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Figure 1: Facial manipulation result by sampling along latent representations in StyleGAN, learned by our unsupervised

framework. First column: Original generations. Column 2-4: manipulation on univariate environmental semantics. Col-

umn 5-9: manipulation on localized facial semantics.

Abstract

We propose a method to disentangle linear-encoded fa-

cial semantics from StyleGAN without external supervision.

The method derives from linear regression and sparse rep-

resentation learning concepts to make the disentangled la-

tent representations easily interpreted as well. We start by

coupling StyleGAN with a stabilized 3D deformable facial

reconstruction method to decompose single-view GAN gen-

erations into multiple semantics. Latent representations are

then extracted to capture interpretable facial semantics. In

this work, we make it possible to get rid of labels for disen-

tangling meaningful facial semantics. Also, we demonstrate

that the guided extrapolation along the disentangled repre-

sentations can help with data augmentation, which sheds

light on handling unbalanced data. Finally, we provide an

analysis of our learned localized facial representations and

illustrate that the semantic information is encoded, which

surprisingly complies with human intuition. The overall un-

supervised design brings more flexibility to representation

learning in the wild.

1. Introduction

In recent years, Generative Adversarial Networks

(GANs) [12] have been a great success in synthesizing

photo-realistic images given a set of latent codes. Despite

the rapid boost in image quality, the interpretability of the

generation process has become another major area of re-

search. In general, interpretability requires latent codes

to encode disentangled semantic information of the im-

age. Further, ideally, well-disentangled semantics are sup-

posed to be factorized to practically interpretable compo-

nents and each component should be linear-encoded in the

latent space as representation [15, 9, 5, 19, 30, 11].

StyleGAN [17] proposes a new architecture by bring-

ing an intermediate latent space to provide support for dis-

entanglement property for face generation. Consequently,

facial semantics are linear-encoded as latent representa-

tions. Based on StyleGAN, recent works show that sam-

pling along the linear-encoded representation vector in la-

tent space will change the associated facial semantics ac-

cordingly [32], which makes it possible to manipulate the

face generations to meet a target requirement. However,

in current frameworks, mapping a particular facial seman-

tics to a latent representation vector relies on training of-

fline classifiers with manually labeled datasets. Thus they

require artificially defined semantics and provide the asso-

ciated labels for all facial images. The disadvantages for

training with labeled facial semantics include: first, they

demand extra effort on human annotations for each new at-

tributes proposed; second, each semantics is defined arti-

ficially, and the scope of semantics is limited to the linear
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combination of such definitions; and third, by only train-

ing on each labeled semantics independently, we are unable

to give any insights on the connections among different se-

mantics.

In this work, we explore unsupervised methods to mini-

mize the demand for human annotation. We propose a novel

unsupervised framework to disentangle and manipulate fa-

cial semantics under the StyleGAN environment, while still

maintain the interpretability for semantics (Fig. 1) as in la-

beled datasets.

• We motivate decorrelation regularization on Style-

GAN to further enhance disentanglement for the latent

representation.

• We introduce mutual reconstruction to stabilize train-

ing of an unsupervised 3D deformable face reconstruc-

tion method, such that it serves as an initial facial se-

mantic extractor.

• For univariate semantics, e.g., yaw angle, we present a

linear regression method to capture their perturbations

from latent space. Given the manipulation vector, we

further demonstrate the success of yaw manipulation

on data augmentation to trivialize the unbalanced pose

problem within the unsupervised paradigm.

• For pixel-level semantics, e.g., shape and texture, we

propose a localized representation learning algorithm

to capture sparse semantic perturbations from latent

space. The associated analysis evinces the effective-

ness of our method to provide interpretability without

external supervision.

All methods proposed are purely based on a label-free train-

ing strategy. Only StyleGAN is trained with an in-the-wild

face dataset. Therefore, we reduce a significant amount of

human involvement in facial representation learning. Fur-

thermore, with zero labels, our framework provides an

unconstrained environment for the disentanglement algo-

rithms to explore and shed light on how interpretable repre-

sentations are learned in cutting-edge neural network mod-

els.

2. Related Works

2.1. Exploring latent space representations in GANs

GAN [12] is widely explored on applications with the

photo-realistic images [13, 27, 28, 44]. The understanding

of how GANs learn to construct the latent space with the se-

mantics information defined in the real visual world draws

attention recently [32, 34].

Prior exploration of the latent space of GANs focuses

on smoothly varying the output image from one synthesis

to another with the interpolation in the latent space without

considering the underlying semantics [31, 21]. A simultane-

ous optimization strategy on the generator and latent code

is developed to learn a better constructed latent space[3].

Other works with recurrent neural networks also explore

the latent code space with the semantics information. One

of which, [16] interprets the steer-ability from the perspec-

tive of camera motion and image color tone. Another [41]

uses the hierarchical semantics to understand the deep gen-

erative representations for scene synthesis. There are also

explorations using facial attributes for face synthesis, e.g.

InterFaceGAN [32], which provided a detailed analysis of

the semantics encoded in the latent space. They take into

consideration both single and disentangled multi-semantics

and, by a fixed pretrained GAN, it learns to explore se-

mantics by relating the latent space with labeled semantic

attributes on the synthesized images. DiscoFaceGAN [8]

uses the pretrained 3DMM [2] parameters to provide guid-

ance for interpretable face manipulation. Overall, The ma-

jor commonsense for the learning of latent space semantic

representation is that it is supervised and only in that way,

the semantics are interpretable and controllable.

The editing of synthesized faces with GANs is another

active research area. Face editing is generally conducted

with semantic information such as facial attributes. With

facial attributes act together, face images can be therefore

constructed. Thus, face editing requires the GANs to have

the ability to edit the disentangled information. In other

words, the editing should change the target attribute but

keep other information ideally unchanged. To achieve this

effect, methods are mainly focused on three aspects: the

comprehensive design of loss functions [6, 29, 36], the in-

volvement of additional attribute features [35, 1, 22, 43] and

the architecture designs [33, 10, 24, 45, 7]. However, these

works either discard the latent code, resulting in the inabil-

ity to continuously interpolate certain semantics, or fail to

provide the same synthesis quality compared with state-of-

the-art GANs [17, 18].

2.2. Unsupervised disentanglement method

Generally speaking, all the vanilla GANs are unsuper-

vised representation learning methods because they only

require training on unlabeled datasets. Variational auto-

encoders (VAEs) [20], on the other hand, achieves a sim-

ilar goal with self-reconstruction loss. Recent efforts have

been made to make VAEs generate images as good as GANs

[37, 38]. Unsupervised disentanglement methods both ex-

ists in GANs [6, 23] and VAEs [15, 19]. However, most of

these unsupervised disentangled methods only work under

simple datasets and are considered not disentangle realis-

tic information [26]. According to [26], one should always

introduce either supervision or inductive biases to the disen-

tanglement method to achieve meaningful representations.

Examples of inductive bias rise from the symmetry of
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(a) original training protocol fails.

(b) mutual reconstruction strategy stabilizes training.

Figure 2: The canonical albedo map of samples in CASIA

WebFace after training for 60k iterations with batch size of

64.

natural objects and the 3D graphical information. Recent

works successfully reconstruct the face images by carefully

remodeling the graphics of camera principal [40]. This

work makes it possible to decompose the facial images into

environmental semantics and other facial semantics. How-

ever, a major drawback of this work is that it is unable to

generate realistic faces and perform pixel-level face editing

on it.

3. Method

The goal of our facial representation disentanglement

method is to capture linear-encoded facial semantics. With

a given collection of coarsely aligned faces, a Generative

Adversarial Network (GAN) is trained to mimic the over-

all distribution of the data. In our case, to better learn

linear-encoded facial semantics, we re-implement and train

StyleGAN-2 [18] as it is well known for the ability to dis-

entangle representations in latent space. Further, we inves-

tigate the latent space trained by StyleGAN and improve

its capability to disentangle by adding a decorrelation reg-

ularization (Sec. 3.1). After training a StyleGAN model,

we use the faces it generates as training data and trains a

3D deformable face reconstruction method modified from

[40]. A mutual reconstruction strategy (Sec. 3.2) stabilizes

the training significantly. Then, we keep a record of the la-

tent code from StyleGAN and apply linear regression to dis-

entangle the target semantics in the latent space (Sec. 3.3).

Meanwhile, taking the reconstruction of the yaw angle as an

example, we manipulate the latent representation as a data

augmentation for training (Sec. 3.4). Finally, we describe

the localized representation learning method to disentangle

canonical semantics in Sec. 3.5.

3.1. Decorrelating latent code in StyleGAN

In StyleGAN design, a latent code z ∈ Zd×1 is ran-

domly generated from a Gaussian distribution. Then, a

mapping network takes in z and output a latent code w ∈
Wd×1. Space W is proven to facilitate the learning of more

disentangled representations. In our study, we find that

we can further enhance the disentangled representation by

decorrelating latent codes in W . Intuitively, a more decorre-

lated latent space enforces more independent dimensions to

encode information, therefore encourages disentanglement

in representations. In order to maximize the utilization of

all dimensions in W , we want to make all Pearson correla-

tion coefficient ρij to zero and variance of all dimensions

Var[wi] the same value, where i, j stand for the subscript of

dimensions in W space. Therefore, we introduce decorre-

lation regularization via a loss function:

Ldecorr =−
∑

i 6=j

(log (1− |ρij |))

+
∑

i



Var[wi]−
∑

j

(Var[wj ])





2

.

(1)

Here, ρij and Var[wi] are all estimated by sampling w from

the mapping network F(z), given z ∼ N (0, I).
The overall objective for GAN with decorrelation regu-

larization follows:

min
F,G

max
D

LGAN + Ldecorr,

where G and D stand for the generator and discriminator

for GAN, respectively. Here the mapping network F is the

only one to update with the new loss, Ldecorr.

3.2. Stabilized training for 3D face reconstruction

The unsupervised 3D deformable face reconstruction

method [40] takes a roughly aligned face image and decom-

poses the faces into multiple semantics, i.e. view, lighting,

albedo, and depth (yv,yl,ya and yd, respectively). During

training, it uses these decomposed semantics to reconstruct

the original input image I with the reconstruction loss:

Lrecon = C(I)⊤|I − Î|,

where Î = R(yv,yl,ya,yd),

where C and R stand for a confidence network and a 3D

face renderer. We use this method to pre-decompose some

external facial semantics, i.e. pose and lighting, from Style-

GAN generations.

However, we find that the 3D face reconstruction algo-

rithm struggles to estimate the pose of profile or near-profile

faces. This finding coincides with the failure case analysis

in the original paper [40]. To make things worse, if the

dataset contains a decent number of profile and near-profile

faces (e.g. CASIA WebFace), the 3D reconstruction fails

to learn physically sounded semantics (Shown in Fig. 2(a))

and collapses into a sub-optimal state. That is, the algorithm

tries to use extreme values to estimate the texture and shape

of each face independently, which deviate far away from the

actual texture and shape of the face.
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Figure 3: The implementation of mutual reconstruction dur-

ing training.

To deal with the problem, we develop a mutual recon-

struction strategy as illustrated in Fig. 3. To start with, we

know that in general, human faces are very similar in shape

and texture. Therefore, each face image should still be able

to reconstruct itself comparatively if we swap its shape and

texture with another face. Eventually, the strategy prevents

the model from using extreme values to fit individual recon-

struction, and the model learns to reconstruct faces with a

minimum variance of the shape and texture among all sam-

ples, even for profile faces. Following this idea, during

training, we swap the albedo and depth map between two

images with a probability ǫ to perform the reconstruction

with the alternative loss:

L̃recon = C̃(I, I ′)⊤|I − Î ′|,

where Î ′ = R(yv,yl,y
′
a,y

′
d),

where C̃ is a mutual confidence network; and everything

with the prime notation originates from another image I ′.

The overall loss to reconstruct each image becomes:

(1− ǫ)Lrecon + ǫL̃recon.

As a result, the shape and texture of faces with deviated

facial semantics can be robustly estimated.

Moreover, since images are now reconstructed with two

images, the confidence map in the original work should be

yielded by these two images accordingly. We simply con-

catenate the two images channel-wise as input to the confi-

dence network, where the top image provides environmen-

tal semantics and the bottom image provides texture and

shape information.

3.3. Disentangle semantics with linear regression

With the 3D face reconstruction algorithm, face images

generated by StyleGAN are decomposed to pose, lighting,

depth, and albedo. Remember, the ultimate goal of disen-

tangling semantics is to find a vector v ∈ W in StyleGAN,

such that it only takes control of the target semantics.

Semantic gradient estimation: Now consider a seman-

tics y of a generated face image G(w) that can be measured

by a function f(·). The linear approximation of the gradient

∇y with respect to the latent code w satisfies:

f(G(w1)) ≈ f(G(w0)) +∇y(w0)
⊤(w1 −w0).

Note that, generally, the gradient at location w0, ∇y(w0),
is a function of latent code w0. However, with StyleGAN,

it is observed that many semantics can be linear-encoded

in the disentangled latent space W [17, 32]. We take ad-

vantage of this merit from StyleGAN and assume all the

semantics can be linear-encoded. In other words, the gradi-

ent is no now independent of the input latent code w0. We

get:

f(G(w1)) ≈ f(G(w0)) +∇
⊤
y (w1 −w0),

or to be simplified as:

∆y ≈ ∇
⊤
y ∆w,

where ∆y = f(G(w1))− f(G(w0)) and ∆w = w1 −w0.

Semantic linear regression: Now it is obvious that in

the ideal case, the target vector v = ∇y . While in real

world scenario, the gradient ∇y is hard to estimate di-

rectly because back-propagation only captures local gradi-

ent, making it less robust to noises. Therefore we propose a

linear regression model to capture global linearity for gradi-

ent estimation. We randomly sample N pairs of (w1,w0),
generate images with StyleGAN and estimate its semantics.

Finally, all samples of differences are concatenated, denoted

as ∆Y ∈ R
N×1 for semantics and ∆W ∈ R

N×d for latent

codes. The objective is to minimize:

min
v

‖∆Y −∆Wv‖22 . (2)

We have a closed-form solution when N > d:

v = (∆W⊤∆W)−1∆W⊤∆Y. (3)

3.4. Image manipulation for data augmentation:

One useful application for guided image manipulation

is to perform data augmentation. Data augmentation has

proven to be efficient when dealing with unbalanced data

during training. One related problem within our unsuper-

vised framework is the inaccurate estimation of extreme

yaw angle, which is also mentioned in [40]. This problem

worsens when dealing with generations from CASIA Style-

GAN since it contains a large amount but a small portion of

profile faces (unbalanced yaw distribution).

In our experiment setting, we propose a data augmenta-

tion strategy base on self-supervised facial image manipu-

lation. The end goal is to help the 3D face reconstruction

network estimate the extreme yaw angle accurately. With
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Table 1: Results on Decorrelation Regularization in Style-

GAN

Decorrelated

latent codes

CASIA (96× 112) FFHQ (2562)

FID PPL FID PPL

No 11.85 15.26 25.49 34.24

Yes 9.96 12.30 15.57 20.23

the linear regression method mentioned in Sec. 3.3, we can

learn manipulation vectors v for univariate semantics in-

cluding the yaw angle, denoted as vyaw. Recall that by

extrapolating along v beyond its standard deviation, prefer-

ably, we can get samples with more extreme values for the

associated semantics. Particularly, we can generate images

with an extreme yaw angle to neutralize the unbalanced

yaw distribution and train the 3D face reconstruction algo-

rithm. Therefore, by seeing more profile faces deliberately,

the system can better estimate extreme yaw angles.

We perform the data augmentation strategy alongside

with the training of 3D face reconstruction. To be specific,

we estimate v and update with a historical moving average

(momentum= 0.995) every 10 iterations. Then, augmenta-

tion is achieved by extrapolating a latent vector w
(s)
i via:

w
(s)
i = wi −w⊤

i vv + s · σwv, (4)

where wi is a random sample drawn from F(z), s is the

scaling factor for the interpolation/extrapolation along the

unit length manipulation vector v. And σw is the standard

deviation for w⊤v. In this case v = vyaw. Finally, the 3D

face reconstruction method is trained with the augmented

generations G(w
(s)
i ).

3.5. Localized representation learning

In the case where f(·) returns canonical outputs, i.e.

depth and albedo maps, the outputs consist of pixels in spa-

tial dimensions and the pixel values are highly correlated

as the latent code changes. However, every pixel-level gra-

dient estimation, i.e. v, from Eqn. 3 is independently cal-

culated and is thus extremely redundant. To deal with this

problem, we reformulate our goal for canonical semantics;

that is, to find the manipulation vectors v̂ that capture in-

terpretable combinations of pixel value variations. We start

by defining a Jacobian matrix Jv ∈ R
S×d, which is the

concatenation of all canonical pixel-level v. Here S stands

for the overall number of spatial and RGB dimensions of a

given depth and albedo map.

One trivial definition of v̂ is that it maximizes ‖J∗
v
v̂‖22.

However, we need to keep in mind that, ideally we expect a

disentangled representation to manipulate interpretable fa-

cial semantics. That is to say, interpolation along v̂ should

result in significant but localized (i.e. sparse) change across

the image domain, e.g. some v̂ only control eye variations

pitch

yaw

light
ambiance

red

light
ambiance
green

light
ambiance
blue

light
diffuse
red

light
diffuse
green

light
diffuse
blue

light
X

light
Y

Figure 4: Two examples of the manipulation result on uni-

variate semantics in StyleGAN trained with FFHQ.

while some only control mouth variations, etc.. However,

‖J∗
v
v̂‖22 captures the global pixel value perturbation. Thus,

we propose the localized canonical representation learn-

ing by solving:

min
U,V̂

∥

∥

∥J
∗
v
−UV̂⊤

∥

∥

∥

2

F
+ α ‖U‖1 + β

∑

i 6=j

(v̂⊤
i v̂j)

2

s.t. ‖v̂p‖2 = 1,

(5)

where p, i, j ∈ {1, · · · , P} and P is the number of compo-

nents to learn. Each column in U = [u1, · · · ,uP ] ∈ R
S×P

is a sparse component of the canonical albedo and depth

perturbation, and V̂ = [v̂1, · · · , v̂P ] ∈ R
d×P consists of

the associated latent representation in W space. α and β are

tuning parameters to control the trade-off among the recon-

struction accuracy of J∗
v

, sparsity of perturbation in seman-

tics and orthogonality of associated latent representations.

4. Experiments

The datasets used for training StyleGAN is CASIA Web-

Face [42] or Flickr-Face-HQ (FFHQ). We choose the two

datasets since they represent very different types of face im-
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Table 2: Correlation coefficients between learned latent rep-

resentations and ground truth facial semantics.

latent representations
facial semantics

pitch yaw

pitch 0.7647 0.0146

yaw 0.0390 0.9458

ambiance lighting red 0.0195 0.1001

ambiance lighting green 0.0414 0.0913

ambiance lighting blue 0.0134 0.1175

diffuse light red 0.0528 0.0402

diffuse light green 0.1051 0.1243

diffuse light blue 0.0823 0.1250

light direction X 0.0338 0.2316

light direction Y 0.2166 0.0057

ages, CASIA WebFace is at low resolution and high pose

variation, while FFHQ is at high resolution, high environ-

mental variations but mostly frontal faces. We demon-

strate the effectiveness of our unsupervised disentanglement

method in both cases. For CASIA WebFace, we roughly

align and crop the faces to 112× 96 such that the faces are

all in the center of the image with minimum roll angle vari-

ations. The images are resized to 128 × 128 before being

fed into StyleGAN for training. For FFHQ, we resize the

original images to 256 × 256 for training StyleGAN. All

StyleGAN generations are resized to 64× 64 to decompose

into semantics via the 3D reconstruction algorithm.

4.1. Effectiveness of decorrelation regularization

We follow the implementation and keep all parameters

the same as in StyleGAN-2 [18] and train until the model

sees a total of 25 million images. The decorrelation regular-

ization applies its update purely on the mapping network of

StyleGAN. We test the performance of the model in terms

of FID [14] and PPL [17] metrics.

The results shown in Table 1 indicate that by decor-

relating the latent codes in W , the generated images be-

come more realistic, meanwhile, the latent representations

are more disentangled.

4.2. Stabilized 3D face reconstruction

CASIA WebFace [42] is a more challenging dataset for

the original 3D face reconstruction algorithm [40] since

it contains faces with extreme pose variations. We illus-

trate the difficulty by training the algorithm with its default

parameter setting. Note that the default setting success-

fully trained with the FFHQ dataset in our experiments and
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(a) The correlation of estimated yaw angle vs the ground truth yaw angle.

(b) GAN generations.

(c) Reconstruction without augmented training.

(d) Reconstruction with augmented yaw training.

Figure 5: The reconstruction result for extreme yaw gener-

ations from CASIA StyleGAN.

CelebA [25] dataset as reported in their original work.

We stabilize the training process by applying the mutual

reconstruction strategy and set the swap probability ǫ = 0.5
for CASIA WebFace. All faces are decomposed into rea-

sonable semantics with a stabilized estimation of depth and

albedo (examples are shown in Fig. 2). We also set the swap

probability ǫ = 0.1 for FFHQ training for a more smoothed

estimation of the depth and albedo.

4.3. Results on univariate semantics manipulation

In our experiment setting, there are 14 univariate seman-

tics: facial pose (pitch, yaw, roll), face translation (X, Y,

Z-axis), ambiance lighting (RGB), diffuse lighting (RGB

and direction in X, Y-axis). We apply our linear regres-

sion method to get all manipulation vectors for these se-

mantics. Then, the interpolation along each learned manip-

ulation vector is performed with Eqn. 4.

The generation result for StyleGAN trained with FFHQ

is shown in Fig. 4.

Testing Setup: To test the behavior of our manipula-

tion vectors, we examine the correlation coefficient between

projection length w⊤
i v and the ground truth value of the as-

sociated semantics. We showcase our result on StyleGAN

trained with FFHQ in terms of pitch, yaw angle since the

ground truth can be estimated with existing open-source

3922



1 12 42 2 38 29 8 19 27 32 0 3 24 4 41 28 7 33 9 14 10 26 5 13 34 35 21 20 23 25 16 17 15 31 39 30 22 37 11 6 18 36 40

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6: The clustering result with Ward variance minimization algorithm [39]. The Y-axis stand for the Ward’s distance

metric calculated from the absolute value of cosine distance. Green cluster: consists of all perturbations in the background.

Red cluster: contains most facial perturbations inside the face area. Cyan cluster: contains mostly facial perturbations around

the face region.

3D landmarker [4]. We ignore roll and all translation se-

mantics because they are almost removed during data pre-

processing, and as a result, StyleGAN is not sensitive to

these semantics. For lighting semantics, on the other hand,

we are currently unable to find any method to accurately es-

timate their ground truth, thus it is impossible to test their

performance quantitatively. Nevertheless, we showcase the

visual results of all univariate semantics of both FFHQ and

CASIA StyleGAN in the supplementary materials.

Testing Results: In Table 2, all coefficient values greater

than 0.5 are labeled as bold. It showcases that the pitch and

yaw angles are highly correlated with their associated latent

representation. Meanwhile, a perturbation in semantically

irrelevant latent representations is less likely to affect pitch

and yaw. One unexpected phenomenon is the light direc-

tion in the X and Y-axis seems to be slightly correlated to

yaw and pitch angle, respectively. This is because the view-

point aligns with the lighting within the same 3D direction

in the real world, resulting in a more entangled generation

in GANs. The performance drop under extreme lighting

conditions is also mentioned in the failure analysis in [40].

Results on self-supervised data augmentation: We ap-

ply yaw angle augmentation on generation from CASIA

StyleGAN to improve 3D facial reconstruction, because the

generations contain profile or near-profile faces that are hard

to reconstruct. The augmentation scale s is a random uni-

form distributed value with range [−10, 10] for extreme ex-

trapolation. We stick to the same optimization settings and

compare the profile face matching performance. As shown

in Fig 5, the 3D facial reconstruction algorithm predicts

the yaw angle more accurately when trained with yaw aug-

mented generations. We also showcase the reconstruction

results of randomly selected profile or near profile exam-

ples.

Due to the success of data augmentation, canonical se-

mantics are ensured to have been better estimated for CA-

SIA StyleGAN generations as well. Thus, for the following

canonical semantics, we only report results on the data aug-

mented model for CASIA StyleGAN.

4.4. Results on canonical semantics manipulation

For our FFHQ experiments, we set α = 1, β = 1 and

P = 200 in objective 5 and optimize with a Adam optimizer

with learning rate of 0.0001. While for CASIA WebFace

experiments, we set α = 5, β = 10 for best performance.

Note that the range for selecting α and β is not very strict.

We showcase some results by changing the α, β values in

the supplementary materials. The training converges after

500k iterations (25 mins in single RTX 2080 GPU).

Optimization Result: We discard any v̂p if its asso-

ciated localized facial semantics has ‖up‖ < 0.01, i.e.

these v̂p does not encode linear semantics in albedo and

depth map. Finally, 43 components remain valid for FFHQ

StyleGAN. We illustrate their albedo maps as the X-axis in

Fig. 6. Among these components, 28 of them are associated

with non-background localized facial semantics. In Fig. 7,

we demonstrate some example results when performing in-

terpolation/extrapolation along specific localized facial rep-

resentations v̂p. The sampling scale s in Eqn. 4 ranges from

-4 to 4. Note that samples with extreme scale are typically

rare for StyleGAN to generate under normal circumstances

[32]. Therefore it is likely for the representation to be less

disentangled when extrapolating at a high scale.

Interpretability of Manipulation: Due to the sparse

constraint applied to the localized facial semantics, the re-

sulting up only captures perturbation of limited areas. The

sparsity significantly enhances the interpretability of the

disentangled facial semantics. For example, in Fig. 7, the

semantics is fairly easy to be interpreted.

Disentanglement Analysis: We further check whether

these image-level perturbations are semantically encoded in

the latent space. The latent representations for semantically
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Figure 7: Sampling along the localized representations. A possible interpretation: first column: hooked nose, height of nasal

bridge, nasolabial folds, eye glasses, height of eyebrow, mustache/beard, smiling; second column: bags under eyes, darkness

of hair, brightness of forehead, depth of orbital rim, opened mouth, long hair, bangs on the forehead.

independent perturbations are supposed to be more orthog-

onal with each other; and vice versa. To showcase the result

of this test, we decide to use a linkage clustering algorithm

on the latent representations v̂p and apply Ward’s variance

minimization [39]. The absolute value of the pairwise co-

sine distance between latent representations is used as the

distance metric for the clustering. The result is shown in

Fig. 6, where three major clusters are detected. Amazingly,

the formation of the clusters is according to the semantics

of the facial image, i.e. background areas, facial areas, and

areas around the face. Moreover, we find that although

the background cluster is tightly distributed, the represen-

tations in the other two clusters are fairly independent, as

we see the representations in non-background clusters split

in a relatively earlier stage in the dendrogram. In general,

the localized canonical representations are surprisingly easy

to interpret and are complying with human intuitions.

We also test the semantic correlation of the localized fa-

cial semantics and CelebA [25] facial attributes. We show-

case the similarity by concatenating CelebA SVM weight

vectors with v̂p and following the same process to generate

Fig. 6. The result shows that some semantics are highly cor-

related with facial attributes, e.g. glasses, smiling, big nose,

big lips, etc. Full result is shown in the supplementary ma-

terials.

Besides, CASIA StyleGAN follows a similar trend,

where we report in the supplementary materials.

5. Conclusion

We have presented an unsupervised learning framework

for disentangling linear-encoded facial semantics from

StyleGAN. The system can robustly decompose facial se-

mantics from any single view GAN generations and disen-

tangle facial semantics that is easily interpretable. We also

illustrate a potential direction to get the facial manipulation

frameworks to work, i.e. performing guided data augmenta-

tion to counteract the problem brought by unbalanced data.

Extensive analysis suggests that the manipulation of local-

ized facial semantics is easily interpretable and intuitive.
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