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Abstract

Convolutional neural networks (CNNs) have achieved

significant success in the single image dehazing task. Un-

fortunately, most existing deep dehazing models have high

computational complexity, which hinders their application

to high-resolution images, especially for UHD (ultra-high-

definition) or 4K resolution images. To address the problem,

we propose a novel network capable of real-time dehazing

of 4K images on a single GPU, which consists of three deep

CNNs. The first CNN extracts haze-relevant features at a

reduced resolution of the hazy input and then fits locally-

affine models in the bilateral space. Another CNN is used to

learn multiple full-resolution guidance maps corresponding

to the learned bilateral model. As a result, the feature maps

with high-frequency can be reconstructed by multi-guided

bilateral upsampling. Finally, the third CNN fuses the high-

quality feature maps into a dehazed image. In addition, we

create a large-scale 4K image dehazing dataset to support

the training and testing of compared models. Experimental

results demonstrate that the proposed algorithm performs

favorably against the state-of-the-art dehazing approaches

on various benchmarks.

1. Introduction

Images captured in outdoor usually suffer from notice-

able degradation of contrast and visibility since the light

scattering and absorption, especially in foggy and hazy

weather conditions. Even on a clear day, the impurities of

the aerosol attenuate the reflected lights of distant objects

reaching the camera lens [27, 30].

Single image dehazing aims to estimate the sharp im-

age given a hazy input, which is a highly ill-posed prob-

lem. Conventional approaches are physically inspired and

apply various sharp image priors [3, 18, 31, 44] to regularize

the solution space. Most of these methods involve heuris-

tic parameter-tuning and expensive computation. Further,

these hand-crafted image priors struggle while applying on
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Figure 1. Speed and accuracy trade-off of the state-of-the-art de-

hazing methods and the proposed algorithm on the 4K dehazing

dataset. The red dash line denotes the real-time approach for 4K

resolution images at 30 fps. The green region indicates the in-

ference process at the millisecond (ms) level. The yellow region

represents the methods that cannot deal with 4K images directly

and needs to use the DDU strategy. For example, the maximum

resolution can be handled by GridDehazeNet [32] and MSBDN

[16] is around 1024× 1024, while PMS [14] can only run on im-

ages around 640×480. The recent method of DA [40] can dehaze

2K images, i.e., 2560 × 1440. The proposed method generates

dehazed images efficiently and accurately at 4K resolution.

different types of real-world images, where the haze is far

more complicated than modeled [1].

Recently, CNNs have been applied in numerous com-

puter vision problems, including low-level image recon-

struction tasks [22, 42, 48, 46, 49], and showed promising

results. Therefore, learning-based methods have also been

proposed for dehazing. Early algorithms [9, 26, 38] substi-

tute a few modules or steps (e.g., estimating transmission

maps or atmospheric lights) in traditional frameworks with

learned parameters to make use of external data. More re-

cent researches employ trainable end-to-end networks for

dehazing images [15, 20, 24, 28, 37]. Although these ap-

proaches achieve state-of-the-art results on single image de-

hazing task, their models usually have a large size of param-

eters and are computationally expensive.
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Existing CNN-based methods have two major limita-

tions. First, since learned weights of existing deep models

are fixed, these networks need to remove different fog and

haze concentrations with the same weights. Therefore, re-

covering detailed colors and edges from hazy images is still

a non-trivial problem. Second, existing models usually im-

plement a highly non-linear mapping from hazy inputs to

dehazed results by learning a large number of filters, which

inevitably increases the computational consumption. For

example, the recent dehazing methods of GridDehazeNet

[32], PMS [14], MSBDN [16], and Domain Adaption (DA)

[40] cannot directly dehaze 2K or 4K resolution images on

an NVIDIA Titan RTX GPU shader with 24G RAM. Al-

though the early light-weight deep models [9, 26, 38] can

run on 4K images at the millisecond level, the PSNR results

are much lower than the recent work of MSBDN [16], PMS

[14], and DA [40] as shown in Figure 1.

Reaching a trade-off between the accuracy and efficiency

of a network is a non-trivial task. To achieve this, we pro-

pose an efficient and interpretable filtering module in bilat-

eral space [11]. Since haze effect is inherently contrast (or

edges) and color degradations [2, 19, 39], we design edge-

aware affine modules for different color channels, which ad-

just the bilateral grid to be applied at different regions and

channels. Specially, our algorithm extracts high-resolution

and low-resolution features for guidance map learning and

affine model fitting, respectively. Then, we employ the

multi-guided bilateral interpolating into this array of affine

models as a function of position and intensity of each color

channel that can be applied to restore high-quality feature

maps. Finally, we fuse the multiple high-resolution features

into the dehazed result. Our analysis shows that the bene-

fits of the proposed multi-guided bilateral learning for the

dehazing task are two-fold: i) It efficiently enables spatially

varying restoration since changes in the bilateral grid occur

according to the edges and colors in the local region; ii) The

proposed model takes less than 8 ms to process a 4K image

on a single Titan RTX GPU, which is highly efficient for

deployment in practical applications.

The contributions of this paper are as summarized as:
• We propose a multi-guide bilateral learning framework

for 4K resolution image dehazing, which can process

4K (3840× 2160) resolution images at 125 fps.

• We deploy edge-aware modules that adjust the bilateral

affine grid to be applied on multi-guided matrices from

different color channels for restoring high-quality fea-

tures. The method is able to generate more edges and

high-frequency details from the hazy input.

• We establish a large and high-quality 4K image dataset

for image dehazing. Experimental results on synthetic

and real-world images demonstrate the proposed al-

gorithm performs favorably against the state-of-the-art

methods on arbitrary spatial input sizes.

2. Related work

Single Image Dehazing. A milestone in single image haze

removal was made by Tan [43] and Fattal [17] that can de-

haze a single image without multiple inputs or additional

information. Since then, numerous methods propose vari-

ous constrains on the transmission map, atmospheric light,

and image to remove haze from a single image by optimiz-

ing complex objective functions.

In [23], dark channel prior (DCP) is proposed to estimate

the depth and latent image jointly. An image guided depth-

edge-aware smoothing algorithm [10] is introduced to re-

fine the transmission map estimated by DCP based on local

priors. Zhang et al. [50] propose a maximum reflectance

prior for night image dehazing. This method assumes that

the local maximum intensities of each color channel of the

nighttime haze image are mainly contributed by the ambient

illumination. Recently, Berman et al. [7] observe that colors

of a sharp image can be well approximated by a few hun-

dred distinct colors, and then propose a dehazing algorithm

based on this prior. Although these methods are success-

ful in varying degrees, their performance is limited by the

accuracy of the assumptions used in the target scenes.

With the advances in deep learning techniques and the

availability of large datasets, recent years have witnessed

the increasing popularity of data-driven methods for im-

age dehazing [29, 33, 45, 47, 51]. These methods focus

on the deep convolution model to extract haze-relevant fea-

tures rather than on manual extraction. For instance, De-

hazeNet proposed in [9] uses a three-layer CNN to estimate

the transmission map from a hazy image. Another line of re-

search [25, 26, 36, 39] represents a departure from the con-

ventional atmospheric model-based strategy. Specifically,

the estimation of the transmission map and the atmospheric

light is explicitly discarded. These methods use end-to-end

networks to estimate dehazed images and also reach excel-

lent results. Recently, a multi-scale boost dehazing network

(MSDBN) [16] is proposed to directly recover sharp images

by incorporating the strengthen-operate-subtract boosting

strategy in the decoder of a U-Net. However, we note that

most of the CNN-based dehazing methods use a large num-

ber of training parameters and result in an expensive run-

time (see Figure 1).

Bilateral filtering. Numerous schemes have been proposed

for image processing acceleration. The bilateral filter/grid,

in particular, has attracted long-term attention in its ac-

celeration [6, 12, 13], which is an edge-aware manipula-

tion of images in the bilateral space [5]. Several methods

[6, 41, 52] used a bilateral filter to accelerate the tasks of

colorization, depth super-resolution, and semantic segmen-

tation. Surprisingly, the only attempt to learn the bilateral

filter for image enhancement we found is [21] that casts

the enhancement problem in the bilateral space by the local

affine color transformation. However, there are two draw-
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Figure 2. The architecture and configuration of the proposed single image dehazing method, which consists of three parts. The first

step starts with a low-resolution coefficient prediction stream that uses a feature extraction block and a downsampling layer to fit an affine

bilateral grid. Then we use three guidance matrices and the affine bilateral grid to recover different high-quality features from interpolation.

Finally, this feature fusion block combines three high-quality features with the full-resolution input as four heterogenous data to yield the

dehazed result. Our proposed algorithm supports dehazing of 4K images at 125 fps on a single Titan RTX GPU shader.

backs in this locally-affine model. First, the extraction of

the high-resolution guidance map collapses it directly into

a 2D map, and a large amount of color information is lost

in the input. Second, [21] uses a linear method of slicing

the higher-order features in the application part of the affine

model, which has a considerable consumption cost. In con-

trast, our proposed method makes use of the color informa-

tion and speed up the slicing operation in [21].

3. Proposed Method

Given a 4K resolution hazy input, our network first re-

constructs bilateral coefficients using a feature extraction

block on a reduced resolution of the input. Capitalizing

on the regressed affine bilateral grid, we can generate high-

quality feature maps under the guidance of full-resolution

features. Moreover, to provide richer color and edge in-

formation, we take all the RGB channels into considera-

tion such that the dehazing network can better recover de-

tails. Figure 2 illustrates the architecture of the proposed

4K resolution image dehazing network, which consists of

two branches: a low-resolution feature extraction and affine

bilateral grid learning (upper stream) and a full-resolution

dehazing branch (bottom stream).

3.1. Bilateral Grid Learning

Since the degradation of contrast and visibility of hazy

inputs, two pixels across a week edge are close in the spatial

dimension. However, these two pixels are distant from the

perspective of bilateral filter since their values differ widely

in the range dimension. Therefore, we consider predicting

an affine bilateral model to restore sharp image structures

and edges by fitting a 3D array of affine functions (i.e., fit-

ting different affine functions for different intensity range

[11]) on the bilateral space.

First, we reduce the 4K hazy input to a fixed resolution

of 910×512 and extract low-level features by two convolu-

tional blocks followed by an average pooling layer as shown

in Figure 2. This yields a 32 × 56 × 3 array of the feature

map F that contains rich patterns of the input. Then we

learn an affine bilateral grid, where each coordinate is aug-

mented with a third dimension (i.e., a function of the pixel

intensity of the feature map F ), to the scene structures. Un-

der this interpretation, F can be viewed as a 7 × 8 × 8 bi-

lateral grid, where each grid cell contains 12 numbers, one

for each coefficient of a 3 × 4 affine transformation ma-

trix. Specifically, we treat the low-resolution features F as

a multi-channel bilateral grid B whose third dimension has

been unrolled:

Bd[x
′, y′, c′] ↔ F [x, y, c] (1)

where [x′=7, y′=8, c′=8] denote the coordinates of the bi-

lateral grid cell, and each cell has d=12 number. In addi-

tion, [x=32, y=56, c=3] correspond to the height, width, and

channels of the feature map F , respectively. This operation

is more expressive than conventional bilateral grid splatting

which discretizes the degraded input into several intensity

bins then box filters the result [12].

3.2. HighQuality Features Reconstruction

Capitalized on the predicted bilateral grid coefficient B

by the low-resolution branch, we now need to transfer this

information back to the full-resolution space of the original

input to produce high-quality dehazed features. To this end,

we introduce a bilateral grid slicing operation, which takes

guidance maps and the learned bilateral grid to perform a

data-dependent lookup in the grid B.

As shown in Figure 3, we use trilinear interpolation to

insert grid data into the guidance tensor and employ an ad-

ditional convolution to obtain high-quality features. First,
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Figure 3. The pipeline of high-quality dehazed features reconstruc-

tion.

two maps with coordinate guidance are constructed, and the

dimensions are the same as the guidance matrix to stack

them into a tensor. Second, we fill the coordinate positions

of the pilot tensor with the bilateral grid and use trilinear

interpolation to construct a tensor with the same depth (12

channels) as the bilateral grid (we use the PyTorch function

of grid sample).

The next step is to compress the tensor by a convolution

layer with kernel size of 3 × 3 and stride of 1 to the depth

of 3, which we call the coefficient tensor. Using the con-

volution layer to compress the high-dimensional tensor is

about 2× faster than the linear application operation used

in [21] on a GPU shader. Finally, we multiply the coeffi-

cient tensor with the full-resolution hazy input to construct

new high-quality features.

Multi-guided affine transformation. So far, we have in-

troduced the process of generating and upsampling the bi-

lateral grid of affine coefficients. However, we note that

the guidance information obtained by compressing the color

space to a single map results in information loss (e.g., color,

contrast, and edge). In addition, to reduce the computa-

tional cost, we employ a smaller size of the bilateral grid

than that proposed in [21]. Therefore, each cell in the bi-

lateral grid would not have enough data to adequately fit an

affine transformation for color information.

To address this problem, we propose to process each

color channel by different guidance maps as shown in the

bottom stream of Figure 2. We use two convolutional layers

(3 × 3 × 3 and 3 × 3 × 1) followed by PReLU to extract

the guidance map from each color channel, which is then

used to generate high-quality dehazed features for three R,

G, and B channels. We demonstrate the effectiveness of

multi-guided maps in Figure 4. Take the hazy image in Fig-

ure 6(a) as an example. Figure 4(a) shows the edges of the

hazy input. With the single-guided map strategy in [21], the

recovered edges and structures (Figure 4(b)) are much less

than the scheme of using multi-guided maps (Figure 4(a)-

(e)). For example, Figure 4(e) reveals more edge and struc-

ture information of the house than the one in (b) as shown

in the marked green and blue boxes.

To further demonstrate the effectiveness of the proposed

multi-guided maps, we randomly select 100 hazy images

(a) (b) (c)
Single-guided map
Three-guided maps

0.0

En
tro

py
 va

lue

1.0

0.2

0.4

0.6

0.8

(d) (e) (f)

Figure 4. (a) is the edge map of the hazy input in Figure 6(a); (b) is

the edge map of the recovered high-quality features produced by

single-guided map; (c)-(e) are the edge maps of the high-quality

features generated by multi-guided maps from three color chan-

nels, respectively. Red, green, and blue boxes indicate that using

the multi-guided maps generates richer edge and structure details

than the single-guided map. In (f), we compare the entropies of

the high-quality features produced by the two methods.

and calculate the entropies1 of reconstructed features by

single- and multi-guided maps, respectively. As shown in

Figure 4(f), multiple guidances for the bilateral grid can

obtain a larger entropy value, which indicates that more

sharp edges and structures are recovered. As a result, our

dehazing process follows the learned edges and structural

details, thereby regularizing our final predictions towards

edge-aware solutions.

3.3. Feature Fusion

To blend effectively the reconstructed high-quality fea-

tures to preserve the regions with good visibility, we filter

their important features by a feature fusion scheme. We

concatenate ten multilayer convolution blocks and add skip

connections in each block to obtain a coefficient tensor,

which acts as a function of the haze concentration. Finally,

the predicted coefficient tensor is multiplied by the hazy in-

put to estimate the clean image. We found that using the co-

efficient tensor can significantly accelerate the convergence

of the network and help generate a much clear dehazed im-

age. We also tried to recover the final result by directly

using a convolutional layer or linear combination, but we

did not obtain improvement.

We optimize the weights and biases of the proposed net-

work by minimizing the L2 loss on the training set:

L =
1

D

D∑

i=1

‖Ii − Ji‖
2

(2)

where D is number of training images, I is the dehazed

result by our network, J is the corresponding ground truth.

We also tried the total variation and adversarial losses, but

we notice that the L2 loss is good enough to generate clear

and vivid colors in the dehazed results.

1A statistical measure [8, 35] for the information content of the image

signal, such as structures and details.
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(a) GridehazeNet (SDS) (b) GridehazeNet (DDU) (c) PSNR

(d) PMS (SDS) (e) PMS (DDU) (f) SSIM

Figure 5. Qualitative and quantitative comparisons of 4K image

processing strategies (SDS and DDU). The SDS scheme cannot

consider global information and tends to generate artifacts.

4. Experimental Results

In the section, we evaluate the proposed method by con-

ducting experiments on both synthetic datasets and real-

world images. All the results are compared against eleven

state-of-the-art dehazing methods: DCP [23], BCCR [34],

CAP [53], NLD [7], MSCNN [38], AODNet [26], De-

hazeNet [9], PMS [14], GridDehazeNet [32], MSBDN [16],

and DA [40]. In addition, we conduct ablation studies to

demonstrate effectiveness of each module of our network.

4.1. Training data

To train and evaluate the proposed network as well as

the comparison methods, we build a new 4K (3840× 2160)

resolution image dehazing (4KID) dataset, which consists

of 10,000 frames hazy/sharp images extracted from 100

video clips at 4K resolution by several different mobile

phones. We synthesize hazy images based on the atmo-

spheric scattering model [23]. Following the prototype in

[14, 24, 27, 37], we randomly sample atmospheric light

conditions A ∈ [0.8, 1] and scattering coefficient β ∈
[0.4, 2.0] to generate the corresponding hazy images. We

further use the translation module in [40] to translate the

synthetic hazy images from synthetic domain to real do-

main, which can improve the generalization of deep models

in real cases. Finally, we randomly select 8000 images as

the training set. Since the conventional dehazing methods

take too long to process a 4K image, we randomly selected

200 images from the remaining images as the test data.

4.2. Implementation Details

The proposed model is implemented in PyTorch and

Adam optimizer is used to train the network. We use the

resolution 910 × 512 images with a batch size 6 to train the

network. The initial learning rate is set to 0.001. We train

the network for 800 epochs in total. At the same time, we

include the decay rate in the loss function section.

For DCP [23], we employ different window sizes of

15 × 15, 45 × 45, and 65 × 65. We find that to increase

the window size could improve PSNR and brightness of de-

hazed images, but the time consumption is drastically in-

creased. For instance, the run times are 2.4 × 103 and

5.3 × 103 seconds for the window sizes of 45 × 45 and

65× 65 on a 4K image, respectively. Therefore, we use the

window size of 15× 15 for DCP [23] model in the paper.

Due to the recent dehazing models of PMS [14], Grid-

DehazeNet [32], MSBDN [16], and DA [40] cannot dehaze

4K images directly, we design two strategies to remove haze

from 4K images for these approaches. The first scheme is

the downsample-dehazing-upsample (DDU) method which

apply dehazing approaches at a low-resolution, then up-

sample the result. The second one is splitting-dehazing-

stitching (SDS), which splits images in patches then stitch

the dehazed patch to the full-resolution. For both these two

schemes, we resize or split the 4K hazy input to the resolu-

tion close to the corresponding maximum size of each de-

hazing model can handle. We compare these two schemes

on our 4KID. As shown in Figure 5, SDS has serious ar-

tifacts of color aberration because it does not take into

account the global structure of the image. Figure 5 also

demonstrates that DDU obtains higher PSNR and SSIM on

the test data. Therefore, we adopt the DDU strategy for

these four deep models [14, 16, 32, 40]. We fine-tuned deep

learning based models of [9, 14, 16, 26, 32, 38, 40] by em-

ploying random clipping and resizing. The fine-tuned mod-

els can learn both global and local features of the image.

4.3. Evaluation and Results
Quantitative Evaluation. The proposed method is evalu-

ated on two datasets: the 4KID and the O-HAZE dataset

[4]. All the deep learning based approaches are fine tuned

on our 4KID training data. Sample results for the proposed

method and the comparison approaches, on three 4K im-

ages and one image from the O-HAZE dataset, are shown in

Figures 6 and 7. It can be observed that traditional physics-

based methods [7, 23, 34, 53] tend to over-enhance the re-

sults, while the recent deep models [16, 26, 32] still remain

some haze in the results. However, the dehazed results gen-

erated by our algorithm in Figure 6-7(m) are close to the

ground truth haze-free images in Figure 6-7(n). The quanti-

tative results on 4KID and O-HAZE datasets reported in Ta-

ble 1 demonstrate the effectiveness of the proposed method.

Qualitative Evaluation. We then evaluate the proposed al-

gorithm on real-world hazy images. First, we use the real

captured 4K resolution hazy images and compare with dif-

ferent state-of-the-art methods. Figure 8 shows the qualita-

tive comparison of results on three challenging real-world

images. As shown, DCP and BCCR darken some re-

gions in the dehazed results, CAP and NLD suffer from the

color distortions, while the results generated by AOD, De-

hazeNet, PMS, MSBDN, and DA have some residual haze.

In contrast, our algorithm is able to generate realistic col-

ors while better removing haze as shown in the zoomed-in

regions of Figure 8(l).
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(a) Input (PSNR/SSIM) (b) DCP (14.52/0.7191) (c) BCCR (14.21/0.8032) (d) CAP (16.20/0.7804) (e) NLD (18.60/0.8164) (f) AOD (23.21/0.9022) (g) DehazeNet (12.70/0.5149)

(h) MSCNN (15.73/0.7123) (i) GridDehazeNet (24.31/0.9128) (j) PMS (21.89/0.7626) (k) MSBDN (20.22/0.8725) (l) DA (23.51/0.9052) (m) Ours (24.38/0.9320) (n) GT (+∞/1)

(a) Input (PSNR/SSIM) (b) DCP (14.74/0.7257) (c) BCCR (13.97/0.7868) (d) CAP (16.99/0.8377) (e) NLD (15.84/0.7738) (f) AOD (19.28/0.9059) (g) DehazeNet (13.11/0.6575)

(h) MSCNN (17.26/0.8183) (i) GridDehazeNet (18.55/0.9189) (j) PMS (19.44/0.8015) (k) MSBDN (14.75/0.6866) (l )DA (19.22/0.9022) (m) Ours (19.85/0.9215) (n) GT (+∞/1)

(a) Input (PSNR/SSIM) (b) DCP (18.70/0.7842) (c) BCCR (17.66/0.7426) (d) CAP (17.21/0.8110) (e) NLD (14.58/0.7845) (f) AOD (14.74/0.7353) (g) DehazeNet (17.17/0.7821)

(h) MSCNN (17.90/0.8119) (i) GridDehazeNet (11.50/0.8001) (j) PMS (15.91/0.7792) (k) MSBDN (11.00/0.7786) (l) DA (12.67/0.7477) (m) Ours (21.02/0.8783) (n) GT (1/+∞)

Figure 6. Dehazed results on the 4KID test dataset. Our method obtains better visual quality and recovers more image details compared with

other state-of-the-art methods (AODNet [26], MSCNN [38], DehazeNet [9], CAP [53], NLD [7], BCCR [34], DCP [23], MSBDN [16],

DA [40], PMS [14] and GridDehazeNet [32]).

(a) Input (PSNR/SSIM) (b) DCP (14.92/0.5764) (c) BCCR (15.60/0.6742) (d) CAP (15.00/0.5958) (e) NLD (18.80/0.6264) (f) AOD (18.35/0.6604) (g) DehazeNet (20.17/0.6968)

(h) MSCNN (21.69/0.7932) (i) GridDehazeNet (23.68/0.7677) (j) PMS (21.07/0.6692) (k) MSBDN (20.73/0.6697) (l) DA (23.76/0.7682) (m) Ours (23.22/0.7885) (n) GT (+∞/1)

Figure 7. Dehazed results on the O-HAZE dataset [4]. Our method obtains better visual quality and recovers more image details compared

with other state-of-the-art methods.

Table 1. Quantitative evaluations on our 4KID (3840×2160) test data and the O-HAZE dataset (This resolution ranges from 1 megapixels

(947 ×1286) to 19 megapixels (3612×5456)) [4] in terms of PSNR, SSIM, and run time.
Input CAP [53] NLD [7] DCP [23] BCCR [34] DehazeNet [9] AOD [26] MSCNN [38] PMS [14] Griddehaze [32] DA [40] MSBDN [16] Ours

4KID

PSNR 11.86 17.67 15.15 15.32 15.01 14.02 17.86 16.41 19.07 16.85 19.26 19.04 20.56

SSIM 0.7421 0.8361 0.7167 0.7511 0.7882 0.7644 0.8519 0.8354 0.7595 0.8752 0.8341 0.7912 0.8823

Time - 23s 286s 414s 55s 97ms 26ms 39ms - - - - 9ms

O-HAZE

PSNR 13.11 14.55 17.57 16.57 15.01 17.57 15.10 16.63 17.78 16.66 16.86 17.76 18.43

SSIM 0.5643 0.5674 0.7519 0.7350 0.78826 0.7676 0.7448 0.7650 0.7764 0.7436 0.7436 0.7989 0.8138

Time - 39s 506s 617s 268s 105ms 34ms 47ms - - - - 16ms

In addition to 4K images, we also evaluate our method on

several low resolution hazy images downloaded from other

public databases. The dehazed results are shown in Fig-

ure 9. It can be seen that the outputs from DCP [23] have

some halo artifact, while the results by CAP [53], GridDe-

hazeNet [32], and DA [40] contain some color distortions.

Contrarily, our method generates better dehazed results by

removing the haze and yielding realistic colors effectively.

4.4. Ablation Study

To demonstrate the effectiveness of each module intro-

duced in the proposed network, we perform an ablation

study involving the following two experiments:

i) w/o guidance: we remove the low-resolution stream

and directly regress the final output without using the bilat-

eral grid and the affine transformation;
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(a) Input (b) DCP [23] (c) BCCR [34] (d) CAP [53] (e) NLD [7] (f) AOD [26]

(g) DehazeNet [9] (h) GridDehazeNet [32] (i) PMS [14] (j) MSBDN [16] (k) DA [40] (l) Ours

(a) Input (b) DCP [23] (c) BCCR [34] (d) CAP [53] (e) NLD [7] (f) AOD [26]

(g) DehazeNet [9] (h) GridDehazeNet [32] (i) PMS [14] (j) MSBDN [16] (k) DA [40] (l) Ours

(a) Input (b) DCP [23] (c) BCCR [34] (d) CAP [53] (e) NLD [7] (f) AOD [26]

(g) DehazeNet [9] (h) GridDehazeNet [32] (i) PMS [14] (j) MSBDN [16] (k) DA [40] (l) Ours

Figure 8. Dehazed results on real captured 4K images. The proposed method generates much clear images.

Table 2. Effectiveness of the multiple guidance scheme.
w/o guidance Single guidance Ours

PSNR 18.29 20.80 21.52

SSIM 0.8407 0.8428 0.8823

ii) Single guidance: we only use a single guidance matrix

to produce a high-resolution feature, where the single guid-

ance matrix is compressed from the original high-resolution

image by convolution layers.

Table 2 compares our method against these two baselines

on the 4KID dataset. Corresponding visual comparisons are

shown in the Figure 10. As observed, without using guid-

ance tends to generate dark result, while the result by using

single guidance has some remaining haze. Both the quanti-

tative and qualitative results demonstrate that the proposed

multi-guided bilateral grid has a significant improvement

than all two baselines.
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(a) Input (b) CAP [53] (c) DCP [23] (d) GridDehazeNet [32] (e) DA [40] (f) Our

Figure 9. Dehazed results on low-resolution hazy images. The proposed method recovers high-quality images with clearer details.

(a) Input (PSNR/SSIM) (c) w/o guidance (17.42/0.84) (b) Single guidance (21.02/0.88) (d) Ours (21.39/0.93) (e) Ground truth (+∞/1)

Figure 10. Effectiveness of the multiple guidance maps.

4.5. Run Time

We evaluate all the deep models on the same machine

with an Intel(R) Xeon(R) CPU and an NVIDIA Titan RTX

GPU. The run time is only the processing time of the GPU

without considering the I/O operations. The average run

times for the 4KID and O-HAZE datasets are shown in

Table 1. The conventional methods of [7, 23, 34, 53]

solve complex energy functions which inevitably increases

the computational cost. The early dehazing approaches of

[9, 26, 38] perform faster than conventional methods but

still have less efficiency than ours. Since the methods of

[14, 16, 32, 40] cannot directly handle 4K images, we do

not show their run times in Table 1.

5. Conclusion

In this paper, we propose a ultra-high-definition image

dehazing method via multi-guided bilateral learning. The

key to our method is using deep CNN to build an affine

bilateral grid, which is an effective feature storage contain-

ers that maintain detailed edges and textures in the image.

At the same time, we establish multiple guidance matrices

to assist the affine bilateral grid to restore high-quality fea-

tures, providing rich color and texture information for im-

age dehazing. Quantitative and qualitative results show that

the proposed network performs favorably against the state-

of-the-art dehazing methods in terms of accuracy and infer-

ence speed (at 125 fps), and can generate visually-pleasing

results on real-world 4K hazy images.
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