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Figure 1: Joint rolling shutter correction and deblurring (RSCD). Image degradation caused by joint rolling shutter

distortion and motion blur becomes extremely complex, when both ego-motion and object-motion are involved in dynamic

scenes. Existing methods for RSCD such as Mohan et al. [22] are developed for static scenes. We present the first realistic

benchmark dataset (BS-RSCD) and model (JCD) to advance learning-based approaches in this field.

Abstract

Joint rolling shutter correction and deblurring (RSCD)

techniques are critical for the prevalent CMOS cameras.

However, current approaches are still based on conven-

tional energy optimization and are developed for static

scenes. To enable learning-based approaches to address

real-world RSCD problem, we contribute the first dataset,

BS-RSCD, which includes both ego-motion and object-

motion in dynamic scenes. Real distorted and blurry videos

with corresponding ground truth are recorded simultane-

ously via a beam-splitter-based acquisition system.

Since direct application of existing individual rolling

shutter correction (RSC) or global shutter deblurring

(GSD) methods on RSCD leads to undesirable results due

to inherent flaws in the network architecture, we further

present the first learning-based model (JCD) for RSCD. The

key idea is that we adopt bi-directional warping streams

for displacement compensation, while also preserving the

non-warped deblurring stream for details restoration. The

experimental results demonstrate that JCD achieves state-

of-the-art performance on the realistic RSCD dataset (BS-

RSCD) and the synthetic RSC dataset (Fastec-RS). The

dataset and code are available at https://github.

com/zzh-tech/RSCD∗.

1. Introduction

Rolling shutter (RS) CMOS cameras dominate the con-

sumer market, especially the mobile phone market, due

to their largely reduced power consumption, low cost and

compact design [13]. However, if the imaging conditions

are not ideal, video recorded through RS mechanism will

suffer from compound quality issues. Specifically, the RS

distortion (Jello effect) and motion blur become noticeable

when there is a large relative motion between the camera

and the object, especially in poorly illuminated environment

where longer exposure time is required. Joint rolling shutter

correction and deblurring (RSCD) techniques are seldom

explored and are urgently needed for RS-based devices.

Existing works generally treat rolling shutter correction

(RSC) and deblurring as two separate issues. As for RSC

methods [30, 29, 47, 18, 37, 20], they assume by default

∗Correspondence regarding the dataset should be addressed to Y. Zheng

(yqzheng@ai.u-tokyo.ac.jp).
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that there are no blur effects in the captured image but only

distortion caused by the scanning strategy of RS that ex-

poses each row sequentially. The formation of the image Ir
with only RS distortion can be described as follows:

I(t)r [i] = I(t−tm+itr)
g [i], (1)

where tm equals (M/2)tr; tr denotes the readout (offset)

time for each row of RS; M denotes total number of rows

of the image; I
(t)
r [i] denotes the ith row of the RS distorted

image Ir with the middle moment of exposure at time t;

I
(t−tm+itr)
g [i] denotes the same row of the virtual global

shutter (GS) image Ig with the middle moment of exposure

at time t− tm+ itr, the entire scene of which is captured si-

multaneously. On the other hand, existing deblurring meth-

ods (GSD) [40, 10, 33, 24, 35, 25, 26, 44] typically assume

the target image is captured by GS. Then, the formation of

the GS blurry image Ib is given by:

I
(t)
b =

1

te

∫ t+te/2

t−te/2

I(t)g dt, (2)

where te denotes the exposure time of GS. The combined

effect of RS distortion and blur escalates the problem to a

new dimension. The formation of RS distorted and blurry

image Irb can be described as follows:

I
(t)
rb [i] =

1

te

∫ t−tm+itr+te/2

t−tm+itr−te/2

I(t−tm+itr)
g [i]dt. (3)

As the reverse process of the Eq. (3), RSCD is extremely

challenging because it requires estimating pixel-level dis-

placements and blur kernels simultaneously.

Under simplified or idealized conditions, there are few

works [34, 22] that specifically address blind RSCD prob-

lem. Assuming a static scene and negligible in-plane rota-

tion, Su et al. [34] propose RS-BMD to deliver distortion-

free and sharp image by estimating parametric trajectory

of the camera. Mohan et al. [22] further remove the lim-

itation of parametric trajectory estimation, allowing their

method to handle RS blurry image produced by irregular

camera trajectory. However, these methods cannot cope

with freely moving objects in dynamic scenes, which are

often observed in a real-world scenario. Due to the com-

plexity of relative motion in the RSCD problem, not only is

RSCD modeling difficult, but inferring the latent image is

also time-consuming.

Recently, the success of deep learning methods and the

corresponding large-scale datasets has greatly facilitated the

development of image and video restoration techniques.

However, the development of learning-based RSCD meth-

ods is still hampered by the lack of datasets. Even for

pure RSC problem, there is only one public dataset (Fastec-

RS [20]) available for data-driven methods, which synthe-

sizes RS images by sequentially copying a row of pixels

from captured high-FPS GS images. It still remains a chal-

lenge to obtain RS distorted and blurry video and the corre-

sponding GS sharp video for the same scenes in the wild.

In this paper, to enable data-driven methods for RSCD,

we propose BS-RSCD, the first dataset used for real-world

RSCD task, using a well-designed beam-splitter acquisi-

tion system. A RS camera and a GS camera are physically

aligned to capture RS distorted and blurry as well as GS

sharp video pairs simultaneously. Based on this dataset,

we further explore the possibility of applying deep learn-

ing to address realistic RSCD problem. The complexity

of BS-RSCD brings a new challenge to the existing neu-

ral network architecture of GSD or RSC. Through experi-

ments, we found that the existing GSD methods are prone

to destroy the original geometric structure of the scene when

facing the displacement introduced by RS distortion, while

the existing RSC methods are difficult to recover the de-

tails from motion blur. To solve this dilemma, we design

a novel joint correction and deblurring model (JCD) that

incorporates the advantages of both RSC and GSD neural

network architectures. To achieve a better trade-off between

distortion correction and motion deblurring, JCD fuses bi-

directional warped features and non-warped deblurring fea-

tures at multiple scales using a deformable attention mod-

ule. Our contributions can be summarized as follows:

• We introduce BS-RSCD, the first dataset for joint

RSCD problem in real dynamic scenes, using a beam-

splitter acquisition system.

• We propose a novel neural network architecture that

can handle both RS distortion and blur, using de-

formable attention module to fuse features from bi-

directional warping and deblurring streams.

• Experimental results demonstrate the superiority of the

proposed method over the state-of-the-art methods in

both RSC and RSCD tasks, and show the effectiveness

of our BS-RSCD dataset.

2. Related works

2.1. Global Shutter Deblurring

Early works such as Fergus et al. [3] only consider the

uniform blur caused by camera shake. The camera mo-

tion is estimated for uniform blur kernel inference. Con-

sidering blur of real scenes is spatially varying, Levin et

al. [19] and Wulff et al. [40] segment the image into dif-

ferent regions for distinct deconvolution operation with

segmentation-wise blur kernel. Then, Hyun et al. [9, 10]

use energy model to estimate pixel-wise blur kernel without

segmentation. Ren et al. [28] introduce non-linear optical

flow for more accurate pixel-wise blur kernel estimation.

Recently, data-driven approaches achieve leading results

for image and video deblurring with an end-to-end manner.
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Deep learning models are widely used to directly predict

sharp image without blur kernel estimation. Nah et al. [24]

propose a CNN model to remove blur following a coarse-

to-fine pyramid architecture. Tao et al. [35] further improve

the architecture by proposing scale-recurrent structure with

ConvLSTM [32]. In STRCNN [33] and EDVR [38], mul-

tiple neighboring images of the blurry video are used to

provide temporal correlation for deblurring. To better uti-

lize the temporal information, DBN [11], STFAN [45],

IFIRNN [25], ESTRNN [44] and CDVD-TSP [26] adopt

the recurrent structure from RNN and achieve impressive

deblurring performance. In addition, Kupyn et al. [16, 17]

adopt generative adversarial networks to produce smoother

and more visually appealing results.

However, the aforementioned image and video deblur-

ring methods have a common implicit assumption that the

camera uses a global shutter. These methods will fail when

large and complicated displacements caused by the RS dis-

tortion appear in the blurry image.

2.2. Rolling Shutter Correction

To solve RSC problem, Forssen et al. [5] model the cam-

era motion as a parametrised continuous curve and solve

parameters using non-linear least squares over inter-frame

correspondences. Grundmann et al. [6], Liu et al. [21]

and Lao et al. [18] address the RSC problem with the

help of RANSAC [4]. Rengarajan et al. [30] correct the

RS distorted image with the aid of straight line assump-

tion. Zhuang et al. [47] estimate the depth map and motion

for RSC by solving a SfM problem using two consecutive

RS images. Vasu et al. [37] propose a new pipeline to se-

quentially recover both motion of fast moving camera and

scene structure from depth-dependent RS distortion. Re-

cently, Albl et al. [1] present an simple yet effective method

to restore a GS image by using dual RS images with oppo-

site distortion of a same scene.

Inspired by the success of deep learning models, sev-

eral deep neural network-based methods [29, 48, 20] are

proposed and show impressive performance. Rengarajan et

al. [29] propose a CNN model with long rectangular convo-

lutional kernel to estimate the row-wise camera motion for

undoing RS distortion. Zhuang et al. [48] follow the scheme

of [47] but use two independent neural network branches

to estimate dense depth map and camera motion, respec-

tively. Liu et al. first propose an end-to-end network for

RSC using a differentiable forward warping module.

Current solutions of the RSC methods cannot handle the

blur well presented in RS distorted images even if they are

learning-based.

2.3. Joint Correction and Deblurring

Few works consider the challenging situation that joint

RS distortion and blur appear in the images simultane-

ously. Tourani et al. [36] use feature matches between

depth maps to timestamp parametric ego-motion to further

achieve RSCD. Their method needs multiple RGBD images

as inputs. Hu et al. [8] use information of inertial sensor in

smartphone instead to estimate ego-motion of the RGB im-

ages with RS distortion and blur. Su et al. [34] first propose

an energy model, RS-BMD, to directly estimate the ego-

motion without device-specific constraints. However, they

discard in-plane rotation to simplify ego-motion. Mohan et

al. [22] overcome the inability of 3D rotation and irregular

ego-motion of RS-BMD. They leverage a generative model

for removing RS motion blur and a prior to disambiguate

multiple solutions during inversion.

Existing RSCD methods are designed for static scenes

with only ego-motion, and there are no learning-based

methods for RSCD problem due to the lack of datasets.

3. BS-RSCD Dataset

It is worth noting that the current mainstream GSD and

RSC datasets are synthetic. As for popular GSD datasets,

GOPRO [24], DVD [33] and REDS [23] accumulate con-

secutive sharp images from high-FPS GS video to gener-

ate a blurry image. As for RSC dataset, Fastec-RS [20]

uses a GS camera mounted on a ground vehicle to capture

high-FPS video with only horizontal motion. Then, RS im-

ages are synthesized by sequentially copying a row of pixels

from consecutive GS images. Deep learning models trained

on the synthetic dataset have limited performance for the

data in realistic environment, because the distribution of

synthetic data differs from the real data and there may be

artifacts. In the case of Fastec-RS, the exposure intensity

of the pixel rows from different GS images is inconsistent,

resulting in obvious horizontal striping artifacts in the syn-

thetic input, as illustrated in the 1st row of Fig. 3.

To improve the generality of deep learning models, real

datasets without synthetic artifacts are essential. Recently,

researchers have succeeded in designing specific optical ac-

quisition system to capture real pairs of images or videos

for training neural networks. Zhang et al. [42] use a zoom

lens to collect low-resolution and super-resolution image

Train Validation Test

Sequences 50 15 15
Frames/seq. 50 50 50
Frames 2500 750 750
Resolution 640× 480
RS camera FLIR FL3-U3-13S2C

GS camera FLIR GS3-U3-28S4C

Table 1: Configuration of the proposed BS-RSCD.
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Figure 2: Beam-splitter acquisition system. (a) shows real system used to collect the dataset; (b) is system schematic

diagram; (c) is exposure scheme of the system.

Figure 3: Data samples of Fastec-RS and BS-RSCD. 1st

row shows unrealistic case of Fastec-RS with striping ar-

tifacts. 2nd row shows natural RS distortion and blur in

BS-RSCD.

pairs for static scenes. Rim et al. [31] and Zhong et al. [44]

adopt beam-splitter acquisition system to collect single im-

age and video deblurring datasets, respectively. Inspired by

the above works, we also propose a beam-splitter acquisi-

tion system (Fig. 2) to collect the first dataset for RSCD

problem, named BS-RSCD. Data samples from the cap-

tured video pairs are shown in the 2nd row of Fig. 3. The RS

distortion and motion blur in the realistic input look more

natural.

3.1. Hardware Configuration

As for the hardware, we choose a RS camera FLIR FL3-

U3-13S2C equipped with a 1/3-inch CMOS sensor, whose

pitch size is 3.63 µm. To properly match the sensor spec-

ifications of the RS camera, a GS camera FLIR GS3-U3-

28S4C is used, whose sensor size is 1/1.8-inch, and pitch

size is 3.69 µm. These two cameras are co-axis aligned via

a 50/50 beam splitter. As for geometric alignment, the two

cameras are first mechanically aligned assisted with colli-

mated laser beams. Later, a homography correction using

standard checker pattern is conducted, so as to reduce the

alignment error to less than one pixel. The exposure time of

the RS and the GS camera is 16ms and 2ms, respectively.

Both cameras run at 15fps. We use a wave generator to

generate synchronized pulses at 15Hz, and the phase of the

pulse for the GS camera is properly delayed, such that the

GS exposure time lies in the middle of the RS exposure du-

ration (Fig. 2(c)). As for photometric alignment, we put a

neutral density filter before the RS camera, such that the

intensity values of two cameras are almost equalized. We

further use a color checker pattern to correct the RGB re-

sponse of the GS camera, such that both cameras record the

same RGB images, when the scene and cameras are static.

3.2. Collected Data

We collected BS-RSCD in the dynamic urban environ-

ment with both ego-motion and object-motion. The config-

uration of BS-RSCD is listed in Table 1. There are 80 short

video sequences of 50 frames each in our dataset (4000 im-

ages pairs in total). We divided the BS-RSCD into 50, 15

and 15 sequences representing the training set (2500 im-

age pairs), the validation set (750 image pairs) and the test

set (750 image pairs), respectively. The original resolution

(1280× 920) was downsampled to half (640× 460) to sup-

press the noise level of ground truth.

4. Method

Through experiments on BS-RSCD, we found that ex-

isting GSD and RSC methods suffer from inherent flaws

caused by the design of their neural network architecture,

leading to undesirable geometric distortions or blurry de-

tails. As for the end-to-end RSC method [20], latent undis-

torted image is inferred based on warped features. Learn-
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