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Abstract

This paper presents a detection-aware pre-training

(DAP) approach, which leverages only weakly-labeled

classification-style datasets (e.g., ImageNet) for pre-

training, but is specifically tailored to benefit object de-

tection tasks. In contrast to the widely used image

classification-based pre-training (e.g., on ImageNet), which

does not include any location-related training tasks, we

transform a classification dataset into a detection dataset

through a weakly supervised object localization method

based on Class Activation Maps to directly pre-train a de-

tector, making the pre-trained model location-aware and

capable of predicting bounding boxes. We show that DAP

can outperform the traditional classification pre-training in

terms of both sample efficiency and convergence speed in

downstream detection tasks including VOC and COCO. In

particular, DAP boosts the detection accuracy by a large

margin when the number of examples in the downstream

task is small.

1. Introduction

Pre-training and fine-tuning have been a dominant

paradigm for deep learning-based object recognition in

computer vision [14, 10, 29, 17]. In such a paradigm, neural

network weights are typically pre-trained on a large dataset

(e.g., through ImageNet [8] classification training), and then

transferred to initialize models in downstream tasks. Pre-

training can presumably help improve downstream tasks in

multiple ways. The low-level convolutional filters, such as

edge, shape, and texture filters, are already well-learned in

pre-training [42]. The pre-trained network is also capable

of providing meaningful semantic representations. For ex-

ample, in the case of ImageNet classification pre-training,

since the number of categories is large (1000 classes), the

downstream object categories might be related to a subset

of the pre-training categories and can reuse the pre-trained

feature representations. Pre-training may also help the opti-

mizer avoid bad local minima by providing a better initial-
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Figure 1. The DAP workflow. It consists of 4 steps: (1) Classifier

pre-training on a weak supervision dataset, (2) Pseudo box gener-

ation by WSOL (e.g., through CAM as illustrated), (3) Detector

pre-training with the generated pseudo boxes, (4) Downstream de-

tection tasks. The traditional classification pre-training and fine-

tuning directly go from Step (1) to (4) at the bottom, while DAP

inserts the additional Steps (2) and (3) at the top. In both cases, the

pre-trained weights are used to initialize the downstream models.

DAP gives the model a chance to learn how to perform explicit

localization, and is able to pre-train detection-related components

while classification pre-training cannot, such as the FPN, RPN,

and box regressor in a Faster RCNN detector.

ization point than a completely random initialization [12].

Therefore, fine-tuning would only require a relatively small

number of gradient steps to achieve competitive accuracy.

However, the empirical gain for object detection brought

by classification pre-training is diminishing with succes-

sively larger pre-training datasets, ranging from ImageNet-

1M, ImageNet-5k [17], to ImageNet-21k (14M), JFT-300M

[36], and billion-scale Instagram images [25]. Meanwhile,

[16] shows that training from random initialization (i.e.,

from scratch) can work equally well with sufficiently large

data (COCO [24]) and a sufficiently long training time,

making the effect of classification pre-training questionable.

We conjecture that the diminishing gain of classifica-
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tion pre-training for object detection is due to several mis-

matches between the pre-training and the fine-tuning tasks.

Firstly, the task objectives of classification and detection

are different. Existing classification pre-training is typically

unaware of downstream detection tasks. The pre-training

adopts a single whole-image classification loss which en-

courages translation and scale-invariant features, while the

detection fine-tuning involves several different classifica-

tion and regression losses which are sensitive to object lo-

cations and scales. Secondly, the data distributions are mis-

aligned. The localization information required by detec-

tion is not explicitly made available in classification pre-

training. Thirdly, the architectures are misaligned. The net-

work used in pre-training is a bare backbone network such

as a ResNet model [18] followed by an average pooling

and a linear classification layer. In contrast, the network in

an object detector contains various additional architectural

components such as the Region Proposal Network (RPN)

[29], the Feature Pyramid Network (FPN) [22], the ROI

classification heads and the bounding box regression heads

[29], etc. These unique architectural components in detec-

tors are not pre-trained and are instead randomly initialized

in detection fine-tuning, which could be sub-optimal.

Aiming at bridging the gap between pre-training with

classification data and detection fine-tuning, we introduce

a Detection-Aware Pre-training (DAP) procedure as shown

in Figure 1. There are two desired properties that are nec-

essary to pre-train a detector: (1) Classification should be

done locally rather than globally; (2) Features should be

capable of predicting bounding boxes and can be easily

adapted to any desired object categories after fine-tuning.

With the desired properties in mind, DAP starts from pre-

training a classifier on the classification data, and extracts

the localization information with existing tools developed

in Weakly Supervised Object Localization (WSOL) based

on Class Activation Maps (CAM) [47]. The next step is to

treat the localized instances as pseudo bounding boxes to

pre-train a detection model. Finally, the pre-trained weights

are used for model initialization in downstream detection

tasks such as VOC [13] and COCO [24]. DAP enables

the pre-training of (almost) the entire detector architecture

and offers the model the opportunity to adapt its representa-

tion to perform localization explicitly. Our problem setting

focuses on leveraging the weak image-level supervision in

classification-style data for pre-training (ImageNet-1M and

ImageNet-14M) [8], therefore makes a head-to-head com-

parison to the traditional classification pre-training. Note

that our setting is different from unsupervised pre-training

[15, 4, 5] which is only based on unlabeled images, and is

different from fully-supervised detection pre-training [32]

which is hard to scale.

Comprehensive experiments demonstrate that adding the

simple lightweight DAP steps in-between the traditional

classification pre-training and fine-tuning stages yields con-

sistent gains across different downstream detection tasks.

The improvement is especially significant in the low-data

regime. This is particularly useful in practice to save the an-

notation effort. In the full-data setting, DAP leads to faster

convergence than classification pre-training and also im-

proves the final detection accuracy by a decent margin. Our

work suggests that a carefully designed detection-specific

pre-training strategy with classification-style data can still

benefit object detection. We believe that this work makes

the first attempt towards detection-aware pre-training with

weak supervision.

2. Related Work

Pre-training and fine-tuning paradigm. Pre-training

contributed to many breakthroughs in applying CNN for

object recognition [14, 10, 29, 17]. A common strategy,

for example, is to pre-train the networks through supervised

learning on the ImageNet classification dataset [8, 30] and

then fine-tune the weights in downstream tasks. Zeiler et al.

visualize the convolutional filters in a pre-trained network,

and find that intermediate layers can capture universal local

patterns, such as edges and corners that can be generaliz-

able to other vision tasks [42]. Pre-training may ease up the

difficult optimization problem of fitting deep neural nets via

first-order methods [12]. Recently, the limit of supervised

pre-training has been pushed by scaling up the datasets.

In Big Transfer (BiT), the authors show that surprisingly

high transfer performance can be achieved across 20 down-

stream tasks by classification pre-training on a dataset of

300M noisy-labeled images (JFT-300M) [5]. Notably, pre-

training on JFT-300M drastically improves the performance

with small data. Similarly, Mahajan et al. explore the limits

of (weakly) supervised pre-training with noisy hashtags on

billions of social media (Instagram) images [25]. The tra-

ditional ImageNet-1M becomes a small dataset compared

to the Instagram data. A gain of 5.6% can be achieved on

ImageNet-1M classification accuracy by pre-training on the

billion-scale data. As for related work in other deep learn-

ing fields, pre-training is also a dominant strategy in natural

language processing (NLP) and speech processing [31, 41].

For example, BERT [9] and GPT-3 [3] show that language

models pre-trained on massive corpora can generalize well

to various NLP tasks.

Pre-training and object detection. However, the story of

how and to what extent classification pre-training is helping

object detection is up for debate. On one hand, it is observed

that pre-training is important when downstream data is lim-

ited [1, 16]. On the other hand, there is a line of work re-

porting competitive accuracy when training modern object

detectors from scratch [37, 33, 49, 16]. The gain brought by

classification pre-training on larger datasets seems dimin-
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ishing [20, 25, 16]. Classification pre-training may some-

times even harm localization when the downstream data

is abundant while benefit classification [25]. Shinya et

al. try to understand the impact of ImageNet classification

pre-training on detection and discover that the pre-trained

model generates narrower eigenspectrum than the from-

scratch model [34]. Recent work proposes a cheaper Mon-

tage pre-training for detection on the target detection data

and obtains an on-par or better performance than ImageNet

classification pre-training [48]. Our work aims at improving

the usefulness of pre-training with classification-style data

(e.g., ImageNet) for detection, by resolving the misalign-

ment between pre-training and fine-tuning tasks through the

Detection-Aware Pre-training procedure. Leveraging weak

supervision is encouraging as the pre-training dataset can

be easily scaled up. This is different from pre-training on

a fully-supervised detection data [32, 21], which requires

expensive annotation cost.

Weakly Supervised Object Localization (WSOL). We

leverage WSOL in DAP to locate bounding boxes. WSOL

refers to a class of object localization methods that rely on

weak supervision (image-level labels) [27, 47, 35, 44, 45, 7,

6], which is exactly what we need for the pre-training data.

Many of those methods are based on Class Activation Maps

(CAMs) [27, 47, 45]. CAMs highlight the strongest acti-

vation regions for a given class thus can roughly locate ob-

jects. CAM-style methods remain among the most compet-

itive approaches for WSOL to date [6]. Weakly Supervised

Object Detection (WSOD) [2, 19, 38, 40, 43, 46] is a highly

related area to WSOL. WSOD tends to focus on detect-

ing possibly multiple objects in multi-labeled images, while

WSOL focuses on localizing one object instance. Compa-

rably, WSOD requires more computational cost, and thus

we focus on WSOL for large-scale pre-training data.

Self-supervised learning. Self-supervised (e.g., the con-

trastive learning approaches [15, 4, 5, 11]) pre-training uti-

lizes raw images to pre-train a network without any anno-

tation. While this is an emerging area, the task is chal-

lenging due to the lack of annotations, especially for object

detection. For example, the backbone in these works still

shares the same backbone with the classification task, and

ignores detection-related components, e.g., feature pyramid

network. Meanwhile, the goal of these works is different

from ours. We target at leveraging classification-style data

specifically for detection, while they focus on learning gen-

eral visual representation from unlabeled data.

Self-training. Self-training, which refers to the tech-

nique of iterative pseudo-labeling and re-training in semi-

supervised learning, can also improve detection perfor-

mance [28, 50]. Self-training [50] revisits a large auxil-

iary dataset multiple times, while we assume that the pre-

training dataset is not available in downstream tasks. In ad-
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Figure 2. Pseudo box generation procedure. We threshold the

CAM with different values and fit a box for each large connected

component in each thresholded CAM. The results are merged with

NMS. The reason to use different thresholds is to increase the re-

call. In this example, a too low threshold would fail to discern the

two kites. In other cases, a too high threshold might fail to capture

the object’s whole extent. We find these noisy pseudo labels are

sufficient to pre-train the detector to achieve noticeable gains.

dition, self-training is complementary to an improved pre-

training approach, which has been verified in speech recog-

nition [41] and will also be demonstrated in Sec. 4.

3. Detection-Aware Pre-training

3.1. Overview of workflow

Figure 1 illustrates the workflow of Detection-Aware

Pre-training (DAP) with image-level annotations for object

detection. We describe each step in detail below.

Step 1: Classifier Pre-training. The foremost step is

to train a deep CNN classifier on the pre-training dataset.

Deep CNN classifier usually connects a CNN backbone

with an average pooling layer and a linear classification

layer [18]. The network is typically trained with a cross-

entropy loss on the image and image-level label pairs [18].

The traditional classification pre-training approach di-

rectly transfers the network weights of the backbone into

the downstream detection fine-tuning tasks. DAP adds the

pseudo box generation and the detector pre-training steps in

between. In both pre-training approaches, the neural net-

work weights are the only medium of knowledge transfer.

Step 2: Pseudo Box Generation with CAM. From a

trained CNN classifier, the Class Activation Map (CAM)

of a ground-truth labeled class can be extracted by convert-

ing the final classification layer of that class directly into a

1 × 1 convolution on the last feature map with the average

pooling layer removed (and without the activation function)

[27, 47]. To improve quality, we can average the CAMs

obtained from images with different transformations, e.g.,

left-right flip and multi scales.

We develop a simple procedure inspired by existing

WSOL literature [27, 47, 45, 6] to infer bounding boxes

from a CAM, as illustrated in Figure 2. First, the CAM is
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normalized to range [0, 1] via an affine transformation based

on the extreme values. Here x, y are the horizontal and ver-

tical coordinates:

CAM(x, y) =
CAM(x, y)−minCAM(x, y)

maxCAM(x, y)−minCAM(x, y)
. (1)

Then we threshold the CAM with a hyper-parameter τ and

an indicator function 1{·}:

M(x, y) = CAM(x, y)× 1{CAM(x, y) > τ}. (2)

Several object instances of the same category could

present in a single image, e.g., the two kites in Figure 2.

Hence we find connected components on the thresholded

CAM M and filter out the components if the area is less

than half of the largest component’s area. This could re-

move noisy and small components. Then, we calculate

the bounding box coordinates for each component. De-

note Ω as the point set of one component. The bounding

box (xc, yc, w, h) covering Ω is constructed by matching

the first and second moments (mean and variance) with a

rectangle through the following equations:

xc =

∑

(x,y)∈Ω M(x, y)x
∑

(x,y)∈Ω M(x, y)
, (3)

yc =

∑

(x,y)∈Ω M(x, y)y
∑

(x,y)∈Ω M(x, y)
, (4)

w =

√

12

∑

(x,y)∈Ω M(x, y)(x− xc)2
∑

(x,y)∈Ω M(x, y)
, (5)

h =

√

12

∑

(x,y)∈Ω M(x, y)(y − yc)2
∑

(x,y)∈Ω M(x, y)
. (6)

To increase the recall rate of pseudo boxes, we repeat

the above procedure multiple times with different threshold

values τ . The final results are merged with Non-Maximum

Suppression (NMS) based on the Intersection over Union

(IoU) between boxes. The boxes are assigned the ground-

truth image-level labels as class labels.

Step 3: Detector Pre-training. The pseudo box genera-

tion procedure effectively transforms a classification dataset

into a detection dataset to be readily used in a standard de-

tection training algorithm. We initialize the backbone in

this step with the classification model, and initialize the

detector-specific components such as FPN, RPN, and de-

tection heads randomly. Note that we intentionally sim-

plify the pre-training step by treating the detector as a black

box. This has two advantages: (1) The approach can be eas-

ily generalized to other detector architectures; (2) The ap-

proach can leverage existing knowledge about how to train

those architectures well and requires minimal code change.

Step 4: Downstream Detector Fine-tuning. When fine-

tuning the downstream detection tasks, the pre-trained de-

tector weights are used to initialize a new model, except for

the last layers which depend on the number of categories.

Our approach is able to initialize more network layers than

the traditional classification pre-training.

3.2. Discussion

In Step 2, we adopt a straight-forward CAM-based

WSOL approach for its simplicity. An alternative design

choice is to obtain the localization information through

WSOD [2, 19, 38, 40, 43, 46]. However, WSOD is compu-

tationally expensive for large-scale datasets, as it typically

needs to extract hundreds or thousands of proposals (e.g.,

through Selective Search [39]) and learn a multi-instance

classifier. Handling cluttered scenes by WSOD is in gen-

eral a hard problem that warrants further study. In contrast,

our approach takes advantage of simple scenes (in, e.g., Im-

ageNet) and only needs to quickly scan each image in an

inference mode without extra training, which can be easily

scaled up to larger-scale datasets.

As the bounding boxes are not verified by a human

judge, the pseudo annotation could be noisy, e.g., incom-

plete boxes, incorrect localization. However, the pseudo

annotation is only used for pre-training, and the fine-tuning

process can compensate for the noisy labels to a certain ex-

tent. While a more sophisticated treatment might produce

more accurate pseudo boxes, we find in the experiments

that the pseudo boxes generated from our simple approach

can yield substantial improvement in downstream detection

tasks through detection-aware pre-training.

4. Experiment

4.1. Settings

Pre-training Datasets. We use ImageNet-1M and

ImageNet-14M [8, 30] as the pre-training datasets.

ImageNet-1M contains 1.28 million images of 1K cate-

gories. ImageNet-14M is a larger variant of ImageNet

which contains 14 million images of 22K categories.

Detection Datasets. For the detection fine-tuning tasks, we

leverage the widely-used Pascal VOC [13], Common Ob-

jects in Context (COCO) [24] datasets. The Pascal VOC

dataset has different versions of each year’s competition.

Our first setting is based on the VOC 2007 version, where

the training set is the trainval2007 (5, 011 images) and the

evaluation set is test2007 (4, 952 images). The other set-

ting, which we refer to as VOC 07+12, is to merge the

trainval2007 and trainval2012 as the training set (11, 540
images in total), and evaluate on the test2007 set. This

is a widely-used protocol in the literature [16]. The VOC

dataset has 20 object categories. For the COCO dataset, we
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adopt the COCO 2017 train/val split where the train set con-

tains 118K valid images and the val set has 5000 images.

The COCO dataset has 80 object categories. On top of the

aforementioned settings, we also simulate the correspond-

ing low-data settings by varying the number of randomly

sampled per-class images (5, 10, 20, 50, 100 images per

class), to compare the fine-tuning sample efficiency of dif-

ferent pre-training strategies.

Architecture. Our approach is independent of the detector

framework. Here, we use Faster RCNN [29] with Feature

Pyramid Networks (FPN) [22] and ResNet-50 [18] as the

testbed. In ablation studies, we also include other variants,

e.g., RetinaNet [23] and ResNet-101 backbone [18].

Hyper-parameters. In the first stage of classifier pre-

training, we use the torchvision1 pre-trained model for

ImageNet-1M experiments. For ImageNet-14M, the clas-

sifier is trained with batch size as 8192 for 50 epochs on 64
GPUs. The initial learning rate is 3.2 and decayed with a

cosine scheduler.

In the second stage of pseudo box generation, we average

the CAMs obtained from two image scales, i.e., short side

length as 288 or 576, and from the original and the left-right

flipped images. On the normalized ([0, 1]) CAMs, we use 4
different thresholds, i.e., τ = 0.2, 0.3, 0.4, 0.5, to generate

boxes of various sizes to improve the recall rate. In the end,

the mined boxes are merged by NMS with IoU threshold

0.8. The τ and the NMS IoU threshold are further studied

in the supplementary material. With ResNet-50, this stage

takes less than 13 min on ImageNet-1M and about 2.3 hours

on ImageNet-14M with 64 GPUs.

In the third stage of detector pre-training, the model is

trained with batch size 32 on 16 GPUs for 40, 038 iterations

on ImageNet-1M or 443, 658 iterations on ImageNet-14M.

We enable multi-scale augmentation, i.e., the short edge

is randomly drawn from (96, 160, 320, 640). The small-

est scale is as small as 96 because ImageNet tends to con-

tain large central objects, while we expect the pre-trained

detector to be able to handle diverse object scales. This

stage takes roughly 1.8 hours on ImageNet-1M or 17.6
hours on ImageNet-14M with Faster RCNN FPN ResNet-

50, which is only a small extra cost on top of classification

pre-training. As a reference, 90 epochs of ImageNet-1M

ResNet-50 classifier training takes 7 hours on 16 GPUs.

In the final stage of fine-tuning, we perform experiments

on Pascal VOC [13] and COCO [24]. On COCO, the model

is fine-tuned with 90K steps (1x) with batch size 16. The

initial learning rate is 0.02 and reduced by 0.1 times at 60K
and 80K steps. The image’s short side is 800. On VOC 07

and VOC 07+12, the model is trained for 14 epochs (4.5K
steps). The initial learning rate is 0.01 and reduced to 0.001
at the 10th epoch. The input image’s short side is 640.

1https://pytorch.org/docs/stable/torchvision/index.html

Table 1. COCO full-data detection results. CLS and DAP refer

to the baseline classification and our pre-training strategies. The

improvement of DAP over CLS is marked in ∆ row. IN-1M and

IN-14M correspond to using ImageNet-1M or ImageNet-14M as

pre-training set. We report the AP.5:.95: the mean of average pre-

cisions, AP.5, AP.75: AP at IoU 0.5 and 0.75, AP{s,m,l}: AP for

small, medium, large objects, calculated on COCO 2017 val.

Pre-train AP.5:.95 AP.5 AP.75 APs APm APl

IN-1M CLS 36.73 58.04 39.72 20.57 39.56 48.51

IN-1M DAP 37.25 58.98 40.46 21.71 40.64 48.34

∆ +0.52 +0.94 +0.74 +1.14 +1.08 +0.83

IN-14M CLS 38.87 61.87 42.41 23.79 42.15 49.89

IN-14M DAP 39.57 63.05 43.02 24.03 42.96 51.15

∆ +0.70 +1.18 +0.61 +0.24 +0.81 +1.26

Table 2. VOC 07 and 07+12 full-data detection results. CLS

and DAP refer to the baseline classification and our pre-training

strategies. IN-1M and IN-14M correspond to using ImageNet-

1M or ImageNet-14M for pre-training. We report AP.5 which is

the area under the precision-recall curve at IoU threshold 0.5, and

AP.5, 07metric which is the 11-point metric at IoU 0.5 defined in Pas-

cal VOC 2007 challenge [13], caculated on VOC 2007 test.

Train set Pre-train AP.5 AP.5, 07metric

07 trainval IN-1M CLS 77.36 75.00

IN-1M DAP 79.93 (+2.57) 77.57 (+2.57)

IN-14M CLS 80.74 78.29

IN-14M DAP 84.24 (+3.50) 81.54 (+3.25)

07+12 IN-1M CLS 83.77 80.97

trainval IN-1M DAP 84.49 (+0.72) 82.00 (+1.03)

IN-14M CLS 86.91 83.56

IN-14M DAP 87.84 (+0.93) 84.53 (+0.97)

For the low data settings, training with the same number

of iterations as the full data setting is sub-optimal. Early

stop is needed. Following [16], we tune the number of itera-

tions. As in [17, 26], we use fixed BatchNorm and freeze the

the first conv block of ResNet in all fine-tuning experiments.

The weight decay coefficient is set to 1e-4 in ImageNet-1M

experiments and 1e-5 in ImageNet-14M experiments. We

do not use test time multi-scale augmentation.

Evaluation metrics. On COCO, we report the standard

AP metrics [24], i.e., AP.5:.95, the mean of average preci-

sions (AP) evaluated at IoU thresholds 0.5, 0.55, · · · , 0.95.

AP.5 and AP.75 are also reported for AP at IoU 0.5 and 0.75.

AP{s,m,l} are for small (< 322 pixels), medium, and large

(≥ 962 pixels) objects, determined by the area of a bound-

ing box. For VOC, we report AP.5 and the 11-point version

AP.5,07metric defined by the VOC 2007 challenge [13].

4.2. Main results

We denote 1N-1M CLS and 1N-14 CLS as the short-

hands for the traditional classification pre-training strategy

on ImageNet-1M and ImageNet-14M, respectively. Simi-
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Figure 3. COCO k-shot low-data detection results. CLS and DAP

refer to the baseline classification and our pre-training strategies.

IN-1M (left) and IN-14M (right) correspond to using ImageNet-

1M or ImageNet-14M as pre-training set. In the horizontal direc-

tion, we vary the number of images per class, and in the vertical

direction, we report the AP.5:.95 on COCO 2017 val. There are 80

classes in COCO, so 5-shot corresponds to 400 images in total.

larly, our DAP strategy is denoted as IN-1M DAP and IN-

14M DAP on the two ImageNet dataset variants. In DAP,

4.1M pseudo boxes are mined in ImageNet-1M and 47M

boxes in ImageNet-14M. The results are summarized in Ta-

bles 1, 2 for the full-data setting and Figures 3, 4 for the

low-data setting, and observations are as follows.

DAP is more effective than classification pre-training in

the full-data setting. The full-data setting results in Ta-

bles 1 and 2 tell that DAP performs consistently better than

classification pre-training (CLS) across all metrics. The

gain is especially significant for the VOC dataset, reach-

ing a ≥ 2.5 AP.5 increase with 07 trainval and a roughly

+1 AP.5 increase with 07+12 trainval. And the gain on

COCO AP.5:.95 is +0.52 with ImageNet-1M and +0.7 with

ImageNet-14M. The results suggest that DAP makes better

use of the ImageNet dataset to pre-train the network than

CLS pre-training.

DAP benefits more from larger pre-training dataset.

Comparing ImageNet-1M and ImageNet-14M, our DAP

scales up better to ImageNet-14M. Improvement on

ImageNet-14M is larger than on ImageNet-1M: +0.7 vs

+0.52 on ∆AP.5:.95 with COCO in Table 1, +3.5 vs +2.16
with VOC 07 and +0.93 vs +0.72 with VOC 07+12 on

∆AP.5 in Table 2. The training process and pseudo box gen-

eration hyper-parameters are shared between the 1M and

14M results. The only difference is the size of the pre-

training datasets. Therefore, this observation suggests that

DAP benefits more from the larger ImageNet dataset.

DAP improves low-data performance. The low-data set-

ting is of great practical value to reduce the annotation cost.

In Figure 3, 4, we mimic this low-data regime by downsam-
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Figure 4. VOC k-shot low-data detection results. IN-1M (left) and

IN-14M (right) refer to using ImageNet-1M or ImageNet-14M as

pre-training set. In the horizontal direction, we vary the number

of images per class, and in the vertical direction, we report the

AP.5 on VOC 2007 test. We sample the training images from the

combined VOC 07+12 trainval set. There are 20 classes in VOC,

so 5-shot corresponds to 100 images in total.
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Figure 5. Learning curves of Faster RCNN FPN ResNet-50 during

COCO and VOC 07 training, with different pre-trained models

as initialization. DAP is able to provide a “head-start” for fine-

tuning (i.e., faster convergence), and is almost always leading the

CLS pre-trained counterparts. The abrupt increase in COCO AP

is caused by learning rate reduction at 60k-step.

pling the COCO and VOC datasets. Compared with CLS,

we observe that fine-tuning from DAP benefit much more

in the low-data setting than the full-data setting. For exam-

ple, in the 5-shot case in Figure 3, IN-1M DAP outperforms

IN-1M CLS pre-training by 2.6 AP.5:.95 (left), and IN-14M

DAP surpasses IN-14M CLS by a significant 4.7 AP.5:.95

(right). Similarly, in Figure 4, the VOC ∆AP.5 is as much

as +13.4 (IN-1M) and +19.5 (IN-14M) in the 5-shot case,

compared to +0.72 and +0.93 in the full-data setting.

4.3. Analysis

Faster convergence with DAP than classification pre-

training. As our DAP approach provides greater accuracy

improvement, we study the convergence behavior by plot-
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Figure 6. Examples of ImageNet images, CAMs & pseudo boxes.

ting the learning curves of COCO and VOC training with

different pre-trained ResNet-50 models in Figure 5. From

the figure, we notice that DAP can give a significant ini-

tial accuracy boost compared to CLS. For example, in the

right part of Figure 5, 500 fine-tuning iterations from DAP

already achieve ≥ 65 AP.5, while the corresponding CLS

numbers are lower than 20. This demonstrates that a bet-

ter pre-trained model can provide faster convergence speed,

which is consistent with [25, 20, 16, 34].

Visualization of CAM pseudo boxes. Figure 6 visualizes

the CAMs and the mined pseudo boxes in ImageNet-1M

images. In all examples, our pseudo box generation proce-

dure can successfully find the rough locations of the objects.

The per-component multi-threshold approach is able to re-

cover multiple objects in the first two columns. We notice

that the pseudo boxes are noisy, i.e., containing inaccurate

boxes such as the loose one around the bird in the last col-

umn. Despite the noise, pre-training can still benefit from

leveraging a large amount of data. The network can pick up

useful learning signals from the noisy pseudo labels.

What is learned in pre-training? To study whether the

better performance of DAP is only due to being able to pre-

train the additional components of detectors, we conduct an

ablation study by freezing the whole ResNet-50 backbone

and only pre-training the FPN, RPN and ROI heads in Faster

RCNN. The result is in Table 3. The COCO AP.5:.95 in this

setting is 36.89, and AP.5 is 78.86 when trained on VOC

07 and 83.91 trained on VOC 07+12. The downstream task

performance is better than CLS pre-training but worse than

full DAP, suggesting that DAP not only pre-trains the new

layers, but also adapts the feature representations of the en-

tire network more towards detection.

Varying network backbone We change the backbone net-

work from ResNet-50 to the larger ResNet-101. The results

are in Table 4, 5 for both COCO and VOC. ResNet-101

delivers higher absolute accuracy than Resnet-50, but DAP

again performs consistently better than CLS pre-training.

Varying detector architecture. Our DAP requires no

Table 3. Comparison to the variant that freezes ResNet-50 back-

bone and only pre-trains the additional layers in Faster RCNN.

Pre-train COCO AP.5:.95 VOC07 AP.5 VOC07+12 AP.5

IN-1M CLS 36.73 77.36 83.77

IN-1M DAP 37.25 79.93 84.49

IN-1M DAP (Freeze) 36.89 78.86 83.91

Table 4. ResNet-101 Faster RCNN FPN results on COCO.

Pre-train AP.5:.95 AP.5 AP.75 APs APm APl

IN-1M CLS 39.11 61.06 42.59 22.98 42.35 50.50

IN-1M DAP 39.28 61.32 42.81 23.45 42.70 51.47

∆ +0.17 +0.26 +0.22 +0.47 +0.35 +0.97

IN-14M CLS 43.18 66.76 47.31 26.29 47.21 55.55

IN-14M DAP 43.92 67.16 48.39 27.41 48.18 56.37

∆ +0.74 +0.40 +1.08 +1.12 +0.97 +0.82

Table 5. ResNet-101 Faster RCNN FPN results on VOC.

Train set Pre-train AP.5 AP.5, 07metric

07 trainval IN-1M CLS 78.02 75.73

IN-1M DAP 80.95 (+2.93) 78.03 (+2.30)

IN-14M CLS 84.58 81.88

IN-14M DAP 86.63 (+2.05) 83.71 (+1.83)

07+12 IN-1M CLS 84.91 81.81

trainval IN-1M DAP 85.49 (+0.58) 82.43 (+0.62)

IN-14M CLS 89.41 85.92

IN-14M DAP 90.69 (+1.28) 86.55 (+0.63)

Table 6. RetinaNet (ResNet-50 FPN) results on COCO 2017 val.

Pre-train AP.5:.95 AP.5 AP.75 APs APm APl

IN-1M CLS 36.22 55.11 38.56 19.72 39.56 48.74

IN-1M DAP 36.96 55.99 39.43 20.41 40.20 50.61

∆ +0.74 +0.88 +0.87 +0.69 +0.64 +1.87

Table 7. RetinaNet (ResNet-50 FPN) results on VOC 2007 test.

Train set Pre-train AP.5 AP.5, 07metric

07 trainval IN-1M CLS 75.12 72.91

IN-1M DAP 77.95 (+2.83) 75.80 (+2.89)

07+12 IN-1M CLS 81.48 78.69

trainval IN-1M DAP 84.18 (+2.70) 81.15 (+2.46)

knowledge of the internal mechanism of a detector. We

show that our DAP approach generalizes to the RetinaNet

detector architecture [23]. RetinaNet is a one-stage detec-

tor as opposed to the two-stage detector of Faster RCNN.

We pre-train a RetinaNet (ResNet-50) detector on IN-1M

for 80, 072 steps with batch size 32 and learning rate 0.005.

We can see in Table 6, 7 that the same pipeline works well

with RetinaNet and DAP consistently outperforms CLS pre-

training on both COCO and VOC.

Accuracy on ImageNet. To study the effect of DAP on

the original ImageNet classification task, we evaluate the

IN-1M DAP pre-trained Faster RCNN (ResNet-50) as a

classifier. The class score is taken as the sum of the con-
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Table 8. ImageNet-200 DET reference results trained on VOC 07

trainval and 07+12 trainval, evaluated on VOC 2007 test.

Pre-train #Image #Class #Box VOC07 AP.5 VOC07+12 AP.5

IN-1M CLS 1.28M 1K 0 77.36 83.77

IN-1M DAP 1.28M 1K 4.11M 79.93 84.49

IN-14M CLS 14.2M 22K 0 80.74 86.91

IN-14M DAP 14.2M 22K 47.3M 84.24 87.84

IN-200 DET 333K 200 479K 80.53 84.01

Table 9. Faster RCNN FPN ResNet-50 results of training on VOC

07 trainval + self-training on 2012 trainval, evaluated on 07 test.

Pre-train +Self-train AP.5 AP.5, 07metric

IN-1M CLS 77.36 75.00

IN-1M DAP 79.52 (+2.16) 76.82 (+1.82)

IN-1M CLS X 77.98 75.71

IN-1M DAP X 80.50 (+2.52) 78.02 (+2.31)

fidence scores of all detected objects of this class. The

DAP pre-trained detector achieves 62.73% Top-1 accuracy

and 85.99% Top-5 accuracy. These numbers are lower

than those of the bare ResNet-50 backbone (76.15% Top-

1 and 92.87% Top-5). However, as our experiments have

shown, the DAP pre-trained network is better at detection

fine-tuning, suggesting that the drop in whole-image classi-

fication accuracy is likely traded for better localization and

regional classification ability.

Reference with IN-200 DET. ImageNet challenge pro-

vides a detection subset of 200 classes, which is referred

as IN-200 DET [8, 30]. We present a reference result on

using this dataset in fully-supervised detection pre-training

in Table 8. We train on IN-200 DET for 5 epochs with scale

augmentation (96, 160, 320, 640) and transfer the detector

weights. The VOC07 AP.5 is improved to 80.53 (vs CLS

pre-training 77.36) when trained on VOC 07 and 84.01 (vs

CLS 83.77) trained on VOC 07+12. Our DAP achieves

even higher accuracy except for the slight drop with IN-

1M VOC07. This suggests that DAP may benefit from the

substantially more pseudo boxes mined from a larger-scale

dataset than the human-labeled boxes in IN-200 DET.

Complementary to self-training. Self-training is another

direction of sample-efficient learning which re-trains the

model with unlabeled data and pseudo labels [28, 50, 41].

We believe self-training and pre-training are complemen-

tary. Intuitively, better pre-training may give the model

a head-start in learning downstream tasks, therefore pro-

duce better pseudo labels for the subsequent self-training.

We consider a VOC semi-supervised setting and verify that

DAP can still improve the accuracy under self-training set-

tings. The detector is trained on VOC 2007 trainval initial-

ized with our DAP or with the conventional CLS. Then, We

keep as pseudo labels the confident predictions, i.e., score

≥ 0.6 or is the max in the image on the VOC 2012 trainval

Table 10. Comparing CLS and DAP with longer fine-tuning time.

voc07 5shot 1x 3x coco 5shot 1x 3x coco full 1x 3x

IN-1M CLS 26.7 27.3 7.13 7.03 36.73 37.24

IN-1M DAP 40.1 40.9 9.88 9.20 37.25 37.45

(ground-truth labels are removed to have a semi-supervised

setting) with test-time flip augmentation, and finally tune

the detector for 2 more epochs on all data. The result is

shown in Table 9. Self-training improves AP across all

pre-training strategies. Notably, in this particular setting,

DAP leads to even larger gain than CLS. That is, without

self-training, our improvement is +2.16 AP.5 and with self-

training, the gain is +2.52.

Longer Training Schedule. In Table 10, we ran 3 settings

(Faster RCNN ResNet-50) for 3x longer to study whether

the gain of DAP persists with longer fune-tuning time. We

observe the difference between DAP and CLS on COCO

full gets smaller. However, DAP still brings noticeable

gains in the 5-shot settings that are prone to overfitting.

5. Discussion and Conclusion

Implication for future work. This work may open up

many future directions. We adopt a straightforward WSOL

method in this paper. A more sophisticated WSOL or

WSOD method [2, 19, 38, 40, 43] could potentially pro-

duce higher-quality pseudo boxes, which may improve pre-

training in return. For example, it may require handling the

missing label problem in ImageNet. However, we want to

emphasize that the simplicity of our pseudo box generation

method is also a blessing by being scalable to millions of

images such as ImageNet-14M. Another sensible next step

is to leverage mixed-labeled data in pre-training, e.g., us-

ing semi-supervised WSOD as the pre-training procedure

[46]. DAP might also benefit from moving to a more di-

verse multi-labeled dataset. This would make object local-

ization more challenging, but the network may benefit from

seeing more complex contexts. Finally, broadening the ap-

proach to mask detection (or instance segmentation) [17]

aware pre-training is worth exploring.

Conclusions. In this paper, we have proposed a Detection-

Aware Pre-training (DAP) strategy under weak supervi-

sion. Specifically designed for object detection downstream

tasks, DAP makes better use of a classification-style dataset

by transforming it into a detection dataset through a pseudo

box generation procedure. The generation is based on a

simple yet effective approach built on CAM. DAP reduces

the discrepancies in the objective function, the localization

information, and the network structure between the pre-

training and the fine-tuning tasks. As a consequence, DAP

leads to faster and better fine-tuning than classification pre-

training. Besides, DAP leads to much higher accuracy in

low-data settings and is complementary to advances in self-

training [50].
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