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Abstract

In this paper, we address Novel Class Discovery (NCD),

the task of unveiling new classes in a set of unlabeled sam-

ples given a labeled dataset with known classes. We exploit

the peculiarities of NCD to build a new framework, named

Neighborhood Contrastive Learning (NCL), to learn dis-

criminative representations that are important to clustering

performance. Our contribution is twofold. First, we find

that a feature extractor trained on the labeled set gener-

ates representations in which a generic query sample and

its neighbors are likely to share the same class. We exploit

this observation to retrieve and aggregate pseudo-positive

pairs with contrastive learning, thus encouraging the model

to learn more discriminative representations. Second, we

notice that most of the instances are easily discriminated

by the network, contributing less to the contrastive loss.

To overcome this issue, we propose to generate hard nega-

tives by mixing labeled and unlabeled samples in the feature

space. We experimentally demonstrate that these two in-

gredients significantly contribute to clustering performance

and lead our model to outperform state-of-the-art meth-

ods by a large margin (e.g., clustering accuracy +13% on

CIFAR-100 and +8% on ImageNet).

1. Introduction

Learning from labeled data has been a widely studied

topic in the field of machine learning, and more recently

in deep learning [15, 21, 26]. Despite tremendous success,

supervised learning techniques largely rely on the avail-

ability of massive amounts of annotated data [8]. To get

rid of the difficulty and expensive cost of annotating, the

machine learning community has shifted the attention to

techniques that can learn with limited or completely non-

annotated data. To this end, many semi-supervised [5, 35]

and unsupervised learning [4, 7, 14, 32] methods have been

proposed, which achieve promising results compared to su-

pervised learning methods. Nonetheless, not much effort

has been made to exploit prior knowledge from existing la-
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Figure 1. Illustration of novel class discovery (NCD) and the pro-

posed neighborhood contrastive learning (NCL). In NCD, we are

given two datasets, a labeled one and an unlabeled one, with dis-

joint class sets. NCD aims to leverage all data to learn a model that

can cluster the unlabeled data. NCL tries to learn discriminative

representations by enforcing a query to be close to its correlated

view (augmented-positive) and its pseudo-positives (neighbors),

as well as to be far from the negatives. We also generate hard neg-

atives by mixing between labeled and unlabeled features, which

can further facilitate our NCL.

beled datasets and use it to discover unknown classes that

are not present in the labeled data.

In this paper, we address one such relevant problem,

called Novel Class Discovery (NCD) [12, 13], where we

are given a labeled dataset and an unlabeled dataset, dif-

fering in class label space. The goal of NCD is to learn a

model that can cluster the unlabeled data by exploiting the

latent commonalities from the labeled data (see the top half

of Fig. 1). Importantly, the availability of labeled data does

not guarantee transferability because the patterns learned

from the labeled data with off-the-shelf models might not be

useful for the unlabeled data. This poses NCD apart from

semi-supervised learning paradigm, where the label space is

shared between labeled and unlabeled data, and also makes

it more challenging. The NCD task finds relevance in many

real-world scenarios where the volume of unlabeled data
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keeps growing (e.g., multimedia). It is desirable to leverage

the existing annotated data (collected from known classes)

to explore the new unlabeled data from novel classes, rather

than in a completely unsupervised fashion from scratch.

With that goal in mind, this work proposes a holistic

learning framework that uses contrastive loss [14, 27] for-

mulation to learn discriminative features from both the la-

beled and unlabelled data, which is absent in most NCD

methods [12, 13, 16, 17]. Subsequently, we introduce two

key ideas in the paper. The first idea is to exploit the fact

that the local neighborhood of a sample (query) in the em-

bedding space will contain samples which most likely be-

long to the same semantic category of the query, and can

be considered as pseudo-positives. Note that this is spe-

cific to the NCD setting, where we can pre-train a fea-

ture extractor with supervision. We exploit this obser-

vation in the context of contrastive learning to bring the

query closer to its pseudo-positives, which is termed as

Neighborhood Contrastive Learning (NCL) (see the bottom

half of Fig. 1). These numerous positives allow us to ob-

tain a much stronger learning signal when compared to the

traditional contrastive formulation realized with only two

views [7, 14]. Our second idea is to address the better se-

lection of negatives to further improve the contrastive learn-

ing. Peculiar to the NCD task where we are given labeled

samples of the known classes (a.k.a true negatives of any

unlabeled instance), we exploit them, together with the un-

labeled samples, to generate synthetic samples in the feature

space using a mixing strategy and treat them as hard nega-

tives (see Fig. 1). This circumvents the problem of falsely

treating the true positives as negatives [14, 18]. We call

this process as Hard Negative Generation (HNG), which is

effective and can produce a boost in performance when em-

ployed together with NCL.

To summarize, our contributions are threefold:

• We propose Neighborhood Contrastive Learning

(NCL) for NCD, which exploits the local neighbor-

hood in the embedding space of a given query. Our

NCL recruits more positive samples for the contrastive

loss formulation, significantly improving the cluster-

ing accuracy.

• We propose to aid the contrastive learning by leverag-

ing the labeled samples to generate hard negative sam-

ples through feature mixing. With labeled data from

various classes, the proposed Hard Negative Genera-

tion (HNG) can obtain consistent improvement.

• Extensive experiments on three NCD benchmarks

demonstrate the effectiveness of our method and show

that we advance the state-of-the-art approaches by

large margins (e.g., clustering accuracy +13% on

CIFAR-100 and +8% on ImageNet).

2. Related Work

Novel Class Discovery is a relatively new task that aims

to classify the samples in the unlabeled set into different

semantic categories. It is different from unsupervised clus-

tering in that one has a labeled set which has completely

different classes from the unlabeled set. Typical novel class

discovery methods first train a model on the labeled data

and use it as an initialization for performing unsupervised

clustering on the unlabeled data. The works [16, 17] in this

category utilize the labeled data to train a binary classifi-

cation model by exploiting the pair-wise similarity of im-

ages and then use this trained binary classification model

as a supervision for clustering on the unlabeled data. Simi-

larly, [13] pretrains the model on the labeled data, followed

by an end-to-end clustering technique [32] on the unlabeled

data. Deviating from this two-stage training strategy, Han

et. al. [12] propose to leverage labeled data while perform-

ing unsupervised clustering on the unlabeled data. Our pro-

posed NCL also builds on the premise of leveraging labeled

data in the unsupervised clustering phase. However, in con-

trast to [12], NCL uses labeled data not to maintain the basic

discrimination of representation, but to aid the contrastive

learning process by generating more informative negatives.

Unsupervised Clustering is the task to partition an un-

labeled dataset into different semantic categories, where the

prior knowledge of a labeled set is not available. To this end,

many shallow [1, 23, 34] and deep learning based meth-

ods [6, 9, 24, 29, 32, 33, 36] have been proposed. The deep

learning based methods can be roughly categorized into two

kinds where the first kind exploits pairwise similarity of the

samples to generate pseudo-labels for clustering [6, 12, 24].

Whereas, the second kind [29, 36] uses neighborhood ag-

gregation of feature embedding to bring closer the similar

instances and simultaneously pushing away the dissimilar

instances, thereby achieving a clustering effect. Our method

also draws inspiration from these two lines of works. Of

notable interest to our work, [36] uses a non-deterministic

k-means algorithm to find a local neighborhood within an it-

erative optimization process, which however is sensitive to

initialization and also computationally expensive. Instead,

this paper proposes to adopt an end-to-end clustering tech-

nique via the use of pairwise similarity of samples and di-

rectly explore neighborhood by k-nearest neighbors, which

makes our method much simpler while still retaining the

benefits of neighborhood aggregation.

Contrastive Learning is an unsupervised feature repre-

sentation learning technique that has gained significant mo-

mentum in the recent years. The crux of contrastive learn-

ing based methods [3, 7, 11, 14, 27, 31] lies in computing a

similarity between an input and its correlated view, instead

of a fixed target (e.g., one-hot label). Due to the close asso-

ciation between unsupervised learning and NCD, we adopt

the contrastive loss [11] formulation to harness its power for
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Figure 2. The proposed neighborhood contrastive learning framework for novel class discovery. Given training images sampled from the

labeled and the unlabeled data, we forward them into the network to obtain corresponding representations. For the labeled data, the CE

loss, CS loss and the proposed NCL loss are calculated with the ground-truth labels. For the unlabeled data, BCE loss and CS loss are

computed to optimize the new classifier while the NCL loss is proposed to learn discriminative representation. CE: cross-entropy, BCE:

binary cross-entropy, CS: consistency, NCL: neighborhood contrastive learning, HNG: hard negative generation.

learning discriminative representations. However, different

from the above methods, the contrastive loss formulation in

NCL exploits both the labeled data and the unlabeled data

into one holistic framework, which is well suited for the

NCD task. Moreover, in NCL we propose to amalgamate

contrastive learning with neighborhood aggregation by con-

sidering k-nearest neighbors as pseudo-positives, making

our formulation unique in the NCD literature.

Negative Mining plays a crucial role in contrastive

learning because the success of the contrastive loss is piv-

oted on the presence of useful negatives [14]. Aside from

maintaining a large batch size [7] or a large queue [14] for

having ample useful negatives, one can draw inspirations

from the semi-supervised learning literature and naturally

consider using mixup strategy in the pixel space [35] or

the latent space [30] to generate harder negatives [18, 25].

We, therefore, capitalize on the fact that the samples of the

known classes in the labeled set are true negatives (being

disjoint to the novel classes) and their mixing with the far-

thest features in a queue produces synthetic features which

are considerably true negatives and harder than the farthest

features for the query. Importantly, in NCD, due to the large

population of positives in the queue, mixing of two random

samples may lead to the generation of false negatives, which

can indeed hurt the performance. Hence, our hard negative

generation strategy (see Sec. 3.4) alleviates the drawbacks

of [18, 25] and is tailor-made to NCD.

3. Method

Problem Definition. The task of Novel Class Discov-

ery (NCD) assumes the availability of two datasets: a la-

beled dataset Dl and an unlabeled dataset Du, containing

Cl and Cu classes respectively. The sets of classes in the

two datasets are disjoint, but some degree of similarity be-

tween the two is necessary. The goal of NCD is to cluster

the data in Du, leveraging the knowledge from Dl.

Overall Framework. To discover the latent classes in

Du, we learn a shared feature extractor Ω : x 7→ z ∈ RH

and two linear classifiers φl and φu, with Cl and Cu out-

put neurons respectively, each followed by a softmax layer.

At each training step, a batch of images is sampled from

both Du and Dl. Using data augmentation we generate two

correlated views of the same batch and forward them into

the feature extractor. On the one hand, the features of the

labeled images are fed to the classifier φl, which is opti-

mized with the cross-entropy loss using the labels. On the

other hand, using the binary cross-entropy loss, the classi-

fier φu learns to infer the cluster assignments for the unla-

beled images. Both classifiers are encouraged to output con-

sistent predictions using the consistency loss. In addition,

the representations z are refined by the proposed neighbor-

hood contrastive loss (NCL) on both labeled and unlabeled

samples. The overall framework is depicted in Fig. 2.

3.1. Baseline for Novel Class Discovery

For the baseline, we use a three stage learning pipeline

similar to [12]. First, we learn a label-agnostic image rep-

resentation by self-supervision learning [10] using both la-

beled and unlabeled datasets, which has been shown to be

particularly good at extracting low-level features in the first

layers of the network [2].

Subsequently, high-level features are learned using su-

pervision on the labeled dataset. Given a sample and its

label (x, y) ∈ Dl, we optimize the network using the cross-

entropy loss:

ℓce = −
1

Cl

Cl

∑

i=1

yi log φ
l
i (Ω (x)) . (1)

Finally, we simplify the cluster discovery step in [12]

by using the cosine similarity of the features to estimate

pairwise pseudo-labels, instead of ranking statistics. We

find this modification can yield similar performance with
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respect to ranking statistics when applied with our NCL,

while being significantly more efficient and easier to imple-

ment. Specifically, given a pair of images (xu
i , x

u
j ) sampled

from dataset Du, we extract features (zui , z
u
j ) and compute

their cosine similarity δ
(

zui , z
u
j

)

= zu⊤i zuj /‖z
u
i ‖‖z

u
j ‖. The

pairwise pseudo-label is then assigned as follows:

ŷi,j = ✶
[

δ
(

zui , z
u
j

)

≥ λ
]

, (2)

where λ is a threshold that represents the minimum sim-

ilarity for two samples to be assigned to the same latent

class. Then, the pairwise pseudo-label is compared to the

inner product of the outputs of the unlabeled head pi,j =

φu (zui )
⊤
φu

(

zuj
)

. The network is optimized using the bi-

nary cross-entropy loss:

ℓbce = ŷi,j log (pi,j) + (1− ŷi,j) log(1− pi,j). (3)

The last building block of our baseline is the consistency

loss, which enforces the network produce similar predic-

tions for an image xi and its correlated view x̂i. This is

particularly important for unlabeled examples. Nonethe-

less, we find that consistency helps with both labeled and

unlabeled examples. We use mean squared error:

ℓmse =
1

Cl

Cl

∑

i=1

(

φl
i

(

zl
)

− φl
i

(

ẑl
))2

+

1

Cu

Cu

∑

j=1

(

φu
j (z

u)− φu
j (ẑ

u)
)2

.

(4)

The overall loss for our baseline reads as:

ℓbase = ℓce + ℓbce + ω (t) ℓmse, (5)

where the coefficient ω (t) is a ramp-up function as in [12].

3.2. Neighborhood Contrastive Learning

Given a set of stochastic image transforms, we generate

two correlated views (xu, x̂u) of a generic unlabeled sam-

ple to be used as a positive pair. Subsequently, we apply the

network Ω to extract (zu, ẑu) from the views. This opera-

tion is repeated for all the samples of a batch of length B.

We also maintain a queue Mu of features stored from past

training steps, which initially are regarded as negatives, de-

noted with z̄u. The contrastive loss for the positive pair can

be written as:

ℓ(zu,ẑu) = − log
eδ(z

u,ẑu)/τ

eδ(zu,ẑu)/τ +
∑|Mu|

m=1 e
δ(zu,z̄u

m)/τ
, (6)

where δ(·, ·) is the cosine similarity and τ is a temperature

parameter that controls the scale of distribution.

Unfortunately, a well-known drawback of the contrastive

loss is that samples belonging to the same class could be

treated as negatives, since we have no information about the

labels. However, intuitively, the quality of the representa-

tions should benefit if the positive and negative pairs corre-

spond to the desired latent classes. One way to mitigate this

issue is to use the model itself to generate pseudo-positive

pairs of samples, i.e., to consider the neighbors of the rep-

resentation zu as instances of the same class. The selection

of sensible pseudo-positive pairs turns out to be a hard task,

especially at the beginning of the training, when the quality

of the representations is poor. However, in NCD, we can

leverage the labeled dataset Dl to bootstrap the representa-

tions, and then use them to infer the relationships between

unlabeled examples in Du.

More formally, given a network Ω pretrained as the first

two steps described in Sec. 3.1, we can retrieve the top-k
most similar features from the queue for a query zu:

ρk = argtopk
z̄u
i

({δ (zu, z̄ui ) | ∀i ∈ {1, . . . , |Mu|}}) . (7)

Assuming the examples in ρk are false-negatives (i.e., they

belong to the same class as zu), we can regard them as

pseudo-positives and write their contributions in the con-

trastive loss as follows:

ℓ(zu,ρk) = −
1

k

∑

z̄u
i
∈ρk

log
eδ(z

u,z̄u
i )/τ

eδ(zu,ẑu)/τ +
∑|Mu|

m=1 e
δ(zu,z̄u

m)/τ
.

(8)

Finally we can introduce our Neighborhood Contrastive

loss as follows:

ℓncl = αℓ(zu,ẑu) + (1− α) ℓ(zu,ρk), (9)

where α controls the weight of the two components.

3.3. Supervised Contrastive Learning

In the case of the labeled dataset Dl, instead of using the

network to mine the pseudo-positives, we can directly use

the ground-truth labels to retrieve the set of positives from

the queue of labeled set M l for a sample xl
i with features

zli:
ρ =

{

z̄lj ∈ M l : yi = yj
}

∪ ẑli. (10)

Note that ρ contains both the features ẑli of the correlated

view x̂l
i and the other samples belonging to the same class.

Using this supervision, our Neighborhood Contrastive loss

can be reduced to the Supervised Contrastive loss [19]:

ℓscl = −
1

|ρ|

∑

z̊l
j
∈ρ

log
eδ(z

l
i ,̊z

l
j)/τ

eδ(z
l
i
,ẑl

i)/τ +
∑|M l|

m=1 e
δ(zl

i
,z̄l

m)/τ
.

(11)

3.4. Hard Negative Generation

He et al. [14] show the importance of having a large

memory that covers a rich set of negative samples for con-

trastive learning. Recently, other studies [18, 25] find that
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most of the negatives have very low similarities with the

query sample. We experimentally verify that this behav-

ior is also present when contrastive learning is used in the

context of Novel Class Discovery (NCD). Specifically, as

detailed in Sec. 4.2, we demonstrate that removing the eas-

iest negatives from the queue does not impact performance,

indicating that such negative samples contribute less dur-

ing training. This is not desirable, because we are wast-

ing memory and computation. On the other hand, selecting

hard negatives automatically can be difficult since we have

no information about the latent classes in the unlabeled set,

and therefore we could end up selecting positive samples.

However, in NCD we assume that the set of classes in the

labeled and unlabeled sets are disjoint. This entails that all

the samples from one set are negatives for the samples of

the other set, and vice versa. Inspired by the advancements

in regularization techniques using image / feature mixtures

[35, 30], we use this notion to generate hard negatives by

mixing labeled and unlabeled samples.

Given a view xu of an image belonging to the unlabeled

set and its representation in the feature space zu, we can se-

lect easy negatives by looking at the features with minimal

similarity in the queue Mu:

εk = argtopk
z̄u
i

({−δ (zu, z̄ui ) | ∀i ∈ {1, . . . , |Mu|}}) .

(12)

Note the negative sign of the similarity. Since the network

can confidently distinguish these samples from the query,

we can safely assume that they are very likely to be true

negatives, i.e. they do not belong to the same class as the

query. Note that this is in contrast with the recent litera-

ture on hard negative mining [18, 25], which samples hard

negatives, incurring in the problem of false-negatives.

Let us also consider a queue M l containing labeled sam-

ples stored from past training steps. As mentioned above,

these are by definition true negatives with respect to xu. Our

insight is that by linearly interpolating the examples in these

two sets we can generate new, hopefully more informative

negatives. In practice, for each z̄u ∈ εk we randomly sam-

ple a feature z̄l ∈ M l and compute the following:

ζ = µ · z̄u + (1− µ) · z̄l, (13)

where µ is the mixing coefficient. This process of cycling

through εk is repeated N times such that the resulting set

of mixed negatives η will contain k × N features. Then,

the hardest negatives are filtered from η, using the cosine

similarity as before:

ηk = argtopk
ζi

({δ (zu, ζi) | ∀i ∈ {1, . . . , k ×N}}) . (14)

This results in a set ηk of hard negatives that have the fol-

lowing two properties: (i) they are most likely true nega-

tives, (ii) it is hard for the network to distinguish them from
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Figure 3. Illustration of hard negative generation (HNG). CS: com-

pute similarity, NCL: neighborhood contrastive learning.

the query. Finally the queue for xu is derived by adding the

newly generated mixed negatives into the queue Mu:

Mu′

= Mu ∪ ηk, (15)

and the contrastive loss is computed as in Eq. 6 and Eq. 8,

but replacing Mu with Mu′

. Note that Mu is not overwrit-

ten in the process. This pipeline for hard negative gener-

ation (illustrated in Fig. 3) is repeated for each unlabeled

sample in the current batch, as they will have different sets

of easy negatives. To distinguish between the number of

pseudo-positives used in Eq. 7 and number of negatives

used in Eq. 12, we denote the former as k1 and the latter

as k2 respectively.

3.5. Overall Loss

Considering the baseline model, neighborhood con-

trastive learning on unlabeled data, supervised contrastive

learning on labeled data, and the hard negative generation

on unlabeled data, the overall loss for our model is:

ℓall = ℓbase + ℓncl + ℓscl. (16)

Throughout the paper, we refer to the ℓncl and ℓscl collec-

tively as neighborhood contrastive learning.

4. Experiments

4.1. Dataset and Experimental Details

Dataset. We conduct experiments on three datasets

that are commonly used in NCD: CIFAR-10 [20], CIFAR-

100 [20] and ImageNet [8]. Following [12], we split the

training data of each dataset into a labeled set and an unla-

beled set, and assume that the the number of classes in the

unlabeled set is known. The partitions of the three datasets

are reported in Table 1. More details on the datasets can be

found in supplementary. Following [12, 13], we report re-

sults averaged over 10 runs for CIFAR-10 and CIFAR-100.
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Dataset
Labeled Set Unlabeled Set

#image #class #image #class

CIFAR-10 25K 5 25K 5

CIFAR-100 40K 80 10K 20

ImageNet 1.25M 882 ≈30K 30

Table 1. Dataset statistics for novel class discovery.

For ImageNet, we report results averaged over 3 runs using

three different unlabeled subsets.

Evaluation Metric. We employ average clustering ac-

curacy (ACC) to evaluate the performance of different

methods on unlabelled data. The ACC is defined as:

ACC = max
perm∈P

1

N

N
∑

i=1

✶ {yi = perm (ŷi)} , (17)

where yi and ŷi represent the ground-truth label and cluster-

ing predicted label of a sample xu
i ∈ Du, respectively. P is

the set of all permutations, which can be rapidly computed

by the Hungarian algorithm [22].

Implementation Details. For a fair comparison with

existing methods, we use ResNet-18 [15] as the backbone

of our method for all three datasets. We follow [12] to

initialize the model with self-supervised learning on the

whole data and fine-tune the model with supervised learn-

ing on the labeled data, more training details can be found

in [12]. In the step of novel class discovery on the un-

labeled data, we use SGD optimizer to update the net-

work. Note that, in the steps of supervised fine-tuning and

novel class discovery, we only update the last convolutional

block of the ResNet and the two classifiers. The initial

learning rate is set to 0.1 and is divided by 10 after ev-

ery 170/30 epochs for {CIFAR-10, CIFAR-100}/ImageNet.

We train the model with 200/90 epochs in total for {CIFAR-

10, CIFAR-100}/ImageNet. We randomly sample training

samples from both the labeled and unlabeled data, where

the batch size is set to 128/512 for {CIFAR-10, CIFAR-

100}/ImageNet. For the consistency loss, we apply the

ramp-up function with weight γ = {5, 50, 10} and ramp-up

length T = {50, 150, 50} for CIFAR-10, CIFAR-100 and

ImageNet, respectively. For the binary-cross entropy loss,

we set λ = 0.95.

For our method, we introduce the neighborhood con-

trastive learning (NCL) and hard negative generation

(HNG) at the 2th and 4th epoch, respectively. In default, we

set memory size |M | = 2,000, temperature τ = 0.05, number

of pseudo-positives k1 = |M |/Cu/2, weight of augmented-

positive α = 0.2, number of negative samples k2 = 400, and

number of HNG iterations N = 5. For each mixing pro-

cess, we generate new negatives with µ = 1/3 and µ = 2/3.

That is, each mixing process will be performed twice using

these two values of µ. We find the above parameter set-

tings can consistently achieve stable and well performance

across datasets. The parameter analysis can be found in the

supplementary material.

Method CIFAR-10 CIFAR-100

Basel. w/o SSL 85.0±0.4% 66.5±4.0%

Basel. w/o CE 83.9±9.4% 62.6±3.6%

Basel. w/o BCE 39.5±4.2% 18.1±0.8%

Basel. w/o CS 84.1±0.9% 61.6±3.2%

Baseline 87.9±0.7% 69.4±1.4%

Table 2. Ablation study of the baseline method on CIFAR-10 and

CIFAR-100. SSL: self-supervised learning, CE: cross-entropy

loss on the labeled data, BCE: binary cross-entropy loss on the

unlabeled data, CS: consistency loss.

Method CIFAR-10 CIFAR-100

Baseline 87.9±0.7% 69.4±1.4%

+ NCL w/o PP 61.8±7.6% (↓ 26.1%) 68.5±1.9% (↓ 0.9%)

+ NCL w/o AP 90.9±2.1% (↑ 3.0%) 79.7±5.7% (↑ 10.3%)

+ NCL w/o LA 93.3±0.1% (↑ 5.4%) 80.3±0.9% (↑ 10.9%)

+ NCL 93.4±0.2% (↑ 5.5%) 82.3±2.6% (↑ 12.9%)

+ NCL + HNG 93.4±0.1% (↑ 5.5%) 86.6±0.4% (↑ 17.2%)

Table 3. Evaluation of the effectiveness of the proposed neigh-

borhood contrastive learning (NCL) and hard negative generation

(HNG). NCL w/o PP: NCL without pseudo-positives, NCL w/o

LA: without applying NCL on labeled data. NCL w/o AP: remov-

ing augmented-positive during NCL.

4.2. Evaluation

Ablation study on the baseline. We first evaluate the

effectiveness of the components of the baseline, including

self-supervised learning (SSL), cross-entropy (CE) loss on

the labeled data, binary cross-entropy (BCE) loss on the un-

labeled data, and consistency (CS) loss. We individually re-

move each of them from the baseline and evaluate the per-

formance. Results are reported in Table 2. We mainly make

the following four observations: (1) Removing each com-

ponent will reduce the results of the baseline. (2) BCE is

the most important component. When removing BCE, the

results decrease substantially. Without BCE, the classifier

is only learned with a weak supervision (i.e., consistency

loss) and therefore fails to cluster the samples. (3) Remov-

ing SSL from the baseline will decrease the performance.

This is due to the fact that SSL improves the generality

of the representations and thus benefits the learning of the

BCE. (4) CS is also beneficial in novel class discovery, since

it encourages the classifier to be more robust to intra-class

variations. The above observations verify the effectiveness

and importance of each component in the baseline.

Evaluation of the neighborhood contrastive learn-

ing. To study the effectiveness of neighborhood contrastive

learning (NCL), we implement NCL in four ways. 1) NCL:

The proposed NCL. 2) NCL w/o PP: NCL without pseudo-

positives, which reduces to the vanilla contrastive learning;

3) NCL w/o LA: NCL without enforcing contrastive learn-

ing on the labeled data; 4) NCL w/o AP: NCL without ap-

proaching a query to its augmented-positive. Results on

CIFAR-10 and CIFAR-100 are reported in Table 3. First,

without neighborhood mining, the model will regard all the
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Figure 4. Comparison of the proposed hard negative generation

(HNG) and its variants on CIFAR-100.

positive features in the memory as negative samples and

push the query sample far away from its positive features,

which will certainly damage the performance. Second, im-

plementing NCL on the labeled data can help improve the

discrimination of the model, which can facilitate the process

of neighborhood mining and thus improve the ACC, espe-

cially given a larger labeled dataset (CIFAR-100). Third,

the augmented-positive sample is important to improve the

performance since it can mitigate the influence caused by

the negative samples that are included in the selected KNNs.

Fourth, our proposed NCL significantly improves the ACC

of baseline. Specifically, NCL gains +5.5% on CIFAR-10

and +12.9% on CIFAR-100, demonstrating the effective-

ness of the proposed NCL.

Evaluation of hard negative generation. We first eval-

uate our proposed hard negative generation (HNG) in Ta-

ble 3. We find that HNG significantly increases the ACC

for CIFAR-100. However, there is no boost for CIFAR-10.

This is likely due to the fact that the labeled set in CIFAR-

10 contains a small number of classes. In such a context,

mixing between labeled and unlabeled samples is unable to

generate diverse hard negative samples and thus fails to fa-

cilitate contrastive learning. In Table 4, we show that HNG

can also improve the ACC for ImageNet, where the labeled

set contains a large amount of classes. This further veri-

fies the effectiveness of our HNG when given a rich labeled

dataset. Another beneficial side-effect of HNG is the fact

that it helps in stabilizing the training, reducing the variance

of the results across all datasets (see Table 4).

To further study the advantage of our HNG, we com-

pare HNG with 6 variants and, based on the results in

Fig. 4 we make the following observations. (HNG-V1):

Directly removing k-easiest unlabeled samples when com-

puting NCL for each query rarely affects the ACC, support-

ing our point that easy negative samples contribute less to

contrastive learning; (HNG-V2): Replacing k-easiest un-

labeled samples with generated hard negative samples pro-

duces similar ACC to directly adding generated hard fea-

tures to the feature queue (HNG); (HNG-V3): Directly us-

ing k randomly selected labeled samples as hard negative

samples can slightly improve the ACC; (HNG-V4): Gener-

ating hard negative samples by mixing only on k randomly

selected labeled samples can achieve further improvement

over “HNG-V3”; (HNG-V5): Generating hard negative

samples by mixing only on k-easiest unlabeled samples

fails to improve the performance; (HNG-V6): Generating

hard negative samples by mixing on k-easiest unlabeled

samples and k-nearest labeled samples is suboptimal w.r.t

using randomly selected labeled feature (HNG). This is be-

cause the k-nearest labeled features mostly are of the same

class, limiting the variety of the generated hard features.

Taking the above observations, the proposed HNG can

generate more variety and hard negative samples, which are

effective in improving contrastive learning.

4.3. Comparison with State­of­The­Art Methods

We compare the proposed approach with one classical

method (k-means [23]) and four state-of-the-art methods

(i.e., KCL [16], MCL [17], DTC [13] and RS [12]). For

method based on k-means [23], we first use the labeled

data to pre-train the model by supervised learning loss (i.e.,

cross-entropy loss). Then, we use the trained model to ex-

tract features for the unlabeled data without further learning

on the unlabeled data. Finally, we perform k-means clus-

tering on these extracted features to obtain the clustering

results. Except RS [12], all the other compared methods

do not apply self-supervised learning technique. In order to

make a fair comparison, we implement these methods (ex-

cept RS [12]) with two settings depending on whether to

utilize self-supervised learning to pre-train the model. With

self-supervised learning, we first initialize the model by the

rotation loss [10] using both labeled data and unlabeled data

and then implement the methods with their own algorithms.

Note that, since ImageNet has sufficient training samples

from various classes, we directly use the labeled data to pre-

train the model with cross-entropy loss for both settings.

Comparison results are reported in Table 4.

We can obtain the following two conclusions. First, us-

ing self-supervised learning generally can improve the re-

sults of all methods, except when evaluated k-means [23]

on CIFAR-100. For example, when using self-supervised

learning, the ACC of KCL [16] is increased from 66.5%

to 72.3% and from 14.3% to 42.1% on CIFAR-10 and

CIFAR-100, respectively. This indicates the effectiveness

of self-supervised learning. Second, two versions of our

method outperform the state-of-the-art methods (whether

using self-supervised learning or not) by a large margin

on all datasets, especially on CIFAR-100 and ImageNet.

Specifically, our full method achieves ACC=93.4% on

CIFAR-10, ACC=86.6% on CIFAR-100 and ACC=90.7%

on ImageNet, respectively. These results are higher than

the current best method (RS [12]) by +3% on CIFAR-10,

+13.4% on CIFAR-100 and +8.2% on ImageNet, respec-

tively. This demonstrates that our method produces the new

state-of-the-art results for novel class discovery.
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Method Venue CIFAR-10 CIFAR-100 ImageNet

Methods without self-supervised learning

k-means [23] Classic 65.5±0.0% 56.6±1.6% 71.9%

KCL [16] ICLR’18 66.5±3.9% 14.3±1.3% 73.8%

MCL [17] ICLR’19 64.2±0.1% 21.3±3.4% 74.4%

DTC [13] ICCV’19 87.5±0.3% 56.7±1.2% 78.3%

Methods with self-supervised learning

k-means [23]∗ Classic 72.5±0.0% 56.3±1.7% 71.9%

KCL [16]∗ ICLR’18 72.3±0.2% 42.1±1.8% 73.8%

MCL [17]∗ ICLR’19 70.9±0.1% 21.5±2.3% 74.4%

DTC [13]∗ ICCV’19 88.7±0.3% 67.3±1.2% 78.3%

RS [12]∗ ICLR’20 90.4±0.5% 73.2±2.1% 82.5%

Ours∗ w/o HNG CVPR21 93.4±0.2% 82.3±2.6% 89.5%

Ours∗ CVPR21 93.4±0.1% 86.6±0.4% 90.7%

Table 4. Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet for novel class discovery. Clustering accuracy

is reported on the unlabelled set. “*” indicates methods that initialize models with self-supervised learning, except when evaluated on

ImageNet. Ours: our method with both neighborhood contrastive learning and hard negative generation, Ours w/o HNG: our method

without hard negative generation.

Init RS OursDTC Indistinguishable Samples

ACC=58.1% ACC=88.7% ACC=90.4% ACC=93.4%

dog

frog

horse

ship

truck

Classify dog as horse

Classify frog as dog

Classify horse as dog

Figure 5. Feature visualization on CIFAR-10. We extract the output of the last pooling layer as the feature for all unlabeled data and

use t-SNE [28] to map the features into a 2D embedding space. We compare our method with the initialized model (trained only with

self-supervised learning and supervised learning), DTC [13] and RS [12]. We also show examples that are visually similar to samples of

other classes and are classified to wrong classes.

4.4. Visualization

To better understand the proposed method, we visual-

ize the feature embeddings of the unlabeled samples on

CIFAR-10 using t-SNE [28]. In Fig. 5, we compare our

method with the initial model and two state-of-the-art meth-

ods (DTC [13] and RS [12]). The initial model is trained

with self-supervised learning on all data and supervised

learning on the labeled data. As we can see, the ini-

tial model can roughly separate samples into 5 clusters.

However, there are also many samples of different classes

clustered together, resulting in low clustering accuracy

(ACC=58.1%). Compared to the initial model, the other

three methods (DTC, RS and our method) generate more

discriminative representations, which produce significantly

better clustering results. Since DTC, RS and our method all

achieve very high clustering results (ACC>88%), we can-

not observe obvious difference in clustering visualization

between them. However, for our method, the samples of

the same class are mostly clustered in a circular area, which

is mainly caused by the constraint of enforcing neighbors

to be close. We also show some indistinguishable samples

that are located at the class decision boundaries. We find

that these samples are visually similar, such as in terms of

color (frog and dog) and pose (dog and horse), leading the

model fail to distinguish them.

5. Conclusion

In this paper, we propose a holistic learning framework

for Novel Class Discovery (NCD), which adopts contrastive

learning to learn discriminate features with both the labeled

and unlabeled data. Specifically, we propose the Neigh-

borhood Contrastive Learning (NCL) to effectively leverage

the local neighborhood in the embedding space, enabling us

to take the knowledge from more positive samples and thus

improve the clustering accuracy. In addition, we also intro-

duce the Hard Negative Generation (HNG), which leverages

the labeled samples to produce informative hard negative

samples and brings further advantage to NCL. Experiments

on three datasets demonstrate the significant superiority of

our method over state-of-the-art NCD methods.
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