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Abstract

Fovea, located in the centre of the retina, is specialized

for high-acuity vision. Mimicking the sampling mechanism

of the fovea, a retina-inspired camera, named spiking cam-

era, is developed to record the external information with a

sampling rate of 40,000 Hz, and outputs asynchronous bi-

nary spike streams. Although the temporal resolution of vi-

sual information is improved, how to reconstruct the scenes

is still a challenging problem. In this paper, we present a

novel high-speed image reconstruction model through the

short-term plasticity (STP) mechanism of the brain. We de-

rive the relationship between postsynaptic potential regu-

lated by STP and the firing frequency of each pixel. By set-

ting up the STP model at each pixel of the spiking camera,

we can infer the scene radiance with the temporal regular-

ity of the spike stream. Moreover, we show that STP can

be used to distinguish the static and motion areas and fur-

ther enhance the reconstruction results. The experimental

results show that our methods achieve state-of-the-art per-

formance in both image quality and computing time.

1. Introduction

High-speed imaging is desired in scientific imaging

and professional photography for clearly recording fast-

changing processes in physics experiments, rapidly moving

particles in chemical reactions, fleeting moment in com-

petitive sports and so on. The traditional digital camera

records scenes with a constant shutter speed (e.g., 30 fps),

which loses much visual information and suffers motion

blur. High-speed cameras can output images with a rela-

tively high time sampling frequency of millions Hz or even

hundreds of millions Hz [1, 13]. However, enormous mem-

ory demands are needed to record these images. More-

over, high-speed cameras require specialized sensors that
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Figure 1. Illustration of working mechanism for traditional cam-

eras, event cameras, and spiking cameras. Traditional cameras

acquire images according to the constant frame rate, event cam-

eras generate asynchronous events for all pixels when brightness

changes exceed a certain threshold, and spiking cameras continu-

ously capture photons and generate asynchronous spike for all pix-

els when the accumulated intensity reaches a predefined threshold.

are highly expensive, which cannot be widely used.

Over the past decades, neuromorphic vision sensors [12]

have attracted extensive attention with its bio-inspired vi-

sual recording mechanism. Unlike conventional cameras,

which sample external light with the same exposure time

for all pixels, the neuromorphic vision sensors mimick the

retina’s sampling process and generate asynchronously bi-

nary outputs for all pixels based on the scene radiance

change. A commonly used neuromorphic vision sensors are

dynamic vision sensors (DVS) (also called event cameras),

in which events are generated only when the brightness

change exceeds a certain threshold [22, 5, 9]. Event cameras

have distinctive advantages over traditional frame cameras

such as low-latency, sparse output, low power consumption,

and high dynamic range. Despite this, it is difficult for an

event camera to reconstruct textures in scenes as visual in-

16358



formation of the static scenes is lost. Inspired by the sam-

pling mechanism of primate fovea located in the retina cen-

ter [34, 18], another retina-inspired camera named spiking

camera has been developed in recent years [6, 7]. Each pixel

of the spiking camera continuously captures photons and

generates a spike when the accumulated intensity reaches a

predefined threshold. An intuitive illustration for traditional

cameras, event cameras, and spiking cameras is shown in

Fig. 1. In spiking cameras, the pixels sensed different scene

radiance will fire spikes with varying frequencies — the

stronger the radiance is, the faster the spikes fire. Compared

with event cameras, the spiking camera retains high-speed

spatio-temporal information for both moving and static ob-

jects, which is ready-to-use for scene reconstruction.

Recently, some scene reconstruction methods have been

proposed by estimating the firing frequency of each pixel,

as the photosensitive units receive different scene radiance

will trigger spikes with different frequencies [38, 39, 36].

However, these methods require a predefined length of the

time window, which often suffer the problems of motion

blur and low image contrast if the window length is inap-

propriate. Besides, complex optimization algorithms are

utilized to separate the motion and static areas as to make

it impossible to reconstruct images in real-time. Therefore,

how to estimate each pixel’s firing frequency without a pre-

defined time window and reconstruct the texture with high

image quality and low latency is still unclear.

In this paper, we develop a new high-speed image recon-

struction approach through the short-term plasticity (STP)

mechanism of the brain [31, 30]. By employing the out-

put spiking streams as the input of spiking neural networks

with STP [17], we derive the relationship between the time-

varying firing frequency of each pixel and the dynamics of

the postsynaptic neuron, and further infer the scene radiance

and the pixel value of the reconstructed images. Moreover,

as the dynamics of STP model will fluctuate around a stable

value if the spike frequency changes, we introduce a mo-

tion extraction method with STP to enhance the reconstruc-

tion results. The experimental results show that the pro-

posed methods are capable to reconstruct high-speed mo-

tion scenes with high quality in real-time, the performance

of which outperform state-of-the-art approaches.

Contributions:

• We propose bio-inspired image reconstruction meth-

ods by implicitly estimating each pixel’s firing fre-

quency rather than utilizing time windows.

• We propose a novel motion extraction method based

on the STP dynamics intuitively, without using much

extra computation while rebuilding scenes.

• The proposed methods outperform previous works in

both image quality and computing time, which lever-

age spiking cameras’ low latency to realize high-speed

image reconstruction.

2. Related Works

Event-based Imaging. It is different for event cameras

to reconstruct textures in scenes as visual information of

the static scenes is lost. Some hybrid sensors combin-

ing event cameras and conventional digital cameras, such

as ATIS [24], DAVIS [2], RGB-DAVIS imaging system

[33, 11] and Celex [10], were developed in recent years.

Based on these sensors, the scene could be reconstructed

with high frame rate by combining events and frames di-

rectly [3, 21, 20, 28, 10] or warping the events to im-

ages [15, 29]. However, the difficulty in achieving reli-

able temporal synchronization between events and low-rate

frames from traditional sensors makes them inapplicable in

capturing the high-speed scene.

In recent years, generating high-speed and high dynamic

range videos with event cameras based on deep neural net-

works (DNNs) has become a mainstream trend. Inspired

by [37, 27], Rebecq et al. [25, 26] trained a recurrent

UNet architecture (E2VID) end-to-end with simulated data.

These works are later improved by introducing a temporal

consistency loss based on [14] and achieve the state of the

art. Scheerlinck et al. [28] proposed a FireNet reducing the

E2VID model complexity by 99% with minor trade-offs in

reconstruction quality. Except for using the recurrent archi-

tecture, generative adversarial networks (GANs) were used

in [23, 32] to generate frames from events. Nevertheless,

the computational cost of DNNs is high and does not lever-

age the low-power and the low-latency of event cameras.

High-speed Imaging based on Spiking Cameras. Based

on the temporal characteristic of spike streams generated by

spiking cameras, some reconstruction methods have been

proposed [38, 39, 36]. Zhu et al. [38] presented “texture

from inter-spike-intervals (TFI)” and “texture from play-

back (TFP)” to rebuild the scenes according to the firing

interval and firing rate, respectively. As there is a trade-

off between removing the motion blur and improving the

image contrast, the length of the window needs to be care-

fully defined, which will significantly influence the results.

To solve this problem, Zhu et al. [39] proposed to extract

the motion area and reconstruct the static and motion area

with different methods. Nevertheless, the motion extraction

based on the graph cut needs to optimize the motion mask

iteratively. Such an energy-based optimized way is time-

consuming that diminishes the advantage of the low latency

of spiking cameras. Zhao et al. [36] improved the signal to

noise ratio by utilizing temporal correlations of signals, but

it only applied to the scenes with linear motion.

3. Preliminaries

3.1. Shortterm Plasticity

Short-term plasticity refers to the short-term change of

synaptic strength, which is usually between tens to thou-
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Figure 2. The postsynaptic potential and current generated by STP

with received spike streams from a presynaptic neuron. Left:

The short-term depression dominated model, the parameters are

� D = 750 ms; � F = 50 ms; U = 0 :45; C = 0 :3. Right:

The short-term facilitation dominate model, the parameters are

� D = 50 ms; � F = 750 ms; U = 0 :15; C = 0 :15.

sands of milliseconds. STP is sensitive to presynaptic

spikes’ temporal-distribution regularity and can transiently

change postsynaptic potential (PSP) amplitude accordingly.

When a postsynaptic neuron receives a sequence of ac-

tion potentials (spikes) from a presynaptic neuron, the PSP

changes according to:

PSP(t) = A · R(t) · u(t); (1)

where A denotes the maximum voltage value that an action

potential can trigger on a postsynaptic neuron, R(t) denotes

the remaining number of available neurotransmitters in the

axon at time t , and u(t) denotes the release probability of

neurotransmitter in the axon at time t . The following ordi-

nary differential equations define the dynamics of R(t) and

u(t):

dR(t)
dt

=
1− R(t)

� D
− u(t � )R(t � )� (t − tsp); (2)

du(t)
dt

=
U − u(t)

� F
+ C[1− u(t � )]� (t − tsp): (3)

Here � (t) represents Dirac delta function, C is a constant

parameter that influences the change of u(t). Eq. 2 illus-

trates that the amount of neurotransmitters R(t) decreases

by u(t � )R(t � ) when a presynaptic spike releases at time

tsp , and recovers to 1 with a depression time constant � D .

Note, the notation t � denotes that these functions should

be computed in the limit approaching the spike release time

from below. Eq. 3 indicates that the release probability u(t)
increases by C[1 − u(t � )] once a presynaptic spike fires,

and decays back to baseline release probability U with fa-

cilitation time constant � F . Similar to PSP, the postsynaptic

current is formulated by:

dPSC(t)
dt

= −
PSC(t)

� s
+A ·R(t � ) · u(t) · � (t − tsp): (4)

t1 t2 t1 t2

Figure 3. Reconstruction results of TFP with different length of

time window. Images in the blue dotted box are recovered with

w = 8 , and images in the red dotted are recovered with w = 32 .

Intuitively, the dynamics of R(t) and u(t) (Eq. 2 and Eq. 3)

can be seen as two low-pass filters of the input spikes, and

their cutoff frequencies are inversely proportional to time

constants � D and � F . There are two types of STP named

short-term depression and short-term facilitation, respec-

tively. Short-term depression and short-term facilitation

have opposite effects on synaptic efficacy, which can be

seen in the middle and bottom of Fig. 2. Through adjust-

ing the four parameters STP� = {� D ; � F ; U; C}, STP can

have forms being either short-term depression dominated or

short-term facilitation dominated.

4. Methods

4.1. Overview of the method

The previous works to reconstruct the scene can be

summarized as estimating the firing frequency of each

pixel [36, 38, 39]. Fig. 3 illustrates the reconstruction re-

sults of TFP [38] with different time windows. One can

find that a short time window leads to lower contrast and

less motion blur, while the long one has higher contrast and

more motion blur. Thus, it requires an appropriate prede-

fined length of the time window to estimate the firing fre-

quency accurately, so as to make the texture relatively high

contrast and avoid the motion blur.

To mitigate the weakness of the setting of the time win-

dow, we set up the STP model at each pixel of the spiking

cameras to record the temporal regularity of spikes implic-

itly. The dynamics of PSP regulated by STP is shown in

Fig. 4a. We can find that PSP will converge to a steady

value if the firing frequency of the input spike streams is

fixed, no matter what type of STP is used.

Moreover, the steady value of PSP, the number of vesi-

cles R, and the release probability u are all monotone in-

creasing functions of firing frequency (shown in Fig. 4b).

As mentioned above, the firing frequency of the spike
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