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Abstract

Modern human-object interaction (HOI) detection ap-

proaches can be divided into one-stage methods and two-

stage ones. One-stage models are more efficient due to their

straightforward architectures, but the two-stage models are

still advantageous in accuracy. Existing one-stage model-

s usually begin by detecting predefined interaction areas

or points, and then attend to these areas only for interac-

tion prediction; therefore, they lack reasoning steps that

dynamically search for discriminative cues. In this paper,

we propose a novel one-stage method, namely Glance and

Gaze Network (GGNet), which adaptively models a set of

action-aware points (ActPoints) via glance and gaze step-

s. The glance step quickly determines whether each pix-

el in the feature maps is an interaction point. The gaze

step leverages feature maps produced by the glance step

to adaptively infer ActPoints around each pixel in a pro-

gressive manner. Features of the refined ActPoints are ag-

gregated for interaction prediction. Moreover, we design an

action-aware approach that effectively matches each detect-

ed interaction with its associated human-object pair, along

with a novel hard negative attentive loss to improve the opti-

mization of GGNet. All the above operations are conducted

simultaneously and efficiently for all pixels in the feature

maps. Finally, GGNet outperforms state-of-the-art meth-

ods by significant margins on both V-COCO and HICO-

DET benchmarks. Code of GGNet is available at https:

//github.com/SherlockHolmes221/GGNet.

1. Introduction

Human-Object Interaction (HOI) detection is one of the

fundamental tasks in human-centric scene understanding. It

involves not only detecting persons and objects in an im-

age, but also the interactions (verbs) between each human-

object pair. The output of an HOI detection model can

be represented as a set of triplets in the form of <human
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(a) InteractNet (b) UnionDet

(c) PPDM (d) GGNet

Figure 1. Comparisons of interaction area definition. Green box-

es or points represent the interaction area for “hold tennis racket”,

while the red ones stand for “hit sports ball”. (a) InteractNet [3]

uses the same human bounding box to represent the interaction

area for all interactions pertaining to the person. (b) UnionDet [1]

adopts the union box of one human-object pair to represent their

interaction area. (c) PPDM [10] leverages the middle point of one

human-object pair to represent their interaction area. (d) GGNet

employs a single set of dynamic points to adaptively capture infor-

mative areas for the interaction between each human-object pair.

interaction object>, and each triplet is also referred to as

a single HOI category. For example, there are two HOI cat-

egories in Figure 1, i.e. <human hold tennis racket>

and <human hit sports ball>.

According to the order in which object detection and

interaction detection is performed, modern HOI detection

methods can be divided into one-stage and two-stage ap-

proaches. Two-stage methods must perform the objec-

t detection first and then identify the interactions between

each possible human-object pair. However, because the t-

wo stages are separated in this approach, these methods are

usually inefficient. By contrast, one-stage methods can per-
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form object detection and interaction detection in parallel

by first defining interaction areas (e.g. a union box or a s-

ingle point). Generally speaking, one-stage methods tend

to be more efficient and structurally elegant, but two-stage

methods are more accurate at present.

One of the key issues for one-stage methods is the way to

represent the “interaction area” for each human-object pair

[1]. Existing approaches usually define this area artificially

and the interaction area often face the semantic ambiguity

problem. For example, as shown in Figure 1(a), Interact-

Net [3] utilizes a human bounding box to represent the area

of all interactions involving the person, meaning that object-

specific information is ignored. UnionDet [1] addresses this

problem by utilizing the union box for each human-object

pair as their interaction region. However, union boxes may

overlap significantly with each other (Figure 1(b)), which

introduces ambiguity between pairs. For its part, PPDM

[10] utilizes the middle point of each human-object pair

as the interaction point (Figure 1(c)). Although interaction

points are less likely to overlap with each other under this

approach, a single interaction point is often vague to repre-

sent complex interactions between a human-object pair.

With the predefined interaction areas discussed above,

existing one-stage methods usually attend to the interaction

area only once to predict the interaction categories. Recent

works [24], [26] have revealed that the eyes of human be-

ings usually move around an object to discover more cues

regarding its location. Similarly, when it comes to HOI

detection, people often first glance at the scene to identi-

fy possible human-object pairs with any interaction; they

then search for cues around each pair, and finally gaze at

discriminative areas to identify the interaction class.

Accordingly, inspired by the above observation, we here-

in propose a novel model, named Glance and Gaze Network

(GGNet), which adaptively infers a set of action-aware

points (ActPoints) to represent the interaction area (Figure

1(d)). GGNet mimics the two steps taken by humans to i-

dentify human-object interactions: Glance and Gaze. First,

GGNet quickly determines whether each pixel in the fea-

ture maps is an interaction point; we call it the glance step.

Based on the feature maps in the glance step, the subsequent

gaze step searches for a set of ActPoints around each pixel.

This step then progressively proceeds to refine the location

of these ActPoints. In brief, this step comprises two sub-

steps, in which the coarse location and location residuals of

ActPoints are inferred, respectively. Finally, GGNet aggre-

gates features of the refined ActPoints to predict interaction

categories at the interaction points.

We further propose an action-aware point matching (AP-

M) approach designed to match each interaction with its as-

sociated human-object pair. This matching process speci-

fies the location of both the human and object instances for

each interaction. Existing interaction point-based methods

tend to employ a single location regressor shared by all in-

teraction categories [10], [20]; however, we observe that the

interaction category affects the spatial layout of one human-

object pair. We accordingly propose to assign each interac-

tion category a unique location regressor, which is proven in

the experimentation section to be a more effective approach.

Finally, we propose a novel focal loss, namely Hard Neg-

ative Attentive (HNA) loss, to further promote the perfor-

mance of GGNet. As there are massive numbers of nega-

tive samples for each interaction classifier of the interaction

point-based methods [10], [20], a serious imbalance prob-

lem exists between the positive and negative samples for

each interaction category. We thus develop an efficient ap-

proach to address this problem by inferring and highlighting

hard negative samples. Hard negatives are inferred between

meaningful HOI categories containing the same object. For

example, we can infer a hard negative sample “repair bicy-

cle” according to the labeled positive sample “carry bicy-

cle”, unless “repair bicycle” is labeled as positive; in this

way, the decision boundary between easily confused inter-

action categories can be clarified.

Both APM and HNA loss can be readily applied to other

interaction point-based HOI detection methods. We con-

duct extensive experiments on the two most popular HOI

detection databases, i.e. V-COCO [31] and HICO-DET

[30]. Experimental results demonstrate that our proposed

GGNet consistently outperforms start-of-the-art methods.

2. Related Works

Two-Stage Methods. Most existing HOI detection meth-

ods belong to the two-stage category. These methods typ-

ically perform object detection first, then pair the human

and object proposals for interaction recognition. Various

types of features are utilized to promote the detection ac-

curacy: for example, human-object spatial feature encoded

using their bounding box locations are widely adopted in

two-stage methods [5], [6], [7], [11], [34], [13], [12]. In

line with this, Liu et al. [8] introduced a mechanism that en-

codes the fine-grained spatial layout of human-object pairs.

The spatial layout is obtained using human parsing and ob-

ject segmentation tools. Wan et al. [7] and Zhou et al. [16]

utilized key points on the human body to crop human part

features. Different model structures have also been devel-

oped to promote HOI detection performance. For example,

several recent works have utilized graph convolutional net-

works to integrate human and object appearance features

[11], [19], [21], [9]. Moreover, Gao et al. [12] and Wang et

al. [13] made use of attention mechanisms to capture con-

text information. Other works have also investigated the

semantic meaning of verbs and the relationships between

them: for example, Zhong et al. [14, 38] promoted HOI

detection accuracy by overcoming the so-called verb poly-

semy problem, while Kim et al. [15] modeled the relation-
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Figure 2. Overview of GGNet in the training stage. GGNet includes three main tasks, namely interaction prediction, human-object pair

matching, and object detection. The three tasks share the same backbone model. The interaction prediction task includes one Glance step

and two Gaze steps. The two Gaze steps infer a set of ActPoints for each pixel in feature maps. By aggregating their features into the

interaction point, the second Gaze step is able to predict interactions more robustly. The human-object pair matching task is realized by the

Action-aware Point Matching (APM) module, which bridges the interaction prediction and object detection tasks. In the testing stage, the

glance step and the first gaze step are only utilized to infer ActPoints, while the other layers of the two steps are removed. ⊕ denotes the

element-wise addition operation. Best viewed in color.

ship between interaction categories by means of action co-

occurrence matrices, which were then utilized to promote

HOI detection performance. Although two-stage method-

s are flexible to include diverse features, they divide ob-

ject detection and interaction prediction into two sequential

steps, which is typically very time-consuming.

One-Stage Methods. Some early HOI detection works [2],

[3] devised end-to-end models based on the Faster R-CNN

object detector [4]. Although these methods are more ef-

ficient than most two-stage methods, they adopt the same

human appearance features for predicting different interac-

tions, meaning that object-specific information in differen-

t human-object pairs is ignored. Recent works, moreover,

have proposed to perform object detection and interaction

prediction in parallel branches. For example, Liao et al.

[10] and Wang et al. [20] defined the middle point of each

human-object pair as their interaction point, which is capa-

ble of roughly capturing both human and object appearance

features. These authors then detect interaction points in the

interaction prediction branch. Kim et al. [1] represented the

interaction location of one human-object pair using the u-

nion box, then detect union boxes using networks that are

similar to anchor-based object detection models [4], [25],

[32]. These recent one-stage methods can substantially im-

prove HOI detection efficiency; however, as illustrated in

Figure 1, their definitions of the interaction areas or points

remain relatively coarse and may thus introduce ambiguity

into HOI detection.

In this paper, to handle the semantic ambiguity problem

associated with interaction areas, we propose to represen-

t these area using a set of dynamic ActPoints. These Act-

Points are adaptively inferred around each interaction point,

after which their features are aggregated to improve the in-

teraction recognition accuracy.

3. Methods

3.1. Overview

The architecture of GGNet is illustrated in Figure 2.

Similar to PPDM [10], GGNet breaks HOI detection in-

to three main tasks, namely interaction prediction, human-

object pair matching, and object detection. These three

tasks all share the same backbone. The second task bridges

the first and the third tasks via associating each detected

interaction with a single human-object pair. The object de-

tection task is realized according to [10]. GGNet improves

the interaction prediction task with a novel glance-and-gaze

strategy. It also promotes the accuracy of the second task

with an Action-aware Point Matching (APM) module.

3.2. Glance and Gaze Network

As illustrated in Figure 2, given an input image I ∈
RH×W×3, the output feature maps of the backbone can be

expressed as F ∈ R
H
d
×W

d
×C , where d denotes the output

stride of backbone and C denotes the number of channels.

In this paper, we adopt the same definition of interac-
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tion point as [10], [20], which is also illustrated in Fig-

ure 1(c). GGNet handles the semantic ambiguity problem

of the single interaction point by further inferring a set of

action-aware points (ActPoints). ActPoints adaptively cap-

ture more contextual information, and their features are ag-

gregated to predict the interaction category. The set of Act-

Points around one interaction point can be represented as:

P = {(xk, yk)}
n
k=1, (1)

where n is the total number of ActPoints sampled for an

interaction. We empirically set n as 25. The location of

ActPoints are inferred progressively by mimicking human’s

visual system [24] with one glance step and two gaze steps.

Glance Step. In this step, GGNet quickly determines

whether each pixel in F is an interaction point. As shown

in Figure 2, this step is realized using a 3 × 3 convolutional

(Conv) layer with ReLU, followed by a 1 × 1 Conv layer

and a sigmoid layer. The size of heatmaps produced by the

sigmoid layer is H
d
× W

d
× V , where V denotes the num-

ber of interaction categories. We apply a V -dimensional

element-wise focal loss [10] to the heatmaps as supervision

for the inference of interaction categories. Due to this su-

pervision, the feature maps output by the 3 × 3 Conv layer,

i.e. F0 in Figure 2, are action-aware.

Gaze Step. This step infers the location of ActPoints vi-

a two sub-steps, which are referred to as Gaze Step 1 and

Gaze Step 2, respectively. In Gaze Step 1, F0 is employed

to predict the coarse location of n ActPoints for each pixel,

since features in F
0 have been action-aware. Moreover, as

the discriminative power of each ActPoint varies with re-

spect to the target interaction, GGNet also predicts a weight

for each ActPoint. Both location and weight prediction are

achieved by a 5 × 5 Conv layer. Next, we aggregate features

of ActPoints as well as their weights using one deformable

Conv layer [27]. The 5×5 offset field is determined by the

number of ActPoints, which are also verified in Table 2.

To ensure that the predicted ActPoints are reasonable, the

feature maps produced by this sub-step are also used for in-

teraction prediction with the V -dimensional element-wise

focal loss as supervision.

On its own, the above step cannot always obtain precise

locations of ActPoints; this is because the above 5 × 5 Con-

v operation has a fixed field of view, while the location of

the human and object instances in one pair can vary dramat-

ically. To address this problem, Gaze Step 2 is introduced

to refine the location of ActPoints. In more detail, we ag-

gregate the features in F
1 of the coarse ActPoints using one

deformable Conv layer, of which the output feature maps

are denoted as G1. Now, each pixel in G
1 has a larger field

of view; G1 is then send to another 5 × 5 Conv layer to pre-

dict the residual offsets of ActPoints locations, along with

their new weights. As shown in Figure 2, the final position

of ActPoints are obtained by summing their coarse location

(a) hold, carry (b) ride (c) kick

Figure 3. Human-object pairs with different interaction categories

present different spatial characteristics, i.e. the relative location

between one human-object pair. Green points represent interaction

points, each yellow arrow specifies the human instance in the pair,

while each blue arrow indicates the object instance in the pair.

and residual offsets. Finally, we aggregate the features of

the refined ActPoints as well as their weights using another

deformable Conv layer to predict interaction categories for

each pixel in F
2. Similar to Gaze Step 1, the V -dimensional

element-wise focal loss is adopted as supervision.

More formally, (x
(t)
k , y

(t)
k ) is updated as follows:

(x
(t)
k , y

(t)
k ) = (x

(t−1)
k , y

(t−1)
k ) + (∆x

(t)
k ,∆y

(t)
k ), (2)

(∆x
(t)
k ,∆y

(t)
k ) = T

(t)
offset(G

t−1), (3)

where t stands for the t-th gaze step, while (∆x
(t)
k ,∆y

(t)
k )

denotes the predicted offset with respect to the k-th Act-

Point’s location in the last step. Moreover, we set the ini-

tial location of all n ActPoints as (0, 0) and set G0 as F
0.

T
(t)
offset is a Conv layer, whose kernel size is equal to the

square root of n. More details of the glance and gaze net-

work can be confirmed from our open-source project.

Action-aware Point Matching. To compose one HOI in-

stance, each detected interaction point is associated with

one human-object pair. Existing works [10], [20] adop-

t a single regressor shared by all interaction categories for

this association process. However, as shown in Figure 3,

human-object pairs with different interactions also differ in

terms of spatial characteristics. Therefore, we propose the

action-aware point matching (APM) module that assigns a

unique location regressor for each interaction category.

As illustrated in Figure 2, APM is attached to F
0. It in-

cludes one 3 × 3 and one 1 × 1 Conv layers. The latter layer

acts as regressors. Each regressor outputs a 2-dimensional

offset to human point (object point) with respect to the inter-

action point. Therefore, the output dimension of this layer

is H
d
× W

d
×4V . In line with [10], we utilize these predicted

offsets to match the target human (object) proposal during

inference. This process will be detailed in Section 3.4.

3.3. Hard Negative Attentive Loss

Recent one-stage methods [10], [20] adopt the element-

wise focal loss [35], [33] on the output heatmaps as super-
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vision to train their models. However, the heatmap size for

each interaction category is H
d
× W

d
, which is often a large

number. Therefore, there are massive negative samples in

each heatmap, which brings in the problem of imbalance

between positive and negative samples. Moreover, because

of the long-tailed distribution of interaction categories [30],

[31], some interaction categories have very limited positive

samples, which further exacerbates the imbalance problem.

Based on the above observation, we propose a novel hard

negative attentive (HNA) loss to guide the model to focus

more on hard negative samples for each respective interac-

tion category.

Definition of Hard Negatives. We infer hard negatives

between meaningful HOI categories that share the same

object class. For example, we can infer a hard negative

sample <human repair bicycle> for the “repair” catego-

ry according to a labeled positive sample <human carry

bicycle>, if <human repair bicycle> is indeed not la-

beled as positive. We do not infer hard negatives from

meaningless HOI categories that have never appeared in the

training set of each database, e.g. <human eat bicycle>

and <human drink bicycle>. The inferred sample of

<human repair bicycle> can be highlighted as a hard

negative in the interaction heatmap for “repair” category.

Loss Formulation. First, we introduce the Gaussian

heatmap masks M ∈ [−1, 1]
H
d
×W

d
×V , which are used to

mark both positive samples and hard negative samples. For

a ground truth HOI sample (vi, oi) with an interaction point

located at (xi, yi), Mxiyivi
is set to 1 and it is also used as

the center of a Gaussian distribution in the vi-th channel of

M. The value of the elements in this distribution is within

[0, 1]. The interaction category and object category for this

HOI sample are denoted as vi and oi, respectively.

Second, we infer a set of HOI samples {(vj , oi)} as hard

negatives for the vj-th interaction category, with the help of

the labeled positive sample (vi, oi). If (vj , oi) is not labeled

as a positive sample, then we set Mxiyivj
as -1 and it is

also used as the center of another Gaussian distribution in

the vj-th channel of M. The value of the elements in this

distribution is within [−1, 0].
We repeat the above two operations for each ground truth

sample. The value of remaining elements in M is set to 0.

Finally, the HNA loss can be represented as follows:

L = −
1

N

∑

xyv























(1− Pxyv)
α log(Pxyv) if Mxyv = 1,

(1−Mxyv)
β(Pxyv)

α

log(1− Pxyv) if Mxyv = −1,
(1−Mxyv)

γ(Pxyv)
α

log(1− Pxyv) otherwise,
(4)

where N is the number of ground truth interaction points

in an image. Pxyv is the predicted score for the interaction

category v at point (x, y). β is set as 7. α, γ, and the pa-

rameters of the Gaussian distribution are set following [10].

3.4. Training and Inference

Training. The overall loss function for GGNet can be rep-

resented as follows:

Lhoi = Lgaze2 + λ1(Lglance + Lgaze1 + Lm) + Ld, (5)

where

Lm = Lmh + Lmo, (6)

Ld = Lh + Lo + λ2Lwh + Loff . (7)

λ2 is set to 0.1 following [10]; λ1 is set to 0.1, which

is analyzed in the supplementary file. Lglance, Lgaze1 and

Lgaze2 denote the HNA loss for the glance step, and each

of two gaze steps, respectively. Lmh and Lmo stand for the

L1 loss for matching human and object points in the AP-

M module, respectively. Ld stands for the object detection

loss. Lh and Lo are the focal loss functions to predict hu-

man and object locations. Lwh and Loff denote the L1 loss

for object size and center offset predictions, respectively.

Lm and Ld are realized in the same way as [10].

Inference. We use the output of Gaze Step 2 to obtain in-

teraction points; while the final score is the multiplication

result of interaction prediction score from Gaze step 2 and

object detection scores of the associated human-object pair.

The following point matching process is the same as that

in [10]. First, a set of interaction Ŝi, human Ŝh and object

points Ŝo are respectively selected based on their prediction

confidence scores. The number of points in Ŝi, Ŝh, and Ŝo

is set to 100, respectively. Second, we associate each pre-

dicted interaction point (x̂i, ŷi) ∈ Ŝi with a human point

(x̂h
opt, ŷ

h
opt) ∈ Ŝh and an object point (x̂o

opt, ŷ
o
opt) ∈ Ŝo ac-

cording to the predicted subject and object offsets by APM,

respectively:

(x̂h
opt, ŷ

h
opt) = argmin

(x̂h,ŷh)∈Ŝh

1

Ph
(x̂h,ŷh)

(|(x̂i, ŷi)− (d̂hx(x̂i,ŷi), d̂
hy

(x̂i,ŷi))− (x̂h, ŷh)|),

(8)

where Ph
(x̂h,ŷh) denotes the object detection score for hu-

man point (x̂h, ŷh); (d̂hx(x̂i,ŷi), d̂
hy

(x̂i,ŷi)) denotes the predict-

ed offset from the interaction point to the human point by

APM. The optimal object point (x̂o
opt, ŷ

o
opt) can be inferred

similarly.

4. Experimental Setup

4.1. Datasets and Evaluation Metrics

V-COCO. V-COCO was constructed based on the MS-

COCO database [29]. Its training and validation sets con-

tain 5,400 images, while its testing set includes 4,946 im-

ages. It covers 80 object categories, 26 interaction cate-

gories and 234 HOI categories. The mean average precision

of Scenario 1 role (mAProle) [31] is used for evaluation.
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Table 1. Ablation studies on each component of GGNet. DLA-34

is adopted as backbone for experiments on HICO-DET.
Components mAP

Methods HNA Loss Gaze # 1 Gaze # 2 APM V-COCO HICO-DET (DT)

Our Baseline - - - - 51.06 20.16

Incremental

X - - - 52.51 20.58

X X - - 54.03 21.05

X X X - 54.43 21.54

Drop-one-out

- X X X 53.55 21.03

X - - X 52.60 21.19

X X - X 54.21 21.65

X X X - 54.43 21.54

GGNet X X X X 54.72 22.03

HICO-DET. HICO-DET [30] is a large-scale HOI de-

tection dataset with more than 150,000 annotated instances.

It contains 38,118 and 9,658 images for training and test-

ing, respectively. There are a total of 80 object categories,

117 verb categories, and 600 HOI categories. Those HOI

categories with fewer than 10 training samples are referred

to as “rare” categories and the remaining ones are called as

“non-rare” categories; specifically, there are 138 rare and

462 non-rare categories in total. There are two modes of

mAP on HICO-DET, namely the Default (DT) mode and

the Known-Object (KO) mode. In DT mode, each HOI cat-

egory is evaluated on all testing images; while in KO mode,

one HOI is only evaluated on images that contain its asso-

ciated object category.

4.2. Implementation Details

We use the Hourglass-104 model [28], pre-trained on the

MS-COCO [29], as the backbone of GGNet. Moreover,

we adopt a lightweight network, named DLA-34 [36], as

the backbone to perform ablation studies on HICO-DET for

shortening experimental cycle. GGNet is trained using the

Adam optimizer with an initial learning rate of 1.5e-5 (1.5e-

4) and batch size of 7 (23) on V-COCO (HICO-DET) for

120 epochs. For all the experiments, the learning rate is re-

duced by multiplying 0.1 at the 90th epoch. Resolution of

input images is 512 × 512 and the output stride d of back-

bone is set to 4.

5. Experimental Results and Discussion

5.1. Ablation Studies

We perform ablation studies on both V-COCO and

HICO-DET datasets to demonstrate the effectiveness of

each component of GGNet. Our baseline is constructed by

removing the gaze steps from GGNet, and replacing the H-

NA loss and APM module with their counterparts in PPDM

[10]. Experimental results are tabulated in Table 1.

Effectiveness of the HNA Loss. As analyzed in Section

3.3, a serious problem of imbalance exists between posi-

tive and negative samples for each interaction category. We

therefore propose the HNA loss to handle this problem by

highlighting the hard negative samples. The adoption of H-

NA loss promotes the performance of our model by 1.45%

Table 2. Comparisons with variants of the Gaze Step on V-COCO.
# ActPoints # Gaze Step Sharing AProle

9 1 - 53.54

25 1 - 54.32

49 1 - 53.81

25 1 - 54.21

25 2 - 54.72

25 3 - 54.34

25 2 X 54.43

(0.42%) mAP on V-COCO (HICO-DET).

We further evaluate the optimal value of the hyper-

parameters β in in the HNA loss. The experimental results

are provided in the supplementary material.

Effectiveness of the Glance-Gaze Strategy. The glance-

and-gaze strategy is developed to infer ActPoints to repre-

sent the interaction area for one human-object pair. The

Gaze Step 1 is found to promote the HOI detection perfor-

mance by 1.52% and 0.47% in terms of mAP on V-COCO

and HICO-DET. Moreover, when the ActPoints is refined

by Gaze Step 2, the performance is further improved by

0.40% and 0.49% mAP on V-COCO and HICO-DET, re-

spectively.

Effectiveness of APM. As the interaction category affects

the human-object spatial layout in an HOI instance, we pro-

pose the APM module that assigns each interaction category

a unique location regressor to facilitate matching of both the

human and object points. The adoption of APM promotes

the performance of our model by 0.29% and 0.49% in terms

of mAP on V-COCO and HICO-DET, respectively.

Drop-one-out Study. We further perform a drop-one-out

study in which each proposed component is removed indi-

vidually. In particular, as Gaze Step 2 is built based on Gaze

Step 1, we remove both Gaze Steps 1 and 2 in the experi-

ment where “Gaze # 1” is dropped out. These experimental

results further demonstrate that each proposed component is

indeed effective at promoting HOI detection performance.

5.2. Comparisons with Variants of GGNet

Comparisons with Variants of the Gaze Step. We com-

pare the performance of gaze step with some possible vari-

ants by changing the number of ActPoints, the number of

gaze steps, and whether layers are shared in different gaze

steps. Experimental results are summarized in Table 2.

First, we set the number of gaze steps to 1 and change

the number of ActPoints. As the results show, our mod-

el achieves the best performance when the number of Act-

Points is 25; this may be because a small number of Act-

Points is insufficient to cover the entire interaction area,

while too many ActPoints will increase the complexity of

searching their locations.

Second, we compare the performance of different num-

bers of gaze steps. The number of ActPoints is set to 25

here. When the number of gaze steps increases from 1 to

2, our model is promoted by 0.51% in terms of mAP; no-
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Table 3. Comparisons with variants of feature aggregation on V-

COCO. “I”, “H”, and “O” denote the features of interaction point,

human center point, and object center point, respectively.

Methods AProle

I (our baseline) 51.06

I + H 51.84

I + O 51.71

I + H + O 52.32

ActPoints w/o glance and gaze 51.66

ActPoints + glance and gaze 53.25

tably, the performance is not further promoted through the

addition of more gaze steps, which may be because this in-

creases the difficulty of model optimization.

Third, we try sharing the parameters of the two 3 × 3

Conv layers that generate F
1 and F

2 in Figure 2. As Table

2 shows, the performance of our model decreases by 0.29%

in terms of mAP. One reason for this is that Gaze Step 2

captures more fine-grained features for interaction predic-

tion; therefore, it is better for the two gaze steps to adopt

independent Conv layers.

Comparisons with Variants of Feature Aggregation In

two-stage methods, it is a common practice to aggregate

features of the human instance, the object instance, and

their union box for interaction prediction purposes [7], [17],

[14]. Accordingly, in this experiment, we compare the per-

formance of the above feature aggregation approach with

our proposed glance-and-gaze strategy. The experimental

results are tabulated in Table 3. All methods in this table

are constructed based on our baseline model. Here, “I + H”

(“I + O”) means that we concatenate the features of each

pixel in F
0 (in Figure 2) with those of one human (object)

center point. “I + H + O” denotes that both features of the

human and object center points are aggregated. The human

and object center points are obtained via the point match-

ing strategy in [10]. Moreover, “ActPoints w/o glance and

gaze” means that we adopt one deformable Conv layer to

aggregate features of the predicted coarse ActPoints on F
0

for interaction prediction. The structure of these models is

outlined in more detail in the supplementary material.

From the above, we can make the following observation-

s. First, performance is promoted when either human or ob-

ject features are aggregated. However, one person may in-

teract with different objects, while a single object may also

be interacted by multiple persons. Therefore, features for

the center points of human and object instances may lack

specific information for each human-object pair. By con-

trast, our proposed ActPoints adaptively capture features in

the discriminative area for each human-object pair; there-

fore, it outperforms “I + H + O” by 0.93% mAP. Second,

when the glance and gaze steps are omitted, the perfor-

mance of ActPoints drops by 1.59% mAP. These compar-

isons demonstrate the effectiveness of our proposed glance-

and-gaze strategy.

Table 4. Performance comparisons on V-COCO. ◦ denotes meth-

ods that are reproduced using their open-source codes. ‘A’, ‘P’,

‘S’, and ‘L’ represent the appearance feature, human pose feature,

spatial feature, and language feature, respectively.

Methods Feature AProle

T
w

o
-S

ta
g
e

iCAN [12] A+S 45.3

RPNN [16] A+S+P 47.5

TIN (RPDCD) [6] A+S+P 47.8

VCL [17] A+S 48.3

C-HOI [37] A+S 48.3

DRG [19] A+S+L 51.0

VSGNet [11] A+S 51.7

PMFNet [7] A+S+P 52.0

PD-Net [14] A+S+P+L 52.6

ACP [15] A+S+P+L 52.9

FCMNet [8] A+S+P+L 53.1

ConsNet [18] A+S+L 53.2

O
n
e-

S
ta

g
e InteractNet [3] A 40.0

UnionDet [1] A 47.5

IP-Net [20] A 51.0

PPDM-Hourglass◦ [10] A 51.1

GGNet-Hourglass A 54.7

5.3. Comparisons with State­of­the­Art Methods

We compare the performance of GGNet with state-of-

the-art methods on both V-COCO and HICO-DET.

As shown in Table 4, GGNet outperforms all state-of-

the-art methods by significant margins on V-COCO. In par-

ticular, with the same backbone model, GGNet outperforms

one of the most recent one-stage methods, i.e. PPDM [10]

by a large margin of 3.6% in terms of mAP. Moreover, al-

though recent two-stage methods adopt various types of fea-

tures to promote HOI detection performance, GGNet still

outperforms all of these by at least 1.5% in terms of mAP

while utilizing appearance features only.

As shown in Table 5, on HICO-DET, GGNet still outper-

forms state-of-the-art methods by clear margins in different

settings of “Backbone Sharing”. In particular, GGNet out-

performs PPDM [10], by 1.74% (2.78%), 2.70% (3.58%),

and 1.50% (2.64%) mAP in DT (KO) mode for the full,

rare and non-rare HOI categories, respectively. Moreover,

GGNet outperforms one of the best two-stage methods, i.e.

PD-Net [38], by 1.10% mAP in DT mode. Again, it is worth

noting that PD-Net utilizes four types of features while G-

GNet employs the appearance feature only.

As Table 5 shows, several recent two-stage methods have

adopted two separate backbones for object detection and

interaction prediction. In particular, two approaches have

fine-tuned both backbones on the HICO-DET databases,

thereby achieving superior performance [19], [17] (marked

with ⋄ in Table 5). For its part, however, GGNet has a single

shared backbone for object detection and interaction predic-

tion. To facilitate fair comparison, we further test the per-

formance of GGNet with the same object detection results

provided by the object detector in DRG [19]; this setting

is denoted as GGNet‡. As shown in Table 5, GGNet‡ out-

performs DRG⋄‡ [19] by a large margin of 4.64% (5.52%)

mAP in DT (KO) mode.
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Table 5. Performance comparisons on HICO-DET. “Backbone Sharing” represents methods that use the same feature backbone for object

detection and interaction detection. ⋄ denotes two-stage methods that first pre-train their object detectors on COCO, and then further

fine-tune the object detectors on HICO-DET. ‡ denotes methods that use the same object detection results during inference.
Backbone DT Mode KO Mode

Methods Sharing Feature Full Rare Non-Rare Full Rare Non-Rare

T
w

o
-S

ta
g

e

No-Frills [5] X A+S+P 17.18 12.17 18.68 - - -

DRG [19] - A+S+L 19.26 17.74 19.71 23.40 21.75 23.89

Peyre et al. [23] X A+S+L 19.40 14.60 20.90 - - -

VCL [17] - A+S 19.43 16.55 20.29 22.00 19.09 22.87

FCMNet [8] - A+S+P+L 20.41 17.34 21.56 22.04 18.97 23.12

ACP [15] X A+S+P+L 20.59 15.92 21.98 - - -

PD-Net [14] X A+S+P+L 20.81 15.90 22.28 24.78 18.88 26.54

DJ-RN [22] - A+S+P+L 21.34 18.53 22.18 23.69 20.64 24.60

ConsNet [18] X A+S+L 22.15 17.12 23.65 - - -

PD-Net [38] X A+S+P+L 22.37 17.61 23.79 26.86 21.70 28.44

VCL⋄[17] - A+S 23.63 17.21 25.55 25.98 19.12 28.03

DRG⋄‡ [19] - A+S+L 24.53 19.47 26.04 27.98 23.11 29.43

O
n

e-
S

ta
g

e

Shen et al. [2] X A+P 6.46 4.24 7.12 - - -

InteractNet [3] X A 9.94 7.16 10.77 - - -

UnionDet [1] X A 17.58 11.72 19.33 19.76 14.68 21.27

Our Baseline-Hourglass X A 21.43 13.46 23.81 24.29 16.40 26.65

PPDM-Hourglass [10] X A 21.73 13.78 24.10 24.58 16.65 26.84

GGNet-Hourglass X A 23.47 16.48 25.60 27.36 20.23 29.48

PPDM-Hourglass‡ [10] - A 26.50 19.35 28.63 29.24 22.18 31.34

GGNet-Hourglass‡ - A 29.17 22.13 30.84 33.50 26.67 34.89

The above comparisons also show that the adoption of a

separate object detector can significantly promote GGNet’s

performance. This may be because the object detection and

interaction prediction tasks conflict with each other, as they

require different features. It is also worth noting that adopt-

ing two backbones does not alter the one-stage nature of

GGNet, as the object detection and interaction prediction

tasks still run in parallel, regardless of whether or not they

adopt the same backbone. The above experiments further

justify the effectiveness of GGNet.

5.4. Qualitative Visualization Results

Figure 4 visualizes the interaction points and ActPoints

predicted by GGNet. Here, three images are randomly cho-

sen from V-COCO. We can observe that the interaction

points, i.e. the green points in first column, are often locat-

ed in the background area; therefore, their own features are

vague to represent the interaction category. In comparison,

ActPoints capture cues from discriminative object and hu-

man parts, both of which are important for interaction pre-

diction. Moreover, the ActPoints refined by Gaze Step 2 are

usually located at more important object and human parts

than the ActPoints sampled by Gaze Step 1. In the supple-

mentary material, we also present qualitative comparisons

between GGNet and PPDM in terms of HOI detection re-

sults.

6. Conclusion

Existing one-stage HOI detection methods typically u-

tilize the features of predefined interaction areas for inter-

action prediction, while these artificially defined areas are

usually vague to represent interactions. In this paper, we

propose a novel one-stage network, namely GGNet, which

(a) throw frisbee

(b) carry surfboard

(c) kick sports_ball

high

low

Weight

Figure 4. Visualization of results in glance and gaze steps. The

first column shows the detected interaction point in the Glance

Step; the second and third columns visualize the adaptively sam-

pled ActPoints by Gaze Step 1 and Step 2, respectively. The color

of each ActPoint reflects its weight, i.e. discriminative power.

adaptively samples a set of action-aware points (ActPoints)

via glance and gaze steps. We also propose an action-aware

point matching approach that robustly matches target hu-

man and objects for each detected interaction. Moreover,

a novel hard negative attentive loss is devised to improve

the optimization of GGNet. Extensive experiments results

show that GGNet outperforms start-of-the-arts on both V-

COCO and HICO-DET datasets.
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