RPCNN [59], BRDNet [54],

DSNet [39]), and deep unfolding method (i.e., CSCNet).

The experimental results are shown in Table 2.

It can be seen that DCDicL achieves the best PSNR and

Noisy input (σ=50) RNAN (27.22dB/83.41)

BRDNet (26.88dB/80.04) FFDNet (26.52dB/80.81)

IRCNN (26.36dB/80.48) DCDicL (27.87dB/86.04)

Figure 6: Denoising results on image 223061 in CBSD68.

SSIM performance under all experiment settings. Specifi-

cally, DCDicL outperforms previous deep unfolding meth-

ods DKSVD and CSCNet from 0.38dB to 2.44dB for differ-

ent settings. Although we trained a shared DCDicL model

for all noise levels, it still outperforms DL based methods

DnCNN, N3Net, NLRN, RNAN, FOCNet, PRCNN, BRD-

Net and DSNet, which train a separated model for each

noise level. RNAN, N3Net and NLRN exploit non-local

similarity and achieve better performance than other DL
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based methods, but fail to compete with DCDicL.

DCDicL performs extraordinary well on the Urban100

dataset, whose images contain lots of fine-scale repetitive

structures and textures. It surpasses the second best method

by 0.59dB in grayscale image denoising and 0.8dB in color

image denoising even when σ=50. This is because, by

solving the dictionary D in Eq. (10c), DCDicL perceives

the global information from input image Y and exploits the

image self-similarity adaptively and effectively. Figs. 4, 5

and 6 show the denoising results on images from Set12, Mc-

Master and CSBD68. It can be seen that DCDicL restores

many subtle edges and textures that cannot be restored by

other competing methods. More visualizations can be found

in the supplementary file.

We further compare the inference time of DCDicL and

competing methods. All experiments are done on Set12

(σ=50) with a GTX 1080Ti GPU. As can be seen from

Fig. 7, DCDicL is slower than DnCNN, FFDNet, IRCNN

and DKSVD, but achieves much higher denoising perfor-

mance. RNAN, N3Net and NLRN adopt complex non-

local modules for improving the performance, but still fail

to compete with DCDicL in terms of both denoising perfor-

mance and inference speed. Overall, we can conclude that

DCDicL provides a good solution in terms of both effec-

tiveness and efficiency.

Figure 7: Inference time vs. PSNR for different methods.

4.4. Analysis on adaptive dictionaries

To demonstrate the effectiveness of the adaptive dictio-

naries learned by DCDicL, we replace the NetD in DCDicL

with a universal dictionary (i.e., weight matrix in a Conv

layer) to train a new (vanilla U-Net) model, called DCDicL-

U. We compare DCDicL and DCDicL-U on color image

denoising. The denoising results (PSNR/SSIM) are shown

in Table 3, and Fig. 8 shows an example. One can see that

the adaptive dictionaries learned by NetD improve the de-

noising performance significantly. DCDicL recovers many

image fine textures, which are lost by the universal dictio-

nary. Fig. 9 visualizes the dictionaries learned on two im-

ages. It can be seen that DCDicL can adaptively adjust the

dictionary according to the content of input image. More

visualizations on the dictionaries and denoising results can

be found in the supplementary file.

Table 3: Results (PSNR/SSIM) of DCDicL-U and DCDicL.

Datasets CBSD68 Kodak24 McMaster Urban100

σ 15 25 50 15 25 50 15 25 50 15 25 50

DCDicL-U
34.23 31.63 28.45 35.20 32.80 29.78 35.24 33.01 29.99 34.58 32.35 29.34

93.41 90.22 80.98 92.87 89.10 81.94 93.08 90.11 84.35 94.81 92.58 87.87

DCDicL
34.35 31.74 28.57 35.35 32.95 29.95 35.46 33.22 30.21 34.61 32.67 29.82

93.48 89.29 81.09 92.96 89.25 82.19 93.29 90.44 84.92 94.88 92.90 88.73

DCDicL-U (26.08dB/81.84) DCDicL (28.54dB/88.62)

Figure 8: Denoising results by DCDicL-U and DCDicL.

Figure 9: Adaptive dictionaries learned on two images.

5. Conclusion

We proposed a new deep unfolding method, namely deep

convolutional dictionary learning (DCDicL), and validated

its effectiveness on image denoising. Following the math-

ematical modeling of dictionary learning strictly, DCDicL

learns the priors on X and D from training data, and learns

a specific dictionary for each image. The dictionary is

not only adaptive to image content but also perceives im-

age global information, endowing DCDicL with strong ca-

pability to recover subtle image structures even under se-

vere noise. Extensive experiments on benchmark datasets

demonstrated that DCDicL surpasses previous deep unfold-

ing and deep learning based methods in terms of both quan-

titative metrics and visual quality. DCDicL provides new

insight on deep image modeling, and can be extended to

more image restoration tasks.
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[40] Tobias Plötz and Stefan Roth. Neural nearest neigh-

bors networks. In Advances in Neural Information

Processing Systems, pages 1087–1098, 2018.

[41] Mark D Plumbley, Thomas Blumensath, Laurent
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