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Abstract

Most recent semantic segmentation methods adopt

a fully-convolutional network (FCN) with an encoder-

decoder architecture. The encoder progressively reduces

the spatial resolution and learns more abstract/semantic

visual concepts with larger receptive fields. Since context

modeling is critical for segmentation, the latest efforts have

been focused on increasing the receptive field, through ei-

ther dilated/atrous convolutions or inserting attention mod-

ules. However, the encoder-decoder based FCN architec-

ture remains unchanged. In this paper, we aim to provide

an alternative perspective by treating semantic segmenta-

tion as a sequence-to-sequence prediction task. Specifically,

we deploy a pure transformer (i.e., without convolution and

resolution reduction) to encode an image as a sequence of

patches. With the global context modeled in every layer of

the transformer, this encoder can be combined with a simple

decoder to provide a powerful segmentation model, termed

SEgmentation TRansformer (SETR). Extensive experiments

show that SETR achieves new state of the art on ADE20K

(50.28% mIoU), Pascal Context (55.83% mIoU) and com-

petitive results on Cityscapes. Particularly, we achieve the

first position in the highly competitive ADE20K test server

leaderboard on the day of submission.

1. Introduction

Since the seminal work of [35], existing semantic seg-

mentation models have been dominated by those based on

fully convolutional network (FCN). A standard FCN seg-
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mentation model has an encoder-decoder architecture: the

encoder is for feature representation learning, while the de-

coder for pixel-level classification of the feature representa-

tions yielded by the encoder. Among the two, feature rep-

resentation learning (i.e., the encoder) is arguably the most

important model component [7, 27, 55, 58]. The encoder,

like most other CNNs designed for image understanding,

consists of stacked convolution layers. Due to concerns

on computational cost, the resolution of feature maps is re-

duced progressively, and the encoder is hence able to learn

more abstract/semantic visual concepts with a gradually in-

creased receptive field. Such a design is popular due to two

favorable merits, namely translation equivariance and local-

ity. The former respects well the nature of imaging pro-

cess [56] which underpins the model generalization ability

to unseen image data. Whereas the latter controls the model

complexity by sharing parameters across space. However, it

also raises a fundamental limitation that learning long-range

dependency information, critical for semantic segmentation

in unconstrained scene images [1,48], becomes challenging

due to still limited receptive fields.

To overcome this aforementioned limitation, a number

of approaches have been introduced recently. One approach

is to directly manipulate the convolution operation. This in-

cludes large kernel sizes [39], atrous convolutions [7, 21],

and image/feature pyramids [58]. The other approach is to

integrate attention modules into the FCN architecture. Such

a module aims to model global interactions of all pixels in

the feature map [47]. When applied to semantic segmenta-

tion [24, 28], a common design is to combine the attention

module to the FCN architecture with attention layers sitting

on the top. Taking either approach, the standard encoder-

decoder FCN model architecture remains unchanged. More

recently, attempts have been made to get rid of convolutions

altogether and deploy attention-alone models [46] instead.

However, even without convolution, they do not change the

nature of the FCN model structure: an encoder downsam-
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ples the spatial resolution of the input, developing lower-

resolution feature mappings useful for discriminating se-

mantic classes, and the decoder upsamples the feature rep-

resentations into a full-resolution segmentation map.

In this paper, we aim to provide a rethinking to the se-

mantic segmentation model design and contribute an alter-

native. In particular, we propose to replace the stacked con-

volution layers based encoder with gradually reduced spa-

tial resolution with a pure transformer [44], resulting in

a new segmentation model termed SEgmentation TRans-

former (SETR). This transformer-alone encoder treats an

input image as a sequence of image patches represented

by learned patch embedding, and transforms the sequence

with global self-attention modeling for discriminative fea-

ture representation learning. Concretely, we first decom-

pose an image into a grid of fixed-sized patches, forming a

sequence of patches. With a linear embedding layer applied

to the flattened pixel vectors of every patch, we then obtain

a sequence of feature embedding vectors as the input to a

transformer. Given the learned features from the encoder

transformer, a decoder is then used to recover the original

image resolution. Crucially there is no downsampling in

spatial resolution but global context modeling at every layer

of the encoder transformer, thus offering a completely new

perspective to the semantic segmentation problem.

This pure transformer design is inspired by its tremen-

dous success in natural language processing (NLP) [13,44].

More recently, a pure vision transformer or ViT [15] has

shown to be effective for image classification tasks. It thus

provides direct evidence that the traditional stacked convo-

lution layer (i.e., CNN) design can be challenged and image

features do not necessarily need to be learned progressively

from local to global context by reducing spatial resolution.

However, extending a pure transformer from image classi-

fication to a spatial location sensitive task of semantic seg-

mentation is non-trivial. We show empirically that SETR

not only offers a new perspective in model design, but also

achieves new state of the art on a number of benchmarks.

The following contributions are made in this paper: (1)

We reformulate the image semantic segmentation problem

from a sequence-to-sequence learning perspective, offer-

ing an alternative to the dominating encoder-decoder FCN

model design. (2) As an instantiation, we exploit the trans-

former framework to implement our fully attentive feature

representation encoder by sequentializing images. (3) To

extensively examine the self-attentive feature presentations,

we further introduce three different decoder designs with

varying complexities. Extensive experiments show that

our SETR models can learn superior feature representa-

tions as compared to different FCNs with and without at-

tention modules, yielding new state of the art on ADE20K

(50.28%), Pascal Context (55.83%) and competitive results

on Cityscapes. Particularly, our entry is ranked the 1st place

in the highly competitive ADE20K test server leaderboard.

2. Related work

Semantic segmentation Semantic image segmentation has

been significantly boosted with the development of deep

neural networks. By removing fully connected layers, the

fully convolutional network (FCN) [35] is able to achieve

pixel-wise predictions. While the predictions of FCN are

relatively coarse, several CRF/MRF [5, 34, 60] based ap-

proaches are developed to help refine the coarse predictions.

To address the inherent tension between semantics and lo-

cation [35], coarse and fine layers need to be aggregated for

both the encoder and decoder. This leads to different vari-

ants of the encoder-decoder structures [1, 37, 41] for multi-

level feature fusion.

Many recent efforts have been focused on addressing

the limited receptive field/context modeling problem in

FCN. To enlarge the receptive field, DeepLab [6] and Di-

lation [51] introduce the dilated convolution. Alterna-

tively, context modeling is the focus of PSPNet [58] and

DeepLabV2 [8]. The former proposes the PPM module to

obtain different region’s contextual information while the

latter develops ASPP module that adopts pyramid dilated

convolutions with different dilation rates. Decomposed

large kernels [39] are also utilized for context capturing.

Recently, attention based models are popular for capturing

long range context information. PSANet [59] develops the

pointwise spatial attention module for dynamically captur-

ing the long range context. DANet [16] embeds both spatial

attention and channel attention. CCNet [25] alternatively

focuses on economizing the heavy computation budget in-

troduced by full spatial attention. DGMN [55] builds a dy-

namic graph message passing network for scene modeling

and it can significantly reduce the computational complex-

ity. Note that all these approaches are still based on FCNs

where the feature encoding and extraction part are based on

classical ConvNets like VGG [42] and ResNet [19]. In this

work, we alternatively rethink the semantic segmentation

task from a different perspective.

Transformer Transformer and self-attention models have

revolutionized machine translation and NLP [12,13,44,49].

Recently, there are also some explorations for the usage

of transformer structures in image recognition. Non-local

network [47] appends transformer style attention onto the

convolutional backbone. AANet [2] mixes convolution and

self-attention for backbone training. LRNet [23] and stand-

alone networks [40] explore local self-attention to avoid

the heavy computation brought by global self-attention.

SAN [57] explores two types of self-attention modules.

Axial-Attention [46] decomposes the global spatial atten-

tion into two separate axial attentions such that the com-

putation is largely reduced. Apart from these pure trans-

6882



...

...

...
Linear Projection

Transformer Layer

Transformer Layer

MLP HeadDecoder 

24x

+ + + +

Layer Norm

Layer Norm

MLP

Multi-Head
Attention

Position
 Embedding

Patch
 Embedding

+

(a)

conv→2xreshape conv→2xconv→2xconv→2x

(b)

conv-conv-4x

conv-4x

Z24

Z18

Z12

Z6

reshape-conv

(c)

Figure 1. Schematic illustration of the proposed SEgmentation TRansformer (SETR) (a). We first split an image into fixed-size patches,

linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. To

perform pixel-wise segmentation, we introduce different decoder designs: (b) progressive upsampling (resulting in a variant called SETR-

PUP); and (c) multi-level feature aggregation (a variant called SETR-MLA).

former based models, there are also CNN-transformer hy-

brid ones. DETR [4] and the following deformable version

utilize transformer for object detection where transformer

is appended inside the detection head. STTR [31] and

LSTR [33] adopt transformer for disparity estimation and

lane shape prediction respectively. Most recently, ViT [15]

is the first work to show that a pure transformer based image

classification model can achieve the state-of-the-art. It pro-

vides direct inspiration to exploit a pure transformer based

encoder design in a semantic segmentation model.

The most related work is [46] which also leverages at-

tention for image segmentation. However, there are several

key differences. First, though convolution is completely re-

moved in [46] as in our SETR, their model still follows the

conventional FCN design in that spatial resolution of feature

maps is reduced progressively. In contrast, our sequence-to-

sequence prediction model keeps the same spatial resolution

throughout and thus represents a step-change in model de-

sign. Second, to maximize the scalability on modern hard-

ware accelerators and facilitate easy-to-use, we stick to the

standard self-attention design. Instead, [46] adopts a spe-

cially designed axial-attention [20] which is less scalable to

standard computing facilities. Our model is also superior in

segmentation accuracy (see Section 4).

3. Method

3.1. FCN­based semantic segmentation

In order to contrast with our new model design, let us

first revisit the conventional FCN [35] for image semantic

segmentation. An FCN encoder consists of a stack of se-

quentially connected convolutional layers. The first layer

takes as input the image, denoted as H×W×3 with H×W
specifying the image size in pixels. The input of subse-

quent layer i is a three-dimensional tensor sized h×w× d,

where h and w are spatial dimensions of feature maps, and

d is the feature/channel dimension. Locations of the ten-

sor in a higher layer are computed based on the locations of

tensors of all lower layers they are connected to via layer-

by-layer convolutions, which are defined as their receptive

fields. Due to the locality nature of convolution operation,

the receptive field increases linearly along the depth of lay-

ers, conditional on the kernel sizes (typically 3 × 3). As

a result, only higher layers with big receptive fields can

model long-range dependencies in this FCN architecture.

However, it is shown that the benefits of adding more layers

would diminish rapidly once reaching certain depths [19].

Having limited receptive fields for context modeling is thus

an intrinsic limitation of the vanilla FCN architecture.

Recently, a number of state-of-the-art methods [24, 54,

55] suggest that combing FCN with attention mechanism

is a more effective strategy for learning long-range contex-

tual information. These methods limit the attention learn-

ing to higher layers with smaller input sizes alone due to its

quadratic complexity w.r.t. the pixel number of feature ten-

sors. This means that dependency learning on lower-level

feature tensors is lacking, leading to sub-optimal represen-

tation learning. To overcome this limitation, we propose

a pure self-attention based encoder, named SEgmentation

TRansformers (SETR).
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3.2. Segmentation transformers (SETR)

Image to sequence SETR follows the same input-output

structure as in NLP for transformation between 1D se-

quences. There thus exists a mismatch between 2D image

and 1D sequence. Concretely, the Transformer, as depicted

in Figure 1(a), accepts a 1D sequence of feature embeddings

Z ∈ R
L×C as input, L is the length of sequence, C is the

hidden channel size. Image sequentialization is thus needed

to convert an input image x ∈ R
H×W×3 into Z.

A straightforward way for image sequentialization is to

flatten the image pixel values into a 1D vector with size of

3HW . For a typical image sized at 480(H)× 480(W )× 3,

the resulting vector will have a length of 691,200. Given

the quadratic model complexity of Transformer, it is not

possible that such high-dimensional vectors can be handled

in both space and time. Therefore tokenizing every single

pixel as input to our transformer is out of the question.

In view of the fact that a typical encoder designed for

semantic segmentation would downsample a 2D image x ∈
R

H×W×3 into a feature map xf ∈ R
H

16
×

W

16
×C , we thus

decide to set the transformer input sequence length L as
H
16

× W
16

= HW
256

. This way, the output sequence of the trans-

former can be simply reshaped to the target feature map xf .

To obtain the HW
256

-long input sequence, we divide an

image x ∈ R
H×W×3 into a grid of H

16
× W

16
patches uni-

formly, and then flatten this grid into a sequence. By

further mapping each vectorized patch p into a latent C-

dimensional embedding space using a linear projection

function f : p −→ e ∈ R
C , we obtain a 1D sequence of

patch embeddings for an image x. To encode the patch spa-

cial information, we learn a specific embedding pi for every

location i which is added to ei to form the final sequence in-

put E = {e1 + p1, e2 + p2, · · · , eL + pL}. This way, spa-

tial information is kept despite the orderless self-attention

nature of transformers.

Transformer Given the 1D embedding sequence E as

input, a pure transformer based encoder is employed to

learn feature representations. This means each transformer

layer has a global receptive field, solving the limited re-

ceptive field problem of existing FCN encoder once and

for all. The transformer encoder consists of Le layers of

multi-head self-attention (MSA) and Multilayer Perceptron

(MLP) blocks [45] (Figure 1(a)). At each layer l, the in-

put to self-attention is in a triplet of (query, key, value)

computed from the input Zl−1 ∈ R
L×C as:

query = Zl−1
WQ, key = Zl−1

WK , value = Zl−1
WV , (1)

where WQ/WK /WV ∈ R
C×d are the learnable parameters

of three linear projection layers and d is the dimension of

(query, key, value). Self-attention (SA) is then formu-

lated as:

SA(Zl−1) = Z
l−1 + softmax(

Zl−1WQ(ZWK)⊤
√
d

)(Zl−1WV ).

(2)

MSA is an extension with m independent SA operations

and project their concatenated outputs: MSA(Zl−1) =
[SA1(Z

l−1); SA2(Z
l−1); · · · ; SAm(Zl−1)]WO, where

WO ∈ R
md×C . d is typically set to C/m. The output of

MSA is then transformed by an MLP block with residual

skip as the layer output as:

Z
l = MSA(Zl−1) +MLP (MSA(Zl−1)) ∈ R

L×C
. (3)

Note, layer norm is applied before MSA and MLP

blocks which is omitted for simplicity. We denote

{Z1, Z2, · · · , ZLe} as the features of transformer layers.

3.3. Decoder designs

To evaluate the effectiveness of SETR’s encoder feature

representations Z, we introduce three different decoder de-

signs to perform pixel-level segmentation. As the goal of

the decoder is to generate the segmentation results in the

original 2D image space (H × W ), we need to reshape

the encoder’s features (that are used in the decoder), Z,

from a 2D shape of HW
256

× C to a standard 3D feature map
H
16

× W
16

× C. Next, we briefly describe the three decoders.

(1) Naive upsampling (Naive) This naive decoder first

projects the transformer feature ZLe to the dimension of

category number (e.g., 19 for experiments on Cityscapes).

For this we adopt a simple 2-layer network with architec-

ture: 1 × 1 conv + sync batch norm (w/ ReLU) + 1 × 1
conv. After that, we simply bilinearly upsample the out-

put to the full image resolution, followed by a classification

layer with pixel-wise cross-entropy loss. When this decoder

is used, we denote our model as SETR-Naı̈ve.

(2) Progressive UPsampling (PUP) Instead of one-step

upscaling which may introduce noisy predictions, we con-

sider a progressive upsampling strategy that alternates conv

layers and upsampling operations. To maximally mitigate

the adversarial effect, we restrict upsampling to 2×. Hence,

a total of 4 operations are needed for reaching the full res-

olution from ZLe with size H
16

× W
16

. More details of this

process are given in Figure 1(b). When using this decoder,

we denote our model as SETR-PUP.

(3) Multi-Level feature Aggregation (MLA) The third

design is characterized by multi-level feature aggregation

(Figure 1(c)) in similar spirit of feature pyramid network

[26, 32]. However, our decoder is fundamentally differ-

ent because the feature representations Zl of every SETR’s

layer share the same resolution without a pyramid shape.

Specifically, we take as input the feature representations

{Zm} (m ∈ {Le

M
, 2Le

M
, · · · ,M Le

M
}) from M layers uni-

formly distributed across the layers with step Le

M
to the de-

coder. M streams are then deployed, with each focusing on
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Model T-layers Hidden size Att head

T-Base 12 768 12

T-Large 24 1024 16
Table 1. Configuration of Transformer backbone variants.

Method Pre Backbone #Params 40k 80k

FCN [38] 1K R-101 68.59 73.93 75.52

Semantic FPN [38] 1K R-101 47.51 - 75.80

Hybrid-Base R T-Base 112.59 74.48 77.36

Hybrid-Base 21K T-Base 112.59 76.76 76.57

Hybrid-DeiT 21K T-Base 112.59 77.42 78.28

SETR-Naı̈ve 21K T-Large 305.67 77.37 77.90

SETR-MLA 21K T-Large 310.57 76.65 77.24

SETR-PUP 21K T-Large 318.31 78.39 79.34

SETR-PUP R T-Large 318.31 42.27 -

SETR-Naı̈ve-Base 21K T-Base 87.69 75.54 76.25

SETR-MLA-Base 21K T-Base 92.59 75.60 76.87

SETR-PUP-Base 21K T-Base 97.64 76.71 78.02

SETR-Naı̈ve-DeiT 1K T-Base 87.69 77.85 78.66

SETR-MLA-DeiT 1K T-Base 92.59 78.04 78.98

SETR-PUP-DeiT 1K T-Base 97.64 78.79 79.45

Table 2. Comparing SETR variants on different pre-training

strategies and backbones. All experiments are trained on

Cityscapes train fine set with batch size 8, and evaluated using the

single scale test protocol on the Cityscapes validation set in mean

IoU (%) rate. “Pre” denotes the pre-training of transformer part.

“R” means the transformer part is randomly initialized.

one specific selected layer. In each stream, we first reshape

the encoder’s feature Zl from a 2D shape of HW
256

× C to a

3D feature map H
16

× W
16

×C. A 3-layer (kernel size 1× 1,

3× 3, and 3× 3) network is applied with the feature chan-

nels halved at the first and third layers respectively, and the

spatial resolution upscaled 4× by bilinear operation after

the third layer. To enhance the interactions across differ-

ent streams, we introduce a top-down aggregation design

via element-wise addition after the first layer. An additional

3× 3 conv is applied after the element-wise additioned fea-

ture. After the third layer, we obtain the fused feature from

all the streams via channel-wise concatenation which is then

bilinearly upsampled 4× to the full resolution. When using

this decoder, we denote our model as SETR-MLA.

4. Experiments

4.1. Experimental setup

We conduct experiments on three widely-used semantic

segmentation benchmark datasets.

Cityscapes [11] densely annotates 19 object categories in

images with urban scenes. It contains 5000 finely annotated

images, split into 2975, 500 and 1525 for training, valida-

tion and testing respectively. The images are all captured at

a high resolution of 2048 × 1024. In addition, it provides

19,998 coarse annotated images for model training.

Method Pre Backbone ADE20K Cityscapes

FCN [38] 1K R-101 39.91 73.93

FCN 21K R-101 42.17 76.38

SETR-MLA 21K T-Large 48.64 76.65

SETR-PUP 21K T-Large 48.58 78.39

SETR-MLA-DeiT 1K T-Large 46.15 78.98

SETR-PUP-DeiT 1K T-Large 46.24 79.45
Table 3. Comparison to FCN with different pre-training with

single-scale inference on the ADE20K val and Cityscapes val set.

ADE20K [61] is a challenging scene parsing benchmark

with 150 fine-grained semantic concepts. It contains 20210,

2000 and 3352 images for training, validation and testing.

PASCAL Context [36] provides pixel-wise semantic la-

bels for the whole scene (both “thing” and “stuff” classes),

and contains 4998 and 5105 images for training and valida-

tion respectively. Following previous works, we evaluate on

the most frequent 59 classes and the background class (60

classes in total).

Implementation details Following the default setting

(e.g., data augmentation and training schedule) of public

codebase mmsegmentation [38], (i) we apply random resize

with ratio between 0.5 and 2, random cropping (768, 512

and 480 for Cityscapes, ADE20K and Pascal Context re-

spectively) and random horizontal flipping during training

for all the experiments; (ii) We set the total iteration to

160,000 and 80,000 for the experiments on ADE20K and

Pascal Context. For Cityscapes, we set batch size to 8 with

a number of training schedules reported in Table 2, 6 and 7

for fair comparison. We adopt a polynomial learning rate

decay schedule [58] and employ SGD as the optimizer. Mo-

mentum and weight decay are set to 0.9 and 0 respectively

for all the experiments on the three datasets. We set initial

learning rate 0.001 on ADE20K and Pascal Context, and

0.01 on Cityscapes.

Auxiliary loss As [58] we also find the auxiliary seg-

mentation loss helps the model training. Each aux-

iliary loss head follows a 2-layer network. We add

auxiliary losses at different Transformer layers: SETR-

Naı̈ve (Z10, Z15, Z20), SETR-PUP (Z10, Z15, Z20, Z24),

SETR-MLA (Z6, Z12, Z18, Z24). Both auxiliary loss and

main loss heads are applied concurrently.

Multi-scale test We use the default settings of mmsegmen-

tation [38]. Specifically, the input image is first scaled to

a uniform size. Multi-scale scaling and random horizontal

flip are then performed on the image with a scaling factor

(0.5, 0.75, 1.0, 1.25, 1.5, 1.75). Sliding window is adopted

for test (e.g., 480 × 480 for Pascal Context). If the shorter

side is smaller than the size of the sliding window, the im-

age is scaled with its shorter side to the size of the sliding
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Figure 2. Qualitative results on ADE20K: SETR (right column)

vs. dilated FCN baseline (left column) in each pair. Best viewed

in color and zoom in.

Method Backbone mIoU Pixel Acc.

FCN (16, 160k, SS) [38] ResNet-101 39.91 79.52

FCN (16, 160k, MS) [38] ResNet-101 41.40 80.65

EncNet [53] ResNet-101 44.65 81.69

PSPNet [58] ResNet-269 44.94 81.69

DMNet [17] ResNet-101 45.50 -

CCNet [24] ResNet-101 45.22 -

Strip pooling [22] ResNet-101 45.60 82.09

APCNet [18] ResNet-101 45.38 -

OCNet [52] ResNet-101 45.45 -

SETR-Naı̈ve (16, 160k, SS) T-Large 48.06 82.40

SETR-Naı̈ve (16, 160k, MS) T-Large 48.80 82.92

SETR-PUP (16, 160k, SS) T-Large 48.58 82.90

SETR-PUP (16, 160k, MS) T-Large 50.09 83.58

SETR-MLA (16, 160k, SS) T-Large 48.64 82.64

SETR-MLA (16, 160k, MS) T-Large 50.28 83.46

Table 4. State-of-the-art comparison on the ADE20K dataset.

Performances of different model variants are reported. SS: Single-

scale inference. MS: Multi-scale inference.

window (e.g., 480) while keeping the aspect ratio. Synchro-

nized BN is used in decoder and auxiliary loss heads. For

training simplicity, we do not adopt the widely-used tricks

such as OHEM [52] loss in model training.

Baselines We adopt dilated FCN [35] and Semantic

FPN [26] as baselines with their results taken from [38].

Our models and the baselines are trained and tested in the

same settings for fair comparison. In addition, state-of-the-

art models are also compared. Note that the dilated FCN is

with output stride 8 and we use output stride 16 in all our

models due to GPU memory constrain.

SETR variants Three variants of our model with differ-

ent decoder designs (see Sec. 3.3), namely SETR-Naı̈ve,

SETR-PUP and SETR-MLA. Besides, we use two vari-

ants of the encoder “T-Base” and “T-Large” with 12 and 24

layers respectively (Table 1). Unless otherwise specified,

we use “T-Large” as the encoder for SETR-Naı̈ve, SETR-

PUP and SETR-MLA. We denote SETR-Naı̈ve-Base as the

model utilizing “T-Base” in SETR-Naı̈ve.

Though designed as a model with a pure transformer

encoder, we also set a hybrid baseline Hybrid by using a

ResNet-50 based FCN encoder and feeding its output fea-

ture into SETR. To cope with the GPU memory constraint

and for fair comparison, we only consider ‘T-Base” in Hy-

Figure 3. Qualitative results on Pascal Context: SETR (right

column) vs. dilated FCN baseline (left column) in each pair. Best

viewed in color and zoom in.

Method Backbone mIoU

FCN (16, 80k, SS) [38] ResNet-101 44.47

FCN (16, 80k, MS) [38] ResNet-101 45.74

PSPNet [58] ResNet-101 47.80

DANet [16] ResNet-101 52.60

EMANet [30] ResNet-101 53.10

SVCNet [14] ResNet-101 53.20

Strip pooling [22] ResNet-101 54.50

GFFNet [29] ResNet-101 54.20

APCNet [18] ResNet-101 54.70

SETR-Naı̈ve (16, 80k, SS) T-Large 52.89

SETR-Naı̈ve (16, 80k, MS) T-Large 53.61

SETR-PUP (16, 80k, SS) T-Large 54.40

SETR-PUP (16, 80k, MS) T-Large 55.27

SETR-MLA (16, 80k, SS) T-Large 54.87

SETR-MLA (16, 80k, MS) T-Large 55.83

Table 5. State-of-the-art comparison on the Pascal Context

dataset. Performances of different model variants are reported.

SS: Single-scale inference. MS: Multi-scale inference.

brid and set the output stride of FCN to 1/16. That is, Hy-

brid is a combination of ResNet-50 and SETR-Naı̈ve-Base.

Pre-training We use the pre-trained weights provided by

ViT [15] or DeiT [43] to initialize all the transformer lay-

ers and the input linear projection layer in our model. We

denote SETR-Naı̈ve-DeiT as the model utilizing DeiT [43]

pre-training in SETR-Naı̈ve-Base. All the layers without

pre-training are randomly initialized. For the FCN en-

coder of Hybrid, we use the initial weights pre-trained on

ImageNet-1k. For the transformer part, we use the weights

pre-trained by ViT [15], DeiT [43] or randomly initialized.

We use patch size 16 × 16 for all the experiments. We

perform 2D interpolation on the pre-trained position em-

beddings, according to their location in the original image

for different input size fine-tuning.

Evaluation metric Following the standard evaluation pro-

tocol [11], the metric of mean Intersection over Union

(mIoU) averaged over all classes is reported. For ADE20K,

additionally pixel-wise accuracy is reported following the

existing practice.

4.2. Ablation studies

Table 2 and 3 show ablation studies on (a) different vari-

ants of SETR on various training schedules, (b) compari-
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Figure 4. Qualitative results on Cityscapes: SETR (right column) vs. dilated FCN baseline (left column) in each pair. Best viewed in

color and zoom in.

Method Backbone mIoU

FCN (40k, SS) [38] ResNet-101 73.93

FCN (40k, MS) [38] ResNet-101 75.14

FCN (80k, SS) [38] ResNet-101 75.52

FCN (80k, MS) [38] ResNet-101 76.61

PSPNet [58] ResNet-101 78.50

DeepLab-v3 [9] (MS) ResNet-101 79.30

NonLocal [47] ResNet-101 79.10

CCNet [24] ResNet-101 80.20

GCNet [3] ResNet-101 78.10

Axial-DeepLab-XL [46] (MS) Axial-ResNet-XL 81.10

Axial-DeepLab-L [46] (MS) Axial-ResNet-L 81.50

SETR-PUP (40k, SS) T-Large 78.39

SETR-PUP (40k, MS) T-Large 81.57

SETR-PUP (80k, SS) T-Large 79.34

SETR-PUP (80k, MS) T-Large 82.15

Table 6. State-of-the-art comparison on the Cityscapes valida-

tion set. Performances of different training schedules (e.g., 40k

and 80k) are reported. SS: Single-scale inference. MS: Multi-

scale inference.

son to FCN [38] and Semantic FPN [38], (c) pre-training

on different data, (d) comparison with Hybrid, (e) com-

pare to FCN with different pre-training. Unless otherwise

specified, all experiments on Table 2 and 3 are trained on

Cityscapes train fine set with batch size 8, and evaluated

using the single scale test protocol on the Cityscapes vali-

dation set in mean IoU (%) rate. Experiments on ADE20K

also follow the single scale test protocol.

From Table 2, we can make the following observations:

(i) Progressively upsampling the feature maps, SETR-

PUP achieves the best performance among all the vari-

ants on Cityscapes. One possible reason for inferior per-

formance of SETR-MLA is that the feature outputs of dif-

ferent transformer layers do not have the benefits of reso-

lution pyramid as in feature pyramid network (FPN) (see

Figure 5). However, SETR-MLA performs slightly better

Method Backbone mIoU

PSPNet [58] ResNet-101 78.40

DenseASPP [48] DenseNet-161 80.60

BiSeNet [50] ResNet-101 78.90

PSANet [59] ResNet-101 80.10

DANet [16] ResNet-101 81.50

OCNet [52] ResNet-101 80.10

CCNet [24] ResNet-101 81.90

Axial-DeepLab-L [46] Axial-ResNet-L 79.50

Axial-DeepLab-XL [46] Axial-ResNet-XL 79.90

SETR-PUP (100k) T-Large 81.08

SETR-PUP‡ T-Large 81.64

Table 7. Comparison on the Cityscapes test set. ‡: trained on

fine and coarse annotated data.

than SETR-PUP, and much superior to the variant SETR-

Naı̈ve that upsamples the transformers output feature by

16× in one-shot, on ADE20K val set (Table 3 and 4). (ii)

The variants using “T-Large” (e.g., SETR-MLA and SETR-

Naı̈ve) are superior to their “T-Base” counterparts, i.e.,

SETR-MLA-Base and SETR-Naı̈ve-Base, as expected. (iii)

While our SETR-PUP-Base (76.71) performs worse than

Hybrid-Base (76.76), it shines (78.02) when training with

more iterations (80k). It suggests that FCN encoder design

can be replaced in semantic segmentation, and further con-

firms the effectiveness of our model. (iv) Pre-training is crit-

ical for our model. Randomly initialized SETR-PUP only

gives 42.27% mIoU on Cityscapes. Model pre-trained with

DeiT [43] on ImageNet-1K gives the best performance on

Cityscapes, slightly better than the counterpart pre-trained

with ViT [15] on ImageNet-21K. (v) To study the power

of pre-training and further verify the effectiveness of our

proposed approach, we conduct the ablation study on the

pre-training strategy in Table 3. For fair comparison with

the FCN baseline, we first pre-train a ResNet-101 on the

Imagenet-21k dataset with a classification task and then
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Figure 5. Visualization of output feature of layer Z1, Z9, Z17, Z24

of SETR trained on Pascal Context. Best viewed in color.

Figure 6. Examples of attention maps from SETR trained on Pas-

cal Context.

adopt the pre-trained weights for a dilated FCN training for

the semantic segmentation task on ADE20K or Cityscapes.

Table 3 shows that with ImageNet-21k pre-training FCN

baseline experienced a clear improvement over the variant

pre-trained on ImageNet-1k. However, our method out-

performs the FCN counterparts by a large margin, veri-

fying that the advantage of our approach largely comes

from the proposed sequence-to-sequence modeling strategy

rather than bigger pre-training data.

4.3. Comparison to state­of­the­art

Results on ADE20K Table 4 presents our results on

the more challenging ADE20K dataset. Our SETR-

MLA achieves superior mIoU of 48.64% with single-scale

(SS) inference. When multi-scale inference is adopted, our

method achieves a new state of the art with mIoU hitting

50.28%. Figure 2 shows the qualitative results of our model

and dilated FCN on ADE20K. When training a single model

on the train+validation set with the default 160,000 itera-

tions, our method ranks 1st place in the highly competitive

ADE20K test server leaderboard.

Results on Pascal Context Table 5 compares the segmen-

tation results on Pascal Context. Dilated FCN with the

ResNet-101 backbone achieves a mIoU of 45.74%. Us-

ing the same training schedule, our proposed SETR sig-

nificantly outperforms this baseline, achieving mIoU of

54.40% (SETR-PUP) and 54.87% (SETR-MLA). SETR-

MLA further improves the performance to 55.83% when

multi-scale (MS) inference is adopted, outperforming the

nearest rival APCNet with a clear margin. Figure 3 gives

some qualitative results of SETR and dilated FCN. Fur-

ther visualization of the learned attention maps in Figure 6

shows that SETR can attend to semantically meaningful

foreground regions, demonstrating its ability to learn dis-

criminative feature representations useful for segmentation.

Results on Cityscapes Tables 6 and 7 show the compara-

tive results on the validation and test set of Cityscapes re-

spectively. We can see that our model SETR-PUP is su-

perior to FCN baselines, and FCN plus attention based ap-

proaches, such as Non-local [47] and CCNet [24]; and its

performance is on par with the best results reported so far.

On this dataset we can now compare with the closely related

Axial-DeepLab [10, 46] which aims to use an attention-

alone model but still follows the basic structure of FCN.

Note that Axial-DeepLab sets the same output stride 16 as

ours. However, its full input resolution (1024 × 2048) is

much larger than our crop size 768× 768, and it runs more

epochs (60k iteration with batch size 32) than our setting

(80k iterations with batch size 8). Nevertheless, our model

is still superior to Axial-DeepLab when multi-scale infer-

ence is adopted on Cityscapes validation set. Using the fine

set only, our model (trained with 100k iterations) outper-

forms Axial-DeepLab-XL with a clear margin on the test

set. Figure 4 shows the qualitative results of our model and

dilated FCN on Cityscapes.

5. Conclusion

In this work, we have presented an alternative perspec-

tive for semantic segmentation by introducing a sequence-

to-sequence prediction framework. In contrast to existing

FCN based methods that enlarge the receptive field typi-

cally with dilated convolutions and attention modules at the

component level, we made a step change at the architectural

level to completely eliminate the reliance on FCN and ele-

gantly solve the limited receptive field challenge. We imple-

mented the proposed idea with Transformers that can model

global context at every stage of feature learning. Along

with a set of decoder designs in different complexity, strong

segmentation models are established with none of the bells

and whistles deployed by recent methods. Extensive ex-

periments demonstrate that our models set new state of the

art on ADE20, Pascal Context and competitive results on

Cityscapes. Encouragingly, our method is ranked the 1st

place in the highly competitive ADE20K test server leader-

board on the day of submission.
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