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Abstract

Deep neural networks may perform poorly when train-

ing datasets are heavily class-imbalanced. Recently, two-

stage methods decouple representation learning and classi-

fier learning to improve performance. But there is still the

vital issue of miscalibration. To address it, we design two

methods to improve calibration and performance in such

scenarios. Motivated by the fact that predicted probability

distributions of classes are highly related to the numbers of

class instances, we propose label-aware smoothing to deal

with different degrees of over-confidence for classes and im-

prove classifier learning. For dataset bias between these

two stages due to different samplers, we further propose

shifted batch normalization in the decoupling framework.

Our proposed methods set new records on multiple popu-

lar long-tailed recognition benchmark datasets, including

CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, Places-LT, and

iNaturalist 2018.

1. Introduction

With numerous available large-scale and high-quality

datasets, such as ImageNet [27], COCO [19], and

Places [40], deep convolutional neural networks (CNNs)

have made notable breakthrough in various computer vi-

sion tasks, such as image recognition [16, 10], object detec-

tion [26], and semantic segmentation [6]. These datasets

are usually artificially balanced with respect to the number

of instances for each object/class. However, in many real-

world applications, data may follow unexpected long-tailed

distributions, where the numbers of instances for different

classes are seriously imbalanced. When training CNNs on

these long-tailed datasets, the performance notably degrades.

To address this terrible issue, a number of methods were

proposed for long-tailed recognition.

Recently, many two-stage approaches have achieved

significant improvement comparing with one-stage meth-

ods. Deferred re-sampling (DRS, [4]) and deferred re-

weighting (DRW, [4]) first train CNNs in a normal way in

Stage-1. DRS tunes CNNs on datasets with class-balanced
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Figure 1: Reliability diagrams of ResNet-32. From top

left to bottom right: the plain model trained on the original

balanced CIFAR-100 dataset, the plain model, cRT, and LWS

trained on CIFAR-100-LT with IF 100.

resampling while DRW tunes CNNs by assigning different

weights to classes in Stage-2. Zhou et al. [39] proposed

bilateral branch network (BBN) in one stage to simulate

the process of DRS by dynamically combining instance-

balanced sampler and the reverse-balanced sampler. Kang

et al. [15] proposed two-stage decoupling models, classifier

re-training (cRT) and learnable weight scaling (LWS), to

further boost performance, where decoupling models freeze

the backbone and just train the classifier with class-balanced

resampling in Stage-2.

Confidence calibration [24, 9] is to predict probability by

estimating representative of true correctness likelihood. It

is important for recognition models in many applications [1,
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14]. Expected calibration error (ECE) is widely used in

measuring calibration of the network. To compute ECE, all

N predictions are first grouped into B interval bins of equal

size. ECE is defined as:

ECE =

B
∑

b=1

|Sb|

N

∣

∣

∣

∣

acc(Sb)− conf(Sb)

∣

∣

∣

∣

× 100%,

where Sb is the set of samples whose prediction scores fall

into Bin-b. acc(·) and conf(·) are the accuracy and predicted

confidence of Sb, respectively.

Our study shows, because of the imbalanced composition

ratio of each class, networks trained on long-tailed datasets

are more miscalibrated and over-confident. We draw the

reliability diagrams with 15 bins in Fig. 1, which compares

the plain cross-entropy (CE) model trained on the original

CIFAR-100 dataset, the plain CE model, cRT, and LWS

trained on CIFAR-100-LT with imbalanced factor (IF) 100.

It is noticeable that networks trained on long-tailed datasets

usually have higher ECEs. The two-stage models of cRT

and LWS suffer from over-confidence as well. Moreover,

Figs. 9 and 10 (the first two plots) in Appendix C depict that

this phenomenon also commonly exists on other long-tailed

datasets, such as CIFAR-10-LT and ImageNet-LT.

Another issue is that two-stage decoupling ignores the

dataset bias or domain shift [25] in the two stages. In de-

tails, two-stage models are first trained on the instanced-

balanced dataset DI in Stage-1. Then, models are trained

on the class-balanced dataset DC in Stage-2. Obviously,

PDI
(x, y) 6= PDC

(x, y) and distributions of the dataset

by different sampling ways are inconsistent. Motivated by

transfer learning [17, 33], we focus on the batch normaliza-

tion [12] layer to deal with the dataset bias problem.

In this work, we propose a Mixup Shifted Label-Aware

Smoothing model (MiSLAS) to effectively solve above is-

sues. Our key contributions are as follows.

• We discover that models trained on long-tailed datasets are

much more miscalibrated and over-confident than those

trained on balanced data. Two-stage models suffer from

this problem as well.

• We find that mixup can remedy over-confidence and have

a positive effect on representation learning but a nega-

tive or negligible effect on classifier learning. To further

enhance classifier learning and calibration, we propose

label-aware smoothing to handle different degrees of over-

confidence for classes.

• It is the first attempt to note the dataset bias or domain shift

in two-stage resampling methods for long-tailed recog-

nition. To deal with it in the decoupling framework, we

propose shift learning on the batch normalization layer,

which can greatly improve performance.

• We extensively validate our MiSLAS on multiple long-

tailed recognition benchmark datasets – experimental re-

sults manifest the effectiveness. Our method yields new

state-of-the-art.

2. Related Work

Re-sampling and re-weighting. There are two groups

of re-sampling strategies: over-sampling the tail-class im-

ages [28, 2, 3] and under-sampling the head-class im-

ages [13, 2]. Over-sampling is regularly useful on large

datasets and may suffer from heavy over-fitting to tail classes

especially on small datasets. For under-sampling, it dis-

cards a large portion of data, which inevitably causes degra-

dation of the generalization ability of deep models. Re-

weighting [11, 34] is another prominent strategy. It assigns

different weights for classes and even instances. The vanilla

re-weighting method gives class weights in reverse propor-

tion to the number of samples of classes.

However, with large-scale data, re-weighting makes deep

models difficult to optimize during training. Cui et al. [7]

relieved the problem using the effective numbers to calculate

the class weights. Another line of work is to adaptively

re-weight each instance. For example, focal loss [18, 22]

assigned smaller weights for well-classified samples.

Confidence calibration and regularization. Calibrated

confidence is significant for classification models in many

applications. Calibration of modern neural networks is first

discussed in [9]. The authors discovered that model capacity,

normalization, and regularization have strong effect on net-

work calibration. mixup [37] is a regularization technique to

train with interpolation of input and labels.

mixup inspires follow-up of manifold mixup [32], Cut-

Mix [36], and Remix [5] that have shown significant im-

provement. Thulasidasan et al. [30] found that CNNs trained

with mixup are better calibrated. Label smoothing [29] is an-

other regularization technique that encourages the model to

be less over-confident. Unlike cross-entropy that computes

loss upon the ground truth labels, label smoothing computes

loss upon a soft version of labels. It relieves over-fitting and

increases calibration and reliability [23].

Two-stage methods. Cao et al. [4] proposed deferred re-

weighting (DRW) and deferred re-sampling (DRS), working

better than conventional one-stage methods. Its stage-2, start-

ing from better features, adjusts the decision boundary and

locally tunes features. Recently, Kang et al. [15] and Zhou

et al. [39] concluded that although class re-balance matters

for jointly training representation and classifier, instance-

balanced sampling gives more general representations.

Based on this observation, Kang et al. [15] achieved

state-of-the-art results by decomposing representation and

classifier learning. It first trains the deep models with
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Mark Stg.-1 Stg.-2 ResNet-50 ResNet-101 ResNet-152

CE ✘� 45.7 / 13.7 47.3 / 13.7 48.7 / 14.5

CE ✔� 45.5 / 7.98 47.7 / 10.1 48.3 / 10.2

cRT ✘� ✘� 50.3 / 8.97 51.3 / 9.34 52.7 / 9.05

cRT ✘� ✔� 50.2 / 3.32 51.3 / 3.38 52.8 / 3.60

cRT ✔� ✘� 51.7 / 5.62 53.1 / 6.86 54.2 / 6.02

cRT ✔� ✔� 51.6 / 3.13 53.0 / 2.93 54.1 / 3.37

Mark Stg.-1 Stg.-2 ResNet-50 ResNet-101 ResNet-152

CE ✘� 45.7 / 13.7 47.3 / 13.7 48.7 / 14.5

CE ✔� 45.5 / 7.98 47.7 / 10.1 48.3 / 10.2

LWS ✘� ✘� 51.2 / 4.89 52.3 / 5.10 53.8 / 4.48

LWS ✘� ✔� 51.0 / 5.01 52.2 / 5.38 53.6 / 5.50

LWS ✔� ✘� 52.0 / 2.23 53.5 / 2.73 54.6 / 2.46

LWS ✔� ✔� 52.0 / 8.04 53.3 / 6.97 54.4 / 7.74

Table 1: Top-1 accuracy (%) and ECE (%) of the plain cross-entropy (CE) model, and decoupling models of cRT (left) and

LWS (right), for ResNet families trained on the ImageNet-LT dataset. We vary the augmentation strategies with ( ✔�), or without

( ✘�) mixup α = 0.2, on both of the stages.

Figure 2: Classifier weight norms for the ImageNet-LT validation set where classes are sorted by descending values of Nj ,

where Nj denotes the number of training sample for Class-j. Left: weight norms of cRT with or without mixup. Right: weight

norms of LWS with or without mixup. Light shade: true norm. Dark lines: smooth version. Best viewed on screen.

instance-balanced sampling, and then fine-tunes the clas-

sifier with class-balanced sampling with parameters of rep-

resentation learning fixed. Similarly, Zhou et al. [39] inte-

grated mixup training into the proposed cumulative learning

strategy. It bridges the representation learning and classi-

fier re-balancing. The cumulative learning strategy requires

dual samplers of instance-balanced and reversed instance-

balanced sampler.

3. Main Approach

3.1. Study of mixup Strategy

For the two-stage learning framework, Kang et al. [15]

and Zhou et al. [39] found that instance-balanced sampling

gives the most general representation among all for long-

tailed recognition. Besides, Thulasidasan et al. [30] show

that networks trained with mixup are better calibrated. Based

on these findings, when using instance-balanced sampling,

we explore the effect of mixup in the two-stage decoupling

framework for higher representation generalization and over-

confidence reduction.

We train a plain cross-entropy model, and two two-stage

models of cRT and LWS, on ImageNet-LT for 180 epochs

in Stage-1 and finetune them for 10 epochs in Stage-2, re-

spectively. We vary the training setup (with/without mixup

α = 0.2) for both stages. Top-1 accuracy of these variants

is listed in Table 1. It reveals the following. (i) When ap-

plying mixup, improvement of CE can be ignored. But the

performance is greatly enhanced for both cRT and LWS.

(ii) Applying additional mixup in Stage-2 yields no obvious

improvement or even damages performance. The reason

is that mixup encourages representation learning and is yet

with adverse or negligible effect on classifier learning.

Besides, we draw the final classifier weight norms of

these variants in Fig. 2. We show the L2 norms of the weight

vectors for all classes, as well as the training data distribution

sorted in a descending manner concerning the number of

instances. We observe that when applying mixup (in orange),

the weight norms of the tail classes tends to be large and the

weight norms of the head classes decrease. It means mixup

may be more friendly to tail classes.

We also list ECEs of the above models in Table 1. When

adding mixup in just Stage-1, both cRT and LWS models can

consistently obtain better top-1 accuracy and lower ECEs

for different backbones (Row-4 and Row-6). Due to the

unsatisfied top-1 accuracy enhancement and unstable ECE

decline of mixup for classifier learning (by adding mixup

in Stage-2), we propose a label-aware smoothing to further

improve both calibration and classifier learning.
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Figure 3: Violin plot of predicted probability distributions for different parts of the classes, head (100+ images per class),

medium (20-100 images per class), and tail (less than 20 images per class) on CIFAR-100-LT with IF 100. The upper half part

in light blue denotes “LWS + cross-entropy”. The bottom half part in deep blue represents “LWS + label-aware smoothing”.

3.2. Label­aware Smoothing

In this subsection, we analyze and deal with the two issues

of over-confidence and limited improvement by classifier

learning. Suppose weight of the classifier is W ∈ R
M×K ,

where M is the number of features and K is the number of

classes. The cross-entropy encourages the whole network

to be over-confident on the head classes. The cross-entropy

loss after the softmax activation is l(y,p) = − log(py) =

−w⊤

y x + log(
∑

exp(w⊤

i x)), where y ∈ {1, 2, ...,K} is

the label. x ∈ R
M is the feature vector send to classifier and

wi is the i-th column vector of W . The optimal solution is

w∗
y
⊤x = inf , while other w⊤

i x, i 6= y are small enough.

Because the head classes contain much more training ex-

amples, the network makes the weight norm ‖w‖ of the head

classes larger to approach the optimal solution. It results

in predicted probabilities mainly near 1.0 (see Fig. 3, the

upper half in light blue). Another fact is that distributions of

predicted probability are related to instance numbers. Unlike

balanced recognition, applying different strategies for these

classes is necessary for solving the long-tailed problem.

Here, we propose label-aware smoothing to solve the

over-confidence in cross-entropy and varying distributions

of predicted probability issues. It is expressed as

l(q,p) = −

K
∑

i=1

qi log pi,

qi =

{

1− ǫy = 1− f(Ny), i = y,
ǫy

K−1 =
f(Ny)
K−1 , otherwise,

(1)

where ǫy is a small label smoothing factor for Class-y, re-

lating to its class number Ny. Now the optimal solution

becomes (proof presented in Appendix E)

w∗

i
⊤
x =

{

log
(

(K−1)(1−ǫy)
ǫy

)

+ c, i = y,

c, otherwise,
(2)

where c is an arbitrary real number. Compared with the

optimal solution in cross-entropy, the label-aware smoothing

encourages a finite output, more general and remedying

overfit. We suppose the labels of the long-tailed dataset

are assigned in a descending order concerning the number

of instances, i.e., N1 ≥ N2 ≥ ... ≥ NK . Because the

head classes contain more diverse examples, the predicted

probabilities are more promising than those of tail classes.

Thus, we require the classes with larger instance numbers to

be penalized with stronger label smoothing factors – that is,

the related function f(Ny) should be negatively correlated

to Ny . We define three types of related function f(Ny) as

• Concave form:

f(Ny) = ǫK + (ǫ1 − ǫK) sin

[

π(Ny −NK)

2(N1 −NK)

]

; (3.a)

• Linear form:

f(Ny) = ǫK + (ǫ1 − ǫK)
Ny −NK

N1 −NK

; (3.b)

• Convex form:

f(Ny) = ǫ1+(ǫ1−ǫK) sin

[

3π

2
+

π(Ny −NK)

2(N1 −NK)

]

, (3.c)

where ǫ1 and ǫK are two hyperparameters. Illustration of

these functions is shown in Fig. 6. If we set ǫ1 ≥ ǫK ,

ǫ1 ≥ ǫ2 ≥ ... ≥ ǫK is obtained. For large instance number

Ny for Class-y, label-aware smoothing allocates a strong

smoothing factor. It lowers the fitting probability to relieve

over-confidence because the head and medium classes are

more likely to be over-confident than the tail classes (see

Fig. 3).

As the form of label-aware smoothing is more compli-

cated than cross-entropy, we propose a generalized classifier

learning framework to fit it. Here we give a quick review

about cRT and LWS. cRT learns a classifier weight, which

contains KM learnable parameters, while LWS is restricted

to learning the weight scaling vector s ∈ R
K with only K

learnable parameters.
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In contrast, cRT has more learnable parameters and more

powerful representation ability. LWS tends to obtain better

validation losses and performance on large-scale datasets

(refer to the experiment part in [15]). So LWS has a better

generalization property. To combine the advantages of cRT

and LWS, we design the classifier framework in Stage-2 as

z = diag(s) (rW +∆W )
⊤
x. (4)

In Eq. (4), we fix the original classifier weight W in Stage-2.

If we make the learnable scaling vector s fixed, set s = 1

and retention factor r = 0, and just learn the new classifier

weight ∆W ∈ R
M×K , Eq. (4) degrades to cRT.

Because LWS fixes the original classifier weights W and

only learns the scaling s, Eq. (4) degrades to LWS if we set

r = 1 and ∆W = 0. In most cases, LWS achieves better

results on large-scale datasets. Thus, we let s learnable

and set r = 1. We also make ∆W learnable to improve

the representation ability and optimize ∆W by a different

learning rate. ∆W can be viewed as shift transformation

on W . It changes the direction of weight vector w in W ,

which LWS does not similarly achieve.

3.3. Shift Learning on Batch Normalization

In the two-stage training framework, models are first

trained with instance-balanced sampling in Stage-1 and then

trained with class-balanced sampling in Stage-2. Since the

framework involves two samplers, or two datasets – instance-

balanced dataset DI and class-balanced dataset DC – we

regard this two-stage training framework as a variant of

transfer learning. If we view the two-stage decoupling train-

ing framework from the transfer learning perspective, fixing

the backbone part and just tuning the classifier in Stage-2

are clearly unreasonable, especially for the batch normaliza-

tion (BN) layers.

Specifically, we suppose the input to network is xi, the

input feature of some BN layer is g(xi), and the mini-batch

size is m. The mean and running variance of Channel-j for

these two stages are

xi ∼ PDI
(x, y), µ

(j)
I =

1

m

m
∑

i=1

g(xi)
(j)

,

σ2
I
(j)

=
1

m

m
∑

i=1

[

g(xi)
(j)

− µ
(j)
I

]2

,

(5)

xi ∼ PDC
(x, y), µ

(j)
C =

1

m

m
∑

i=1

g(xi)
(j)

,

σ2
C
(j)

=
1

m

m
∑

i=1

[

g(xi)
(j)

− µ
(j)
C

]2

.

(6)

Due to different sampling strategies, the composition ra-

tios of head, medium, and tail classes are also different,

which lead to PDI
(x, y) 6= PDC

(x, y). By Eqs. (5) and (6),

there exist biases in µ and σ under two sampling strategies,

i.e., µI 6= µC and σ2
I 6= σ2

C. Thus, it is infeasible for the

decoupling framework that BN shares mean and variance

across datasets with two sampling strategies. Motivated by

AdaBN [17] and TransNorm [33], we update the running

mean µ and variance σ and yet fix the learnable linear trans-

formation parameters α and β for better normalization in

Stage-2.

4. Experiments

4.1. Datasets and Setup

Our experimental setup including the implementation

details and evaluation protocol mainly follows [4] for CIFAR-

10-LT and CIFAR-100-LT, and [15] for ImageNet-LT, Places-

LT, and iNuturalist 2018. Please see Appendix A for more

details of training and hyperparameter setting.

4.1.1 Datasets Explanation

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100

both have 60,000 images, 50,000 for training and 10,000

for validation with 10 categories and 100 categories. For

fair comparison, we use the long-tailed versions of CIFAR

datasets with the same setting as those used in [4]. It is by

controlling the degrees of data imbalance with an imbalanced

factor β = Nmax

Nmin
, where Nmax and Nmin are the numbers of

training samples for the most and the least frequent classes.

Following Cao et al. [4] and Zhou et al. [39], we conduct

experiments with IF 100, 50, and 10.

ImageNet-LT and Places-LT. ImageNet-LT and Places-

LT were proposed by Liu et al. [20]. ImageNet-LT is a

long-tailed version of the large-scale object classification

dataset ImageNet [27] by sampling a subset following the

Pareto distribution with power value α = 6. It contains

115.8K images from 1,000 categories, with class cardinality

ranging from 5 to 1,280. Places-LT is a long-tailed version

of the large-scale scene classification dataset Places [40]. It

consists of 184.5K images from 365 categories with class

cardinality ranging from 5 to 4,980.

iNaturalist 2018. iNaturalist 2018 [31] is a classification

dataset, which is on a large scale and suffers from extremely

imbalanced label distribution. It is composed of 437.5K

images from 8,142 categories. In addition, on iNaturalist

2018 dataset, we also face the fine-grained problem.

4.1.2 Implementation Details

For all experiments, we use the SGD optimizer with momen-

tum 0.9 to optimize networks. For CIFAR-LT, we mainly

follow Cao et al. [4]. We train all MiSLAS models with

the ResNet-32 backbone on one GPU and use the multistep
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Figure 4: Reliability diagrams of ResNet-32 trained on CIFAR-100-LT with IF 100. From left to right: cRT with mixup, LWS

with mixup, LWS with mixup and shifted BN, and MiSLAS (complying with Fig. 1).

learning rate schedule, which decreases the learning rate by

0.1 at the 160th and 180th epochs in Stage-1. For ImageNet-

LT, Places-LT, and iNaturalist 2018, we mainly follow Kang

et al. [15] and use the cosine learning rate schedule [21] to

train all MiSLAS models with the ResNet-10, 50, 101, and

152 backbones on four GPUs.

4.2. Ablation Study

Calibration performance. Here we show the reliability

diagrams with 15 bins of our methods on CIFAR-100-LT

with IF 100 in Fig. 4. Comparing with Fig. 1, both mixup

and label-aware smoothing can not only largely enhance

the network calibration (even lower ECEs than those on

balanced datasets) but also greatly improve the performance

for long-tailed recognition. The similar trends can also be

noticed on CIFAR-10-LT, ImageNet-LT, and Places-LT (see

Table 1 and figures in Appendix C for detail), which proves

the power of the proposed method on calibration.

All experimental results show that the training networks

on imbalanced datasets lead to severe over-confidence. Since

the conventional mixup and label-smoothing both contain

the operation of softening the ground truth labels, it may

suggest that training with hard labels is likely to be another

contributing factor leading to network over-confidence.

Comparing re-weighting with label-aware smoothing.

Here we compare the proposed label-aware smoothing (LAS)

with the re-weighting methods. The main difference is on

label transformation. In particular, label-aware smoothing

changes the hard label to the soft version based on label

distribution (see the otherwise case of Eq. (1): qi =
f(Ny)
K−1 ,

i 6= y). While re-weighting methods do not contain such

critical transformation and just set the values to zero by

qi = 0, i 6= y.

Further, due to the transformation of labels, the optimal

solution of w∗

i
⊤x in LAS becomes Eq. (2). In contrast, the

optimal solution of re-weighting is the same as that of cross-

entropy w∗

i
⊤x = inf , which cannot properly change the

Method 100 50 10

CB-CE [7] 44.3 / 20.2 50.5 / 19.1 62.5 / 13.9

LAS 47.0 / 4.83 52.3 / 2.25 63.2 / 1.73

Table 2: Comparison in terms of test accuracy (%) / ECE (%)

of label-aware smoothing (LAS) with re-weighting, class-

balanced cross-entropy (CB-CE, [7]) in Stage-2. Both mod-

els are based on ResNet-32 and trained on CIFAR-100-LT

with IF 100, 50, and 10.

predicted distribution and leads to over-confidence. Based on

our experimental results in Table 2, using the re-weighting

method in Stage-2 degrades performance and calibration

compared with the case of LAS.

How ǫ1 and ǫK affect label-aware smoothing? In our

label-aware smoothing, there are two hyperparameters in

Eqs. (3.a), (3.b), and (3.c). They are ǫ1 and ǫK , which control

penalty of classes. In a recognition system, if the predicted

probability of Class-y is larger than 0.5, the classifier would

classify the input to Class-y. Thus, to make it reasonable,

we limit 0 ≤ ǫK ≤ ǫ1 ≤ 0.5.

Here we conduct experiments by varying ǫ1 and ǫK both

from 0.0 to 0.5 on CIFAR-10-LT with IF 100. We plot

the performance matrix upon ǫ1 and ǫK in Fig. 5 for all

possible variants. It shows that the classification accuracy

is further improved by 3.3% comparing with conventional

cross-entropy (ǫ1 = 0 and ǫK = 0, green square) when

we pick ǫ1 = 0.3, and ǫK = 0.0 (orange square) for label-

aware smoothing. Consistent improvement 0.9% is yielded

on CIFAR-100-LT with IF 100 when picking ǫ1 = 0.4 and

ǫK = 0.1 for label-aware smoothing.

How f(·) affects label-aware smoothing? As discussed

in Sec. 3.2, the related function f(·) may play a significant

role for the final model performance. We draw illustration

of Eqs. (3.a), (3.b), and (3.c) in Fig. 6. For CIFAR-100-LT

with IF 100, we set K = 100, N1 = 500, and N100 = 5.

Based on the ablation study results of ǫ1 and ǫK mentioned
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Figure 5: Ablation study of two hyperparameters ǫ1 and ǫK in label-aware smooth-

ing. Heat map visualization on CIFAR-10-LT with IF 100 (left) and on CIFAR-

100-LT with IF 100 (right).
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Figure 6: Function illustration and the test

performance of Eqs. (3.a), (3.b), and (3.c).

Concave form achieves the best result.
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Figure 7: Visualization of the changes in the running mean µ and variance σ2.

The ResNet-32 based model is trained on CIFAR-100-LT with IF 100. Left: µ

and σ2 in the first BN of ResNet-32, which contains 16 channels. Right: µ and

σ2 in the last BN of ResNet-32, which contains 64 channels.

Module CIFAR-100-LT

MU SL LAS 100 50 10

✘� ✘� ✘� 41.2 46.0 58.5
✔� ✘� ✘� 44.2 50.6 62.2
✔� ✔� ✘� 45.3 51.4 62.8
✔� ✔� ✔� 47.0 52.3 63.2

✘� ✘� ✘� 36.3 34.2 27.5
✔� ✘� ✘� 22.5 18.4 14.3
✔� ✔� ✘� 22.2 19.2 13.7
✔� ✔� ✔� 4.83 2.25 1.73

Table 3: Ablation study for all proposed

modules on CIFAR-100-LT. Top: accu-

racy (%). Bottom: ECE (%). MU: apply-

ing mixup only in Stage-1. SL: shift learn-

ing on BN. LAS: label-aware smoothing.

above, we set ǫ1 = 0.4 and ǫ100 = 0.1 here. After tuning

for 10 epochs in Stage-2, accuracy of the concave model is

the best. We also exploit other forms, e.g., exponential form

of f(·), in Appendix B. The gain of changing form is quite

limited compared with varying ǫ1 and ǫK .

How label-aware smoothing affects prediction distribu-

tion? To visualize the change in predicted probability dis-

tributions, we train two LWS models, one with cross-entropy

and the other with label-aware smoothing on CIFAR-100-LT

with IF 100. The cross-entropy-based distributions of the

head, medium, and tail classes are shown in the upper part

of Fig. 3 in light blue. The label-aware smoothing-based

distributions are in the bottom half in deep blue. We observe

that the over-confidence of head and medium classes is much

reduced, and the whole distribution of the tail classes slightly

moves right when using label-aware smoothing. These em-

pirical results are consistent with our analysis in Sec. 3.2.

Further analysis of shift learning. In this part, we con-

duct experiments to show the effectiveness and suitability of

shift learning on BN. We train the LWS model on CIFAR-

100-LT with IF 100. After 10-epoch finetuning in Stage-2,

the model trained with BN shifting achieves accuracy 45.3%,

1.1% higher than that without BN shifting. We also visualize

the change in BN. As shown in Fig. 7, there exist biases in µ

and σ2 between datasets using different sampling strategies.

Due to different composition ratios of the head, medium

and tail classes, the statistic mean µ and variance σ2 vary.

We also notice intriguing phenomena in Fig. 7: (i) the change

in variance σ2 is larger than that on mean µ. (ii) Change of

µ and σ2 in the deep BN layers is much smaller than that in

the shallow BN layers.

Summary. Overall, Table 3 shows the ablation investiga-

tion on the effects of mixup (adding mixup in Stage-1, MU),

shift learning on batch normalization (SL), and label-aware

smoothing (LAS). We note each proposed module can not

only improves accuracy (top of Table 3), but also greatly

relieves over-confidence (bottom of Table 3) on CIFAR-100-

LT for all commonly-used imbalanced factors, i.e., 100, 50,

and 10. They firmly manifest the effectiveness.
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Method
CIFAR-10-LT CIFAR-100-LT

100 50 10 100 50 10

CE 70.4 74.8 86.4 38.4 43.9 55.8

mixup [37] 73.1 77.8 87.1 39.6 45.0 58.2

LDAM+DRW [4] 77.1 81.1 88.4 42.1 46.7 58.8

BBN(include mixup) [39] 79.9 82.2 88.4 42.6 47.1 59.2

Remix+DRW(300 epochs) [5] 79.8 - 89.1 46.8 - 61.3

cRT+mixup 79.1 / 10.6 84.2 / 6.89 89.8 / 3.92 45.1 / 13.8 50.9 / 10.8 62.1 / 6.83

LWS+mixup 76.3 / 15.6 82.6 / 11.0 89.6 / 5.41 44.2 / 22.5 50.7 / 19.2 62.3 / 13.4

MiSLAS 82.1 / 3.70 85.7 / 2.17 90.0 / 1.20 47.0 / 4.83 52.3 / 2.25 63.2 / 1.73

Table 4: Top-1 accuracy (%) / ECE (%) for ResNet-32 based models trained on CIFAR-10-LT and CIFAR-100-LT.

Method ResNet-50

CE 44.6

CE+DRW [4] 48.5

Focal+DRW [18] 47.9

LDAM+DRW [4] 48.8

CRT+mixup 51.7 / 5.62

LWS+mixup 52.0 / 2.23

MiSLAS 52.7 / 1.83

(a) ImageNet-LT

Method ResNet-50

CB-Focal [7] 61.1

LDAM+DRW [4] 68.0

BBN(include mixup) [39] 69.6

Remix+DRW [5] 70.5

cRT+mixup 70.2 / 1.79

LWS+mixup(under-conf.) 70.9 / 9.41

MiSLAS(under-conf.) 71.6 / 7.67

(b) iNaturalist 2018

Method ResNet-152

Range Loss [38] 35.1

FSLwF [8] 34.9

OLTR [20] 35.9

OLTR+LFME [35] 36.2

cRT+mixup 38.3 / 12.4

LWS+mixup 39.7 / 11.7

MiSLAS 40.4 / 3.59

(c) Places-LT

Table 5: Top-1 accuracy (%) / ECE (%) on ImageNet-LT (left), iNaturalist 2018 (center) and Places-LT (right).

4.3. Comparison with State­of­the­arts

To verify the effectivity, we compare the proposed method

against previous one-stage methods of Range Loss [38],

LDAM Loss [4], FSLwF [8], and OLTR [20], and against

previous two-stage methods, including DRS-like, DRW-

like [4], LFME [35], cRT, and LWS [15]. For fair compari-

son, we add mixup on the LWS and cRT models. Remix [5]

is a recently proposed augmentation method for long-tail

recognition. Because BBN [39] has double samplers and

is trained in a mixup-like manner, we directly compare our

method with it.

Experimental results on CIFAR-LT. We conduct ex-

tensive experiments on CIFAR-10-LT and CIFAR-100-LT

with IF 100, 50, and 10, using the same setting as previ-

ous work [4, 39]. The results are summarized in Table 4.

Compared with previous methods, our MiSLAS outperforms

all previous methods by consistently large margins both in

top-1 accuracy and ECE. Moreover, the superiority holds

for all imbalanced factors, i.e., 100, 50, and 10, on both

CIFAR-10-LT and CIFAR-100-LT.

Experimental results on large-scale datasets. We fur-

ther verify the effectiveness of our method on three large-

scale imbalanced datasets, i.e., ImageNet-LT, iNaturalist

2018, and Places-LT. Table 5 lists experimental results on

ImageNet-LT (left), iNaturalist 2018 (center), and Places-LT

(right). Notably, our MiSLAS outperforms other approaches

and sets a new state-of-the-art with better accuracy and con-

fidence calibration on almost all three large-scale long-tailed

benchmark datasets. More results about the split class ac-

curacy and different backbones on these three datasets are

listed in Appendix D.

5. Conclusion

In this paper, we have discovered that models trained

on long-tailed datasets are more miscalibrated and over-

confident than those trained on balanced datasets. We accord-

ingly propose two solutions of using mixup and designing

label-aware smoothing to handle different degrees of over-

confidence for classes. We note the dataset bias (or domain

shift) in two-stage resampling methods for long-tailed recog-

nition. To reduce dataset bias in the decoupling framework,

we propose shift learning on the batch normalization layer,

which further improves the performance. Extensive quan-

titative and qualitative experiments on various benchmarks

show that our MiSLAS achieves decent performance for

both top-1 recognition accuracy and confidence calibration,

and makes a new state-of-the-art.

16496



References

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[2] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A

systematic study of the class imbalance problem in convo-

lutional neural networks. Neural Networks, 106:249–259,

2018.

[3] Jonathon Byrd and Zachary Lipton. What is the effect of

importance weighting in deep learning? In ICML, pages

872–881, 2019.

[4] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,

and Tengyu Ma. Learning imbalanced datasets with label-

distribution-aware margin loss. In NeurIPS, pages 1567–1578,

2019.

[5] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei,

and Da-Cheng Juan. Remix: Rebalanced mixup. In ECCVW,

2020.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,

Stefan Roth, and Bernt Schiele. The Cityscapes dataset for

semantic urban scene understanding. In CVPR, pages 3213–

3223, 2016.

[7] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge

Belongie. Class-balanced loss based on effective number of

samples. In CVPR, pages 9268–9277, 2019.

[8] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In CVPR, pages 4367–

4375, 2018.

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.

On calibration of modern neural networks. In ICML, pages

1321–1330, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages

770–778, 2016.

[11] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang.

Learning deep representation for imbalanced classification.

In CVPR, pages 5375–5384, 2016.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[13] Nathalie Japkowicz and Shaju Stephen. The class imbal-

ance problem: A systematic study. Intelligent data analysis,

6(5):429–449, 2002.

[14] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-

Machado. Calibrating predictive model estimates to support

personalized medicine. Journal of the American Medical

Informatics Association, 19(2):263–274, 2012.

[15] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,

Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decoupling

representation and classifier for long-tailed recognition. In

ICLR, 2020.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-

geNet classification with deep convolutional neural networks.

In NeurIPS, pages 1097–1105, 2012.

[17] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Ji-

aying Liu. Adaptive batch normalization for practical domain

adaptation. Pattern Recognition, 80:109–117, 2018.

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

pages 2980–2988, 2017.

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, pages 740–755, 2014.

[20] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, and Stella X Yu. Large-scale long-tailed recog-

nition in an open world. In CVPR, pages 2537–2546, 2019.

[21] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient

descent with warm restarts. ICLR, 2017.

[22] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart

Golodetz, Philip Torr, and Puneet Dokania. Calibrating deep

neural networks using focal loss. In NeurIPS, pages 15288–

15299, 2020.

[23] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.

When does label smoothing help? In NeurIPS, pages 4694–

4703, 2019.

[24] Alexandru Niculescu-Mizil and Rich Caruana. Predicting

good probabilities with supervised learning. In ICML, pages

625–632, 2005.

[25] Joaquin Quionero-Candela, Masashi Sugiyama, Anton

Schwaighofer, and Neil D Lawrence. Dataset shift in machine

learning. The MIT Press, 2009.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region

proposal networks. In NeurIPS, pages 91–99, 2015.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. ImageNet large scale

visual recognition challenge. IJCV, 115(3):211–252, 2015.

[28] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-

propagation for effective learning of deep convolutional neu-

ral networks. In ECCV, pages 467–482, 2016.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, pages 2818–2826,

2016.

[30] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes,

Tanmoy Bhattacharya, and Sarah Michalak. On mixup train-

ing: Improved calibration and predictive uncertainty for deep

neural networks. In NeurIPS, pages 13888–13899, 2019.

[31] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,

Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and

Serge Belongie. The iNaturalist species classification and

detection dataset. In CVPR, pages 8769–8778, 2018.

[32] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi,

Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio.

Manifold mixup: Better representations by interpolating hid-

den states. In ICML, pages 6438–6447, 2019.

[33] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and

Michael I Jordan. Transferable normalization: Towards im-

proving transferability of deep neural networks. In NeurIPS,

pages 1953–1963, 2019.

16497



[34] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-

ing to model the tail. In NeurIPS, pages 7029–7039, 2017.

[35] Liuyu Xiang and Guiguang Ding. Learning from multiple

experts: Self-paced knowledge distillation for long-tailed

classification. In ECCV, 2020.

[36] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. CutMix: Regu-

larization strategy to train strong classifiers with localizable

features. In ICCV, pages 6023–6032, 2019.

[37] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David

Lopez-Paz. mixup: Beyond empirical risk minimization.

ICLR, 2018.

[38] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and

Yu Qiao. Range loss for deep face recognition with long-tailed

training data. In ICCV, pages 5409–5418, 2017.

[39] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen.

BBN: Bilateral-branch network with cumulative learning for

long-tailed visual recognition. In CVPR, pages 9719–9728,

2020.

[40] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE TPAMI, 40(6):1452–1464, 2017.

16498


