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Abstract

We propose a novel spatially-correlative loss that is sim-

ple, efficient and yet effective for preserving scene structure

consistency while supporting large appearance changes

during unpaired image-to-image (I2I) translation. Previous

methods attempt this by using pixel-level cycle-consistency

or feature-level matching losses, but the domain-specific

nature of these losses hinder translation across large do-

main gaps. To address this, we exploit the spatial patterns of

self-similarity as a means of defining scene structure. Our

spatially-correlative loss is geared towards only capturing

spatial relationships within an image rather than domain

appearance. We also introduce a new self-supervised learn-

ing method to explicitly learn spatially-correlative maps

for each specific translation task. We show distinct im-

provement over baseline models in all three modes of un-

paired I2I translation: single-modal, multi-modal, and

even single-image translation. This new loss can eas-

ily be integrated into existing network architectures and

thus allows wide applicability. The code is available at

https://github.com/lyndonzheng/F-LSeSim.

1. Introduction

I2I translation refers to the task of modifying an input

image to fit the style / appearance of the target domain,

while preserving the original content / structure (as shown

in Fig. 1: horse → zebra); learning to assess the content

and style correctly is thus of central importance. While

GANs [15] have the ability to generate images that adhere to

the overall dataset distribution, it is still difficult to preserve

scene structure during translation when image-conditional

GANs are optimized with purely adversarial loss.

To mitigate the issue of scene structure discrepancies,

a few loss functions for comparing the content between

input and output images have been proposed, including

(a) pixel-level image reconstruction loss [23, 46, 6] and

cycle-consistency loss [29, 56, 52]; (b) feature-level per-

ceptual loss [12, 25] and PatchNCE loss [39]. However,

(a) Input (b) Output

(c) Structure map (d) Structure map

Figure 1. Our learned spatially-correlative representation en-

codes local scene structure based on self-similarities. Despite vast

appearance differences between the horse and zebra, when the

scene structures are identical (i.e. same poses), the spatial patterns

of self-similarities are as well.

these losses still have several limitations. First, pixel-level

losses do not explicitly decouple structure and appearance.

Second, feature-level losses help but continue to conflate

domain-specific structure and appearance attributes. Fi-

nally, most feature-level losses are calculated using a fixed

ImageNet [11] pre-trained network (e.g. VGG16 [47]),

which will not correctly adapt to arbitrary domains.

In this work, we aim to design a domain-invariant rep-

resentation to precisely express scene structure, rather than

using original pixels or features that couple both appearance

and structure. To achieve this, we propose to revisit the idea

of self-similarity. Classically, low-level self-similarity has

been used for matching [43] and image segmentation [44],

while feature-level self-similarity in deep learning mani-

fests as self-attention maps [51]. We propose to go further,

to advance an assumption that all regions within same cat-

egories exhibit some form of self-similarity. For instance,

while the horse and zebra in Fig. 1 appear very differ-

ent, there is obvious visual self-similarity in their own re-
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‖xi −Gy→x(Gx→y(xi))‖p
(a) DiscoGAN [29], CycleGAN [56],

DualGAN [52], MUNIT [22], StarGAN [9],

BicycleGAN [57], DRIT++ [32] . . .

‖f(xi)− f(Gx→y(xi))‖p
(b) DeePSiM [12], StyleNet [48],

PerceptualLoss [25], SimGAN [46],

ContextualLoss [34], TSIT [24] . . .

f(xi) ∝ f(Gx→y(xi))
(c) DistanceGAN [5],

TraVelGAN [2], GcGAN [13],

CUT [39] . . .

d(S(xi), S(Gx→y(xi)))

(d) Ours

Figure 2. Comparison of unpaired I2I translation methods with various content losses. (a) The cycle-consistency loss [29, 56, 52] in

a two-sided framework. (b) Pixel-level image reconstruction loss [46] and feature-level matching loss [25]. (c) Various indirect relation-

ships [5, 13] between the input and output. (d) Our spatially-correlative loss based on a learned spatially-correlative map.

gions. We believe a network can learn deeper representa-

tions of self-similarities (beyond just visual ones) that can

encode intact object shapes, even when there are variations

in appearances within an object. Then through estimating

such co-occurrence signals in self-similarity, we can explic-

itly represent the structure as multiple spatially-correlative

maps, visualized as heat maps in Fig.1 (c) and (d). Based

on this within-shape self-similarity, we propose then that a

structure-preserving image translation will retain the pat-

terns of self-similarity in both the source and translated im-

ages, even if appearances themselves change dramatically.

Our basic spatially-correlative map, called FSeSim, is

obtained by computing the Fixed Self-Similarity of features

extracted from a pre-trained network. While this basic ver-

sion achieved comparative or even better results than state-

of-the-art methods [56, 13, 39] on some tasks, the generality

is limited because features extracted from an ImageNet pre-

trained network are biased towards photorealistic imagery.

To obtain a more general spatially-correlative map, the

Learned Self-Similarity, called LSeSim, is presented by

using a form of contrastive loss, in which we explicitly

encourage homologous structures to be closer, regardless

of their appearances, and reciprocally dissociate dissimilar

structures even they have similar appearances. To do this,

the model learns a domain-invariant spatially-correlative

map, where having the same scene structure leads to sim-

ilar maps, even if the images are from different domains.

There are several advantages of using the proposed

F/LSeSim loss: (a) In contrast to the existing losses

that directly compare the loss on pixels [56] or features

[25], F/LSeSim captures the domain-invariant structure rep-

resentation, regardless of the absolute pixel values; (b)

Through contrastive learning, the LSeSim learns a spatially-

correlative map for a specific image translation task, rather

than features extracted from a fixed pre-trained network,

as in e.g. perceptual loss [25], contextual loss [34]; (c)

The translation model is more efficient and faster than the

widely used cycle-consistency architectures, because our

F/LSeSim explicitly encodes the structure, bypassing the

expensive multi-cycle looping; (d) As we show in Fig. 5,

our F/LSeSim correctly measures the structural distance

even when the two images are in completely different do-

mains; (e) Finally, our F/LSeSim can easily be integrated

into various frameworks. In our experiments, we directly

used the generator and discriminator architectures of Cy-

cleGAN [56], MUNIT [22] and StyleGAN [26, 27] for ex-

tensive I2I translation tasks. The experimental results show

that our model outperformed the existing both one-sided

translation methods [5, 2, 13, 39] and two-sided translation

methods [56, 52, 22].

2. Related Work

Existing unpaired I2I translation either use cycle-

consistency loss in a two-sided framework [29, 56, 52], or

other forms of pixel-level and feature-level losses in a one-

sided framework [5, 2, 13] for preserving content (Fig. 2).

Two-Sided Unsupervised Image Translation. Cycle-

consistency has became a de facto loss in most works,

whether the cycles occur in the image domain [56, 29, 52,

9, 20, 31], or in latent space [57, 22, 32]. However, without

explicit constraints, the content in a translated image can be

easily distorted [31]. Furthermore, the cycle-based meth-

ods require auxiliary generators and discriminators for the

reverse mapping.

One-Sided Unsupervised Image Translation. To avoid

cycle-consistency artifacts, DistanceGAN [5] and Gc-

GAN [13] pre-define an implicit distance in a one-sided

framework. In contrast, the feature-level losses [25, 34]

evaluate the content distance in a deep feature space, which

have been applied in both style transfer [14, 25, 34, 55] and

image translation [6, 49, 40, 24]. However, the underlying

assumption that high-level semantic information is solely

determined in feature space does not always hold. Further-

more, these features are extracted from a fixed pre-trained

network (e.g. VGG16 [47]). While the latest CUT [39]

learns a PatchNCE loss for a specific task, the distance used

is directly computed from extracted features, and will still

be affected by domain-specific peculiarities.

Contrastive Representation Learning. Driven by the

potential of discriminative thought, a series of self-
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Figure 3. An example of computing spatially-correlative loss

from self-similarity maps. Image x and corresponding translated

image ŷ are first fed into the feature extractor. We then compute

the local self-similarity for each query point. Here, we show one

example for the red query point.

supervised methods [19, 50, 38, 3, 17, 7, 16] have emerged

in recent years. These self-supervised methods learn ro-

bust features by associating “positive” pairs and dissociat-

ing “negative” pairs. CUT [39] first introduced contrastive

learning for unsupervised I2I translation. While we utilize

a patch-wise contrastive loss within an image in a similar

manner to CUT, we propose a systematic way to learn a

structure map that excludes appearance attributes.

3. Methods

As shown in Fig. 2, given a collection of images X ⊂
R

H×W×C from a particular domain (e.g. horse), our main

goal is to learn a model Φ that receives the image x ∈ X as

input and transfers it into the target domain Y ⊂ R
H×W×C

(e.g. zebra), in a manner that retains the original scene struc-

ture but converts the appearance appropriately.

Here, we focus on designing a loss function that mea-

sures the structural similarity between the input image x
and the translated image ŷ = Φ(x). However, unlike most

existing approaches that directly attempt to evaluate the

structural similarity between input and translated images at

some deep feature level, we will instead compute the self-

similarity of deep features within each image, and then com-

pare the self-similarity patterns between the images.

In subsequent sections, we investigate two losses,

fixed self-similarity (FSeSim) and learned self-similarity

(LSeSim). In the first instance, we directly compare the self-

similarity patterns of features extracted from a fixed pre-

trained network (e.g. VGG16 [47]). In the second instance,

we additionally introduce a structure representation model

that learns to correctly compare the self-similarity patterns,

in which we use the contrastive infoNCE loss [38] to learn

such a network without label supervision.

3.1. Fixed SelfSimilarity (FSeSim)

We first describe our fixed spatially-correlative loss.

Given an image x in one domain and its corresponding

translated image ŷ in another, we extract the features fx
and fŷ using a simple network (e.g. VGG16 [47]). Instead

of directly computing the feature distance ‖fx − fŷ‖p, we

compute the self-similarity in the form of a map. We call

this a spatially-correlative map, formally:

Sxi
= (fxi

)T (fx∗
) (1)

where fT
xi

∈ R
1×C is the feature of a query point xi with C

channels, fx∗
∈ R

C×Np contains corresponding features in

a patch of Np points, and Sxi
∈ R

1×Np captures the feature

spatial correlation between the query point and other points

in the patch. We show one query example in Fig. 3, where

the spatially-correlative map for the query patch is visual-

ized as a heat map. Note that unlike the original features that

would still encode domain-specific attributes such as color,

lighting and texture, the self-similarity map only captures

the spatially-correlative relationships.

Next we represent the structure of the whole image as

a collection of multiple spatially-correlative maps Sx =
[Sx1

;Sx2
; . . . ;Sxs

] ∈ R
Ns×Np , where Ns is the numbers

of sampled patches. This is a semi-sparse representation,

but is more computationally efficient. We then compare the

multiple structure similarity maps between the input x and

the translated image ŷ, as follows:

Ls = d(Sx, Sŷ) (2)

where Sŷ are corresponding spatially-correlative maps in

the target domain. Here, we consider two forms for d(·),
the L1 distance ‖Sx − Sŷ‖1 and the cosine distance ‖1 −
cos(Sx, Sŷ)‖. The former term strongly encourages the

spatial similarity to be consistent at all points in a patch,

while the latter term supports pattern correlation without

concern for differences in magnitude.

3.2. Learned SelfSimilarity (LSeSim)

Although our FSeSim provides strong supervision for

structure consistency, it does not explicitly learn a structure

representation for a specific translation task. As opposed

to existing feature-level losses [25, 34] that only utilize the

features from a fixed pre-trained network, we propose to ad-

ditionally learn a structure representation network for each

task that expresses the learned self-similarity, or LSeSim.

In order to learn such a model without supervision, we

consider the self-supervised contrastive learning that as-

sociates similar features, while simultaneously dissociates

different features. Following PatchNCE [39], we build

our contrastive loss at patch level, except here the pairs

for comparison are our spatially-correlative maps, rather

than the original features in existing works [19, 7, 16, 39].
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Figure 4. Patchwise contrastive learning for the learned self-

similarity. Three images are fed into the feature extractor, in

which two images, x and xaug , are homologous with the same

structure but varied appearances, and y is another randomly sam-

pled image. For each query patch in x, the “positive” sample is the

corresponding patch in xaug , and all other patches are considered

as “negative” samples.

To help generate pairs of similar patch features for self-

supervised learning, we create augmented images by apply-

ing structure-preserving transformations.

Formally, let v = Sxi
∈ R

1×Np denotes the spatially-

correlative map of the “query” patch. Let v+ = Sx̂i
∈

R
1×Np and v

− ∈ R
K×Np be “positive” and “negative”

patch samples, respectively. The query patch is positively

paired with a patch in the same position i within an aug-

mented image xaug , and negatively paired to patches sam-

pled from other positions in xaug , or patches from other im-

ages y. The number of negative patches used is K = 255.

Our LSeSim design is illustrated in Fig. 4. The con-

trastive loss is given by:

Lc = − log
esim(v,v+)/τ

esim(v,v+)/τ +
∑K

k=1 e
sim(v,v−

k
)/τ

(3)

where sim(v,v+) = v
T
v
+/‖v‖‖v+‖ is the cosine sim-

ilarity between two spatially-correlative maps, and τ is a

temperature parameter. To minimize this loss, our network

encourages the corresponding patches with the same struc-

ture to be close even they have very different visual appear-

ances, which fits in with the goal of image translation. Note

that, this contrastive loss is only used for optimizing the

structure representation network. The spatially-correlative

loss for the generator is always the loss in eq. (2).

3.3. Full Objective

Overall, we train the networks by jointly minimizing the

following losses:

LD = −Ey∼pd
[logD(y)]− Eŷ∼pg

[log(1−D(ŷ))]

LS = Lc

LG = Eŷ∼pg
[log(1−D(ŷ))] + λd(Sx, Sŷ)

(4)

x l1 pixel loss [46] Perceptual loss [25]

yalign yunalign PatchNCE loss [39] LSeSim loss

Figure 5. Error map visualization. Our LSeSim has small er-

rors on the left where ground truth paired data is provided, while

having large errors on the right for unpaired data.

where LD is the adversarial loss for the discriminator D(·),
ŷ is the translated image, and LS is the contrastive loss for

the structure representation network f(·). LG is the loss for

the generation (translation) network G(·), which consists of

the style loss term and the structure loss term. λ is a hyper-

parameter to trade off between style and content.

3.4. Analysis

Readers may wonder why the proposed F/LSeSim losses

would perform better than existing feature-level losses [25,

34, 39]. An intuitive interpretation is that self-similarity

deals only with spatial relationships of co-occurring sig-

nals, rather than their original absolute values.

To provide further clarity, we consider a scenario where

given a semantic map x (Fig. 5), the task is to translate it

to a photorealistic image y. We consider an ideal result (the

paired ground truth yalign) and a wrong result (another im-

age yunalign), respectively. Under such a setting, a good

structure loss should penalize the wrong result, while sup-

porting the ideal result. To visualize the error maps, for each

corresponding pair of query patches in x and y we com-

puted the error at that patch location for different losses.

As can be seen, pixel-level loss [46] is naturally unsuitable

when there are large domain gaps, and while Perceptual

loss [25] will report significant errors for both aligned and

unaligned results. PatchNCE [39] mitigates the problem by

calculating the cosine distance of features, but it can be seen

the loss map still retains high errors in many regions within

the aligned result, due to extracted features consisting of

appearance attributes, such as color and texture.

In contrast, appearance attributes are ignored in LSeSim

by representing scene structure as a spatially-correlative

map. Fig. 5 shows that our LSeSim leads to low errors

for the aligned image (left), even when they are in quite

different domains, but large errors for the non-aligned im-

age (right). Even for yunalign, LSeSim differentiates be-

tween related structures (e.g. roads) and unrelated structures

(trees vs windows), with lower errors for the former. Hence

LSeSim can better help preserve scene structure even across

large domain gaps.
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Input LSeSim FSeSim GAN loss only [56] Cycle loss [56] Perceptual loss [25] PatchNCE loss [39]

Figure 6. Comparing results under different content losses. All results are reported following the same setting of CycleGAN [56],

except using different content losses. Our model generates much better visual results with only loss modification.

In Fig. 6, we report a qualitative comparison of vari-

ous losses that be applied to a same translation network

architecture. All methods following the setting in Cycle-

GAN [57], except that the content loss is changed. Cycle-

consistency is achieved using the auxiliary generator and

discriminator, and all other methods are one-sided transla-

tion. We find that our method produces results with much

better visual quality.

Discussion. Similar to conventional feature-level losses

[25, 34], our F/LSeSim is computed in a deep feature space.

However, we represent the structure as multiple spatially-

correlative maps. So rather than directly at feature level

which is not free from domain-specific attributes, our com-

parison is done at a more abstract level that is intended to

transcend domain specificity.

While attention maps have been used in previous im-

age translation works [8, 1], it is fundamentally different

from our F/LSeSim in concept — their attention maps ef-

fectively function as saliency maps to guide the transla-

tion, but content preservation is primarily still dependent on

cycle-consistency loss. In our case, the multiple spatially-

correlative maps are used to encode and determine invari-

ance in scene structure. Our F/LSeSim also differs from the

content loss used in [30], in which the self-similarity was

calculated at random positions without a clear purpose. Our

F/LSeSim is on the other hand organized at a local patch

level to explicitly represent the scene structure. As shown

in § 4.2, our local structure representation is better than

just using random spatial relationships. Furthermore, our

LSeSim is a metric learned from the infoNCE loss, which

generalizes well robustly on various tasks. While Patch-

NCE loss [39] can also learn feature similarity using con-

trastive loss, it directly compares features in two domains.

4. Experiments

To demonstrate the generality of our method, we in-

stantiated F/LSeSim in multiple frameworks on various I2I

translation tasks, including single-modal , multi-modal, and

even single-image translation. For each task, we used a suit-

able baseline architecture, but replaced their content losses

with our F/LSeSim loss. In addition, we are only interested

in scenarios where scene structure is preserved during the

Method
Cityscapes Horse→Zebra

pixAcc↑ FID↓ FID↓ Mem↓

CycleGAN [56] 57.2 76.3 77.2 4.81

MUNIT [22] 58.4 91.4 98.0 9.43

DRIT++ [32] 60.3 96.2 88.5 11.2

Distance [5] 47.2 75.9 67.2 2.72

GcGAN [13] 65.5 57.4 86.7 4.68

CUT [39] 68.8 56.4 45.5 3.33

FSeSim 69.4 53.6 40.4 2.65

LSeSim 73.2 49.7 38.0 2.92

Table 1. Quantitative comparison on single-modal image trans-

lation. FID [18] measures the distance between distributions of

generated images and real images. “Mem” denotes the memory

cost during training.

translation [23, 56, 57], rather investigating translations in-

corporating shape modification [9, 10, 37, 28, 4].

4.1. Single-Modal Unpaired Image Translation

We first evaluated our loss on the classical single-modal

unpaired I2I translation task.

Implementation details. In this task, we chose Cycle-

GAN [56] as the reference architecture, but only used half

of their pipeline and replaced the cycle-consistency loss

with our F/LSeSim loss. Specifically, we used the Resnet-

based generator with PatchGAN discriminator [23]. Details

can be found on their website.

Our FSeSim is based on the ImageNet-pretrained

VGG16 [47], where we used features from layers relu3 1

and relu4 1. While the LSeSim employs the same struc-

ture as FSeSim, the weights are not fixed and additionally

two convolution layers, implemented as 1 × 1 kernels, are

included to select better features. As for the selection of

patches to build the contrastive loss, we found that random

sampling the patch locations performed much better than

uniform sampling on a grid, leading to better convergence

when training the structure representation network. We set

λ = 10 in FSeSim and τ = 0.07 in LSeSim.

Metrics. Our evaluation protocols are adopted from pre-

vious work [18, 40, 39]. We first used the popular Fréchet
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Input LSeSim FSeSim CUT[39] CycleGAN[56] MUNIT[22] DRIT++[32] DistanceGAN[5] GcGAN[13]

Figure 7. Qualitative comparison on single-modal image translation. Here, we show results for horse→zebra and label→ image.

Inception Distance (FID) [18] 1 to assess the visual qual-

ity of generated images by comparing the distance between

distributions of generated and real images in a deep feature

domain. For semantic image synthesis, we further applied

semantic segmentation to the generated images to estimate

how well the predicted masks match the ground truth seg-

mentation masks as in [6, 49, 40, 39]. Following [39, 24],

we used the pre-trained DRN [54].

Results. In Table 1, we reported either published results

or our reproductions with publicly-available code, choos-

ing the better. Our simple, inexpensive losses substantially

outperformed state-of-the-art methods, including two-sided

frameworks with multiple cycle-consistency losses [57, 22,

32], and one-sided frameworks using self-distance [5], ge-

ometry consistency [13] and contrastive loss [39].

When compared to CycleGAN [56] and CUT [39], al-

though we used the same settings for the generator and dis-

criminator, our method led to significant improvement. Un-

like CUT [39] that depends on an identity pass for good per-

formance, our results were achieved by training with only

one pass using F/LSeSim and GAN losses. This suggests

that once we explicitly decouple scene structure and appear-

ance, it is easier for the model to modify the visual appear-

ance correctly. As our model belongs to one-sided image

translation that does not require additional generators and

discriminators, our model is also memory-efficient.

Qualitative results are shown in Figs. 6 and 7. In Fig. 6,

despite keeping the same settings and only comparing dif-

ferent content losses, our method translated the zebra ap-

pearance more cleanly. We also compared results using the

same examples as [39] in Fig. 7, where our method achieved

better visual results.

1As claimed in StyleGANv2 [27], ImageNet-pretrained classifiers tend

to evaluate the distribution on texture than shape, while humans focus on

shape. The best FID score does not ensure the best image quality for trans-

lated images. As such, for a fair comparison, we reported the best FID

score from all trained epochs for all methods, rather than the score in the

last epoch.

4.2. Multi-Modal Unpaired Image Translation

Our F/LSeSim is also naturally suited for multi-modal

image translation, since the use of our spatial-correlative

maps imposes only structural consistency and not appear-

ance constraints. We performed a thorough comparison of

F/LSeSim to state-of-the-art methods, along with compre-

hensive ablation experiments.

Implementation details. Our multi-modal setting is

based on MUNIT [22, 32], except our model uses only one

generator and one discriminator of MUNIT [22] without re-

quiring the auxiliary generators and discriminators for mul-

tiple cycle training. Specifically, we used the Resnet-based

generator with Instance Normalization (IN) [48] in the en-

coder and Adaptive Instance Normalization (AdaIN) [21,

26] in the decoder, plus multi-scale discriminators [49]. The

details of the architecture can be found on their website.

The F/LSeSim used is identical to that used in § 4.1.

Metrics. Besides using FID to measure quality, we also

used the average LPIPS distance [55] to evaluate the di-

versity of generated results. The LPIPS distance is calcu-

lated by comparing the features of two images. Follow-

ing [22, 57], we computed the distances between 1900 pairs,

sampling 100 images 19 times. We also report the latest

metrics of Density and Coverage (D&C) [36], which sepa-

rately evaluate the diversity and fidelity of generated results.

Likewise, we used the 1900 sampled pairs to compute D&C

scores. Higher scores here indicate larger diversity and bet-

ter coverage to the ground-truth domain, respectively.

Results. We compared our F/LSeSim to state-of-the-art

methods in multi-modal image translation in Table 2. Our

method outperformed the two baselines, MUNIT [22] and

DRIT++ [32], although we deployed the same network

architecture. BicycleGAN [57] achieved larger diversity

on all tasks by adding noise to all decoders through the

U Net [41], but the tradeoffs are worse visual results, due to

16412



Input LSeSim MUNIT[22]

Figure 8. Qualitative comparison on multi-modal image translation. Here, we show the examples of winter→summer and night→day.

Method
Winter→Summer Night→Day

LPIPS ↑ FID ↓ D & C ↑ LPIPS ↑ FID ↓ D & C ↑

Real images 0.770 44.1 0.997 / 0.986 0.684 146.1 0.977 / 0.962

BicycleGAN [57] 0.285 99.2 ± 3.2 0.536 / 0.667 0.349 290.9 ± 6.5 0.375 / 0.515

MUNIT [22] 0.160 97.4 ± 2.2 0.439 / 0.707 0.152 267.1 ± 2.7 0.271 / 0.548

DRIT++ [32] 0.186 93.1 ± 2.0 0.494 / 0.753 0.167 258.5 ± 2.3 0.298 / 0.631

FSeSim 0.216 90.5 ± 1.9 0.501 / 0.779 0.203 234.3 ± 2.8 0.332 / 0.638

LSeSim 0.232 89.4 ± 1.9 0.516 / 0.793 0.215 224.9 ± 2.0 0.347 / 0.652

Table 2. Quantitative evaluation on multi-modal image translation task. LPIPS distance [55] measures the diversity of generated

images by comparing the features of two images, while (D&C) [36] evaluates the diversity and fidelity by matching whole features in the

generated and real datasets.

Configuration
Horse → Zebra Night → Day

FID ↓ Mem(GB) ↓ FID ↓ LPIPS ↑ D & C ↑

A STROTSS [30] (random SeSim) 70.1 2.68 262.7 ± 3.6 0.162 0.289 / 0.554

B Baseline (global SeSim on single layer) 53.7 2.97 173.2 ± 2.2 0.168 0.303 / 0.664

C (B): Global → Patch (32× 32) 45.8 2.61 231.3 ± 2.5 0.181 0.317 / 0.634

D (C): Single → Multi (relu3 1, relu4 1) 43.3 2.65 229.4 ± 2.1 0.177 0.311 / 0.646

E (D): l1loss → 1 - consine 40.4 2.65 234.3 ± 2.8 0.203 0.332 / 0.638

F Ours LSeSim 38.0 2.92 224.9 ± 2.0 0.215 0.347 / 0.652

Table 3. Ablation study on both single- and multi-modal image translation. Refer to ablation experiments in main text for details.

the larger noise being directly added to the last generative

layer. In contrast, following in MUNIT [22], we only added

noise to the middle layers of generation, through AdaIN.

In Fig. 8, we show qualitative comparisons of our

method to MUNIT [22] on winter → summer, and night

→ day tasks. As can be seen, our model not only generated

higher quality translated results, but also produced more di-

verse solutions for these multi-modal tasks. We believe this

is because the formulation of our F/LSeSim will only main-

tain structural fidelity, and does not impose penalties on ap-

propriate appearance modifications in the target domain.

Ablation Experiments. To understand the influence of

different components for the proposed spatially-correlative

loss, we ran a number of ablations. The quantitative results

are reported in Table 3 for both single- and multi-modal im-

age translation. In this table, row A shows the performance

of the baseline method [30] which utilizes self-similarity as

content loss. However, it calculates the similarity using ran-

dom sampled features and does not have an explicit connec-

tion to spatial structure. Row B is a global attention map.

While this version performed well and ran faster by avoid-

ing sampling, it has two main limitations. First, the original

global attention module is memory intensive and cannot be

applied to multiple scales nor to large feature spaces. Sec-

ond, as evident from Fig. 10, the spatially distant correlation

is essentially noise (as is also the case for the Random base-

line of [30]), which is detrimental to the results. Compared
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Input Target FSeSim CUT [39] Gatys et al. [14] WCT2 [53] STRORSS [30]

Figure 9. High-resolution painting to photorealisitc image on single-image translation. Zoom in to see the details.

Input A: Random [30] B: Global D: FSeSim F: LSeSim

Figure 10. Ablation study on self-similarity maps. A, B, D and

F correspond to the settings in Table 3, respectively.

to the global version, row C largely improved the perfor-

mance as clearer shapes are captured in the local patches. In

row D, we applied local attention to multiple layers with a

fixed path size. This results in the spatially-correlative maps

having different receptive fields, which further improves the

performance. Row E replaces the l1 distance with cosine

distance. While the improvement in image quality is not

obvious, the diversity scores increased substantially. This is

due to the cosine similarity supporting only the correlation

between the two spatially-correlative maps without encour-

aging the maps to be fully same. Row E shows the perfor-

mance of the full model (same as in Tables 1 and 2), where

LSeSim of row F improved on many metrics, and had better

visual results.

4.3. Single-Image Unpaired Image Translation

To further test the generalization ability, we applied the

FSeSim to a high-resolution single-image translation task.

Here, only one source and one target image are provided

for training, but they are unpaired. This task is conceptually

similar to the style transfer [14, 25, 33], except that here we

trained a SinGAN-like [42, 45] model that captures the dis-

tribution of a single image through the adversarial learning,

rather than using a fixed style loss [25].

Implementation details. The single-image translation

setting is based on the latest CUT [39] method, except that

the PatchNCE loss is replaced by our FSeSim loss. In de-

tail, the StyleGAN2-based generator and discriminator [27]

with the gradient penalty [35, 26] are used. To further in-

crease simplicity, we removed the identity loss in CUT [39],

and only used a GAN loss in conjunction with the pro-

posed FSeSim loss to assess the appearance and structure

separately. As 64 × 64 crops have to be taken from a

high-resolution image for training here, it becomes less use-

ful to further subsample “positive” and “negative” patches.

Therefore, we only use our FSeSim to train the model, with-

out using LSeSim with contrastive loss.

Results. In Fig. 9, we show qualitative results from the

CUT [39] paper on the painting→photo task. As evident

in the highlighted regions, our model generated not only

higher quality results, but they were also closer to the target

image style than existing methods, including classical style

transfer models, such as WCT2 [53] and STRORSS [30], as

well as the latest single-image translation CUT [39] model.

5. Conclusion

We introduced F/LSeSim, a new structure consistency

loss that focuses only on spatially-correlative relationships,

without regard to visual appearances. Our F/LSeSim is nat-

urally suitable for tasks that require structure consistency,

and can be easily applied to existing architectures. We

demonstrated its generality to various unpaired I2I trans-

lation tasks, where a simple replacement of the existing

content losses with F/LSeSim led to solid performance im-

provements.
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