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Abstract

We present the full-resolution correspondence learning

for cross-domain images, which aids image translation. We

adopt a hierarchical strategy that uses the correspondence

from coarse level to guide the fine levels. At each hier-

archy, the correspondence can be efficiently computed via

PatchMatch that iteratively leverages the matchings from

the neighborhood. Within each PatchMatch iteration, the

ConvGRU module is employed to refine the current cor-

respondence considering not only the matchings of larger

context but also the historic estimates. The proposed Co-

CosNet v2, a GRU-assisted PatchMatch approach, is fully

differentiable and highly efficient. When jointly trained with

image translation, full-resolution semantic correspondence

can be established in an unsupervised manner, which in turn

facilitates the exemplar-based image translation. Experi-

ments on diverse translation tasks show that CoCosNet v2

performs considerably better than state-of-the-art literature

on producing high-resolution images.

1. Introduction

Image-to-image translation learns the mapping between

image domains and has shown success in a wide range of

applications [28, 10, 38, 45, 58]. Particularly, exemplar

based image translation allows more flexible user control

by conditioning the translation on a specific exemplar with

the desired style. However, simultaneously producing high

quality while being faithful to the exemplar is non-trivial,

whereas it becomes rather challenging for producing high-

resolution images.

Early studies [9, 19, 55, 54, 47, 5] directly learn the map-

ping through generative adversarial networks [14, 35], yet

they fail to leverage the information in the exemplar. Later,

a series of methods [12, 17, 39] propose to refer to the exem-

plar image during the translation, by modulating the feature

normalization according to the style of the exemplar image.

However, as the modulation is applied uniformly, only the

global style can be transferred whereas the detailed textures

are washed out in the final output.

*Author did this work during his internship at Microsoft Research Asia.

Figure 1: Image translation at resolution 512×512 for pose-

to-body (DeepFashion) and at resolution 1024×1024 for

edge-to-face (MetFaces). For each task, the 1st row shows

the exemplar images, and the 2nd row shows the translation

outputs.

Very recently, CoCosNet [56] established the dense se-

mantic correspondence between cross-domain images. In

this way the network could make use of the fine textures

from the exemplar, which eases the hallucination for the

local textures. However, prohibitive memory footprint oc-

curs when estimating high-resolution correspondence, as

the matching requires to compute the pairwise similarities

among all locations of the input feature maps, while low-

resolution correspondences (e.g., 64×64) cannot guide the

network to leverage the fine structures from the exemplar.

In this paper, we propose the cross-domain correspon-

dence learning, in full-resolution for the first time, which

leads to high-resolution translated images in photo-realistic

quality, as the network can leverage the meticulous details
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from the exemplar. To achieve that, we draw inspiration

from PatchMatch [3] which is advantageous in computa-

tional efficiency and texture coherency as it iteratively prop-

agates the correspondence from the neighborhood rather

than searching globally. Nonetheless, directly applying

PatchMatch to high-resolution feature maps for training is

infeasible and the reasons are threefold. First of all, this

algorithm is not efficient enough for high-resolution images

when the correspondence is initialized randomly. Second, at

the early training phase, the correspondence is chaotic and

the backward gradient flows to the incorrectly corresponded

patches, making the feature learning difficult. Moreover,

PatchMatch fails to consider a larger context when prop-

agating the correspondence estimate and requires a large

number of iterations to converge.

To tackle these limitations, we propose the following

techniques to learn the full-resolution correspondence. 1)

We adopt a hierarchical strategy that makes use of the

matchings from the coarse level to guide the subsequent,

finer levels so that the searching at the fine levels may start

with a good initialization. 2) Enlightened by the recent suc-

cess of recurrent refinement [41, 7, 44], we employ convo-

lutional gated recurrent unit (ConvGRU) to refine the cor-

respondence within each PatchMatch iteration. The GRU-

assisted PatchMatch considers a larger context as well as the

historic correspondence estimates, which considerably im-

proves the correspondence quality. Besides, it greatly ben-

efits the feature learning as the gradient can now flow to a

larger context than just a few corresponded patches. 3) Last

but not least, the proposed hierarchical GRU-assisted Patch-

Match is fully differentiable, and learns the cross-domain

correspondence in an unsupervised manner, which is very

challenging especially in high-resolution.

We show that our method, called CocosNet v2, achieves

significantly higher quality images than the state-of-the-art

litearture due to the full-resolution cross-domain correspon-

dence. More importantly, our approach is able to gen-

erate visually appealing image translation results in high-

resolution, e.g., images at 512×512 and 1024×1024 (Fig-

ure 1). We summarize our major contributions as follows:

• We propose to learn full-resolution correspondence from

different domains in order to capture meticulously realis-

tic details from an exemplar image for image translation.

• To achieve that, we propose CoCosNet v2, a hierarchi-

cal GRU-assisted PatchMatch method, for efficient corre-

spondence computation, which is simultaneously learned

with image translation.

• We show that the full-resolution correspondence leads to

significantly finer textures in the translation output. The

translated images demonstrate unprecedented quality at

large resolutions.

2. Related works

PatchMatch. Correspondence matching is a fundamental

problem in computer vision [6, 27, 50, 31, 11, 13, 49]. The

prohibitively high computational challenge has been largely

alleviated by the pioneering work, PatchMatch [3]. The key

insights stem from two principles: 1) good patch matches

can be found via random sampling; 2) images are coherent

such that matches can be propagated to nearby areas. Due to

its efficiency, PatchMatch has been successfully applied to

different tasks [25, 4, 2, 16, 11]. However, traditional Patch-

Match can only find matches with image and is unsuitable

to deep neural networks. Recently, [11] proposes to make

the whole matching process differentiable and enables the

feature learning and correspondence learning end-to-end.

However, this method is still computational prohibitive to

learn high-resolution correspondence during training. In

contrast, we apply PatchMatch in hierarchy, and propose a

novel GRU-assisted refinement module to consider a larger

context, which enables a faster convergence and a more ac-

curate correspondence. It is worth noting that [24, 26] use

PatchMatch for style transfer, but they operate on the pre-

trained VGG features and require the input to be natural

images, whereas we allow the feature learning for arbitrary

domain inputs such as pose or edge.

Image-to-image translation. Image translation meth-

ods [19, 47, 39, 59, 52, 22, 28, 43] typically resort to a

conditional generative adversarial network and optimize the

network through either paired data with explicit supervision

or unpaired data by enforcing cycle consistency. Recently,

exemplar-based image translation [18, 40, 46, 32, 42, 1, 53]

have attracted a lot of interest due to its flexibility and im-

proved generation quality. While most methods transfer the

global style from the reference image, a recent work, Co-

CosNet [56] proposes establishing the dense semantic cor-

respondence to the cross-domain inputs, and thus better pre-

serves the fine structures from the exemplar. Our work is

closely related to CoCosNet [56] but has a substantial im-

provement. We aim to compute dense correspondence on

full-resolution whereas [56] can only find the correspon-

dence on a small scale. Due to the full-resolution corre-

spondence, our network can leverage finer structures from

the exemplar, and thus achieves a superior quality on high-

resolution outputs.

3. CoCosNet v2

Given an image xA in the source domain A and an im-

age yB in the target domain B, we propose to learn full-

resolution cross-domain correspondences that aim to cap-

ture finer details and serve as a better guidance in exemplar-

based image translation. Specifically, xA and yB are first

represented as multi-level features (Section 3.1). There-

after the correspondences are established starting from low-
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Figure 2: The overall architecture of CoCosNet v2. We learn the cross-domain correspondence in full resolution, by which

we warp the exemplar images (w
y→x
i ) and feed them into the translation network for further rendering. The full-resolution

correspondence is learned hierarchically, where the low-resolution result serves as the initialization for the next level. In each

level, the correspondence can be efficiently computed via differentiable PatchMatch, followed by ConvGRU for recurrent

refinement.

resolution to full-resolution, which are further used to warp

the exemplar to align with xA (Section 3.2). Finally, the

warped exemplars are passed through a translation network

to generate the desired output image (Section 3.3). We il-

lustrate the whole network architecture in Figure 2.

3.1. Multilevel domain alignment

We first learn a common latent space S in which the

representation contains the semantic contents for both do-

mains and the features can be compared under some simi-

larity metric. Similar to prior work [56], we learn two map-

ping functions for both domains respectively. We build a

pyramid of L latent spaces ranging from low-resolution to

high-resolution, instead of creating merely one latent space.

For feature extraction, we adopt a U-net architecture to en-

able rich contextual information being propagated to higher

resolution features by means of skip connections.

Formally, let MA and MB be the corresponding two

mapping functions, we have the multi-level latent features,

fx1 , · · · , f
x
L = MA(xA; θMA

), (1)

f
y
1 , · · · , f

y
L = MB(yB ; θMB

), (2)

where fxl ∈ R
HlWl×Cl with the height H1 < · · · < HL,

width W1 < · · · < WL, and Cl denotes channel num-

ber. Latent features {fx1 , · · · , f
x
L} are enlarged from small

resolution to the full resolution. {fy1 , · · · , f
y
L} have similar

meanings, whereas, θMA
and θMB

denote the parameters.

3.2. Hierarchical GRUassisted PatchMatch

It is worth noting the previous works compute dense

correspondence field at the low-resolution level because of

memory constraints and speed limitations. We propose to

exploit the correspondences on the full-resolution feature

level, i.e., fxL and f
y
L, and present a novel effective approach

that is much less demanding in memory and time.

Coarse-to-fine strategy. Directly establishing the corre-

spondences on full-resolution features not only increases

the computational complexity, but also magnifies the noise

and ambiguities of small patches. To deal with that, we

propose a coarse-to-fine strategy on the pyramid of latent

representations. In particular, we start with correspondence

matching at the lowest resolution level, and use the match-

ing results as the initial guidance at the subsequent, higher-

resolution level. In this way, the correspondence fields of

all the levels can be acquired. Formally we have,

Hl = Nl(Hl−1, f
x
l , f

y
l ), (3)

where Hl ∈ R
HlWl×2K is the nearest neighbor field for fxl .

Specifically, for a feature point fxl (p), Hl(p) specifies the

locations of its top K nearest neighbors in f
y
l . We have

Hl(p, 1) = argmin
q

d(fxl (p), f
y
l (q)), (4)

as an example. Yet it takes a lot of time to traverse p and q

exhaustively, especially on the entire full-resolution feature

map. Therefore, we propose the GRU-assisted PatchMatch,

which attempts an iterative improvement.

GRU-assisted PatchMatch. Essentially, our algorithm can

be briefly viewed as performing propagation and GRU-

based refinement iteratively and recurrently until conver-

gence or a fixed number of iterations is reached. The previ-

ous level results Hl−1 are utilized as the initialization, and

are improved gradually by alternating the two steps. We

illustrate this matching process in Figure 3.

We denote the correspondence map in the tth step as

Hl,t, and the initialization correspondence field Hl,0 is up-

sampled from Hl−1. The level annotation l is omitted in

this subsection without causing confusion. The first step,

propagation, stems from the seminal work PatchMatch [3].

It improves the matching of the current patch by examining
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Figure 3: GRU-assisted PatchMatch consisting of (a) prop-

agation and (b) GRU-based refinement. Note that the prop-

agation for all the locations are conducted in parallel.

the already known matching results of its neighborhoods,

which we denote as,

H′
t = propagation(Ht, f

x, fy). (5)

where H′
t are the nearest neighbor field (NNF) propagation

results. However, propagation only checks spatially adja-

cent patches, which makes it heavily relying on the spatial

smoothness assumption and tends to be trapped in a local

optimum. The random search step in PatchMatch does al-

leviate this issue to some degree, but it is not enough es-

pecially when searching in an extremely large candidate

set. Our solution is to look up distant candidates selectively

rather than randomly searching, which is guided through a

novelly designed refinement module. We expect that, given

current offsets, the operator outputs a refinement field that

serves as a correction to some incorrectly matched pairs.

Specifically in the second step, we adopt a convolutional

gated recurrent unit (ConvGRU),

zt = σ(Conv([ht−1, xt], θz))

rt = σ(Conv([ht−1, xt], θr))

ĥt = tanh(Conv([rt ⊙ ht−1, xt], θh))

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

(6)

where xt is the input obtained by concatenating features ex-

tracted from four variables: fx, fy , Ot, St. Ot and St are

the current offset and the corresponding matching score,

Ot(p, k) = H′
t(p, k)− p,

St(p, k) = cos(fx(p), fy(H′
t(p, k)),

(7)

where k = 1, 2, · · · ,K considering K nearest neighbors.

The initial hidden state is set as 0 and the offset update ∆Ht

is predicted by feeding the output hidden state ht to two

convolutional layers. At last, the offsets are updated by:

Ht+1 = H′
t +∆Ht and are passed to the next step.

The benefits of ConvGRU. First, it helps refine the cur-

rent correspondence estimate making use of a larger con-

text, rather than the local neighborhood. The correspon-

dence can therefore become globally coherent with a faster

convergence. Second, the GRU memorizes the history of

correspondence estimate, and somehow forecasts the possi-

ble corresponding location in the next iteration. Third, the

backward gradient can now flow to the pixels in a larger

context, rather than at a specific location, which benefits the

feature learning and in turn the correspondence.

Differentiable warping function. Unlike conventional ap-

plications that directly push the learned correspondences to-

wards ground truth, we do not have the offset ground truth

in image-to-image translation. Instead, we leverage the cor-

respondence field in the subsequent translation network to

generate high-quality outputs, which pushes the correspon-

dence field to be accurate.

We take the correspondence field to warp the exemplar

image yB and use the warped image w
y→x
l to guide the

translation network. Usually, w
y→x
l is obtained by using

only the nearest match, i.e., w
y→x
l (p) = yB(Hl(p, 1)).

However, the argmin operation in Equation 4 is not dif-

ferentiable. Therefore, we propose to use the following soft

warping which is the average of top K possible warping:

w
y→x
l (p) =

K∑

k=1

softmax(Sl(p, k))yB(Hl(p, k)), (8)

where S is the matching score defined in Equation 7, indi-

cating the semantic similarity.

3.3. Translation network

The translation network G aims to synthesize an image

x̂B that is desired to respect the spatial semantic structure

in xA while resembling the appearance of similar parts in

yB . Similar to recent conditional generators [37, 54, 34],

we employ a simple and natural way that takes a con-

stant code z as input. To preserve the semantic informa-

tion of the warped exemplar images w
y→x
1 , · · · , wy→x

L , we

resort to spatially-adaptive denormalization (SPADE) [39]

that learns the modulation parameters adaptively.

Specifically, let the activation before the ith normaliza-

tion layer be T i ∈ R
Ci×Hi×Wi . we first concatenate the

warped images in the channel dimension (upsampling is

performed here when necessary). The resulting concatena-

tion is denoted as ŵy→x = [wy→x
1 ↑, · · · , wy→x

L ] where ↑
indicates upsampling. Thereafter we project ŵy→x through

two convolutional layers to produce the modulation param-

eters αi
h,w and βi

h,w for style modulation,

αi
h,w(ŵ

y→x)×
T i
c,h,w − µi

h,w

σi
h,w

+ βi
h,w(ŵ

y→x), (9)

where µi
h,w and σi

h,w are calculated mean and standard de-

viation. Finally, the translation result can be obtained by,

x̂B = G(z, ŵy→x; θG), (10)
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where θG denotes the network parameters.

3.4. Loss functions

Our approach is end-to-end differentiable and can be op-

timized through backpropagation to simultaneously learn

the cross-domain correspondence and the desired output.

Generally, it is easy to access the semantically aligned data

pair {xA, xB} in different domains, but does not necessarily

have the access to the training triplets {xA, yB , xB} where

xB shares a similar appearance with yB while resembling

the semantics of xA. Hence we construct the pseudo exem-

plar ỹB = T (xB) from xB by applying geometric distor-

tion, where T denotes the geometric augmentation.

Domain alignment loss. For successful correspondence,

the multi-level representation for xA and its corresponding

counterpart xB must lie in the same space, therefore we en-

force,

Lalign = ‖MA(xA; θMA
)−MB(xB ; θMB

)‖1. (11)

Correspondence loss. Still, with the pseudo pairs, the

warping wỹ→x should exactly be xB . Thus we enforce the

correspondence with,

Lcorr =
∑

l

‖wỹB→xA

l − xB↓‖1, (12)

where ↓ indicates down-sampling to match the size of xB

to the warped image.

Mapping loss. We expect that the cross-domain inputs

can be mapped from the latent representation to their cor-

responding counterparts in the target domain, which helps

the semantics-preserving in the latent space,

Lmap = ‖R(MA(xA; θMA
))− xB‖1 (13)

+ ‖R(MB(yB ; θMB
))− yB‖1, (14)

where R maps the features to images in the target domain.

Translation loss. The translated output is desired to be se-

mantically similar to the input with the appearance close to

that of the exemplar. We propose two losses focusing on

the two objectives respectively. One is the perceptual loss

to minimize the semantic discrepancy against xB :

Lsem = ‖φm(x̂B)− φm(xB)‖1, (15)

where we adopt features φm from high-level layers of pre-

trained VGG network. The other one is the appearance loss

that comprises of a contextual loss (CX) [33] when apply-

ing an arbitrary exemplar yB and a feature matching loss

when using a pseudo exemplar ỹB . The appearance loss

encourages the appearance resemblance by leveraging low-

level features φm of VGG. Concretely, the appearance loss

is,

Lapp =
∑

m

um[−log(CX(φm(x̂B), φm(yB)))

+
∑

m

ηm‖φm(x̂B)− φm(ỹB)‖1, (16)

where um controls the relative importance of different VGG

layers and ηm is the balancing coefficient.

Adversarial loss. We add a discriminator to distinguish

outputs from the real images in the target domain, compet-

ing with the generator which tries to synthesize images that

are indistinguishable. The adversarial loss is,

LD
adv = −E[h(D(yB))]− E[h(−D(G(xA, yB)))], (17)

LG
adv = −E[D(G(xA, yB))], (18)

where h(t) = min(0,−1 + t) is the hinge loss [54, 5] to

regularize the discriminator.

Total loss. In summary, our overall objective function is,

L = min
M,N ,G,R

max
D

λ1Lalign + λ2Lcorr + λ3Lmap

+ λ4(Lsem + Lapp) + λ5(L
D
adv + LG

adv), (19)

where λ denotes the weighting parameters, M contains

MA and MB , and N includes N1, · · · ,NL.

4. Experiment

Implementation details. We apply spectral normaliza-

tion [36] to all the layers for the translation network and

discriminator. We use the Adam solver [23] with β1 = 0
and β2 = 0.999. The learning rates for the generator and the

discriminator are set as 1e− 4 and 4e− 4 respectively, fol-

lowing the TTUR [15]. For detailed implementation includ-

ing network architectures, please see our appendix. The ex-

periments are conducted using 8 32GB Tesla V100 GPUs.

Datasets. We conduct experiments on four datasets:

• DeepFashion [29] consists of 52, 712 high-quality fash-

ionable person images. We adopt the high-resolution ver-

sion, and conduct pose-to-body synthesis at 512×512 res-

olution. OpenPose [8] is used for pose extraction.

• MetFaces [21] consists of 1, 336 high-quality human face

images at 1024 × 1024 resolution collected from works

of art in the Metropolitan Museum. The images in the

dataset exhibit a wide variety in artistic style. We use the

HED [51] to obtain the background edges and connect

the face landmarks for the face region. On this dataset,

we learn the translation from edges to faces.

• ADE20K [57] consists of 20, 210 training and 2, 000 val-

idation images. Each image is paired with a 150-class

segmentation mask. Because of its large diversity, it is

challenging for most existing methods to perform mask-

to-scene translation. As most of the images have short
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Input Ground truth SPADE CoCosNet CoCosNet v2 Exemplar

Figure 4: Qualitative comparison on the Deepfashion dataset, the MetFaces dataset, and the ADE20K dataset respectively.

DeepFashion MetFaces ADE20k ADE20k-outdoor

FID SWD FID SWD FID SWD FID SWD

SPADE 34.4 38.0 39.8 30.4 33.9 19.7 63.3 21.9

CocosNet 26.9 29.0 25.6 24.3 26.4 10.5 42.4 11.5

CoCosNet v2 22.5 24.6 23.3 22.4 25.2 9.9 38.9 10.2

Table 1: Quantitative evaluation of image quality. For both

metrics, the lower is better, with the best scores highlighted.

DeepFashion MetFaces ADE20k ADE20k-outdoor

SPADE 0.883 0.915 0.856 0.867

CoCosNet 0.924 0.941 0.862 0.873

CoCosNet v2 0.959 0.963 0.877 0.895

Table 2: Quantitative evaluation of semantic consistency.

The higher is better with the best scores highlighted.

DeepFashion MetFaces ADE20k

Color Texture Color Texture Color Texture

SPADE 0.932 0.893 0.949 0.920 0.874 0.892

CoCosNet 0.975 0.944 0.956 0.932 0.962 0.941

CoCosNet v2 0.987 0.961 0.972 0.956 0.970 0.948

Table 3: Quantitative evaluation of style relevance. The

higher is better with the best scores highlighted.

side <512, we synthesize images at resolution 256×256

on this dataset.

• ADE20K-outdoor is the subset of ADE20K. We follow

the same protocol in SIMS [40].

4.1. Comparison with the stateoftheArt

There are many excellent works that have been proposed

for general image translation. We do not compare with

L1↓ PSNR↑ SSIM↑

64 82.25 28.03 0.75

64+128 79.56 28.09 0.76

64+128+256 79.10 29.50 0.79

Full 64+128+256+512 77.84 30.03 0.82

Table 4: Ablation study of full-resolution correspondence.

L1↓ PSNR↑ SSIM↑

Only PatchMatch propagation 108.75 20.40 0.67

Only ConvGRU 94.21 22.99 0.74

PatchMatch propagation + conv 87.83 23.54 0.76

PatchMatch propagation + ConvGRU (ours) 81.97 28.99 0.83

Table 5: Ablation study of GRU-assisted refinement.

those methods that directly learn the translation through net-

works and fail to utilize the style of exemplars, such as

Pix2pixHD [47] and SIMS [40]. We compare with two

strong baselines. One is the SPADE [39], a leading ap-

proach among the methods [32, 17, 18] that leverage the

exemplar style in a global way. We also compare our

method with the closest competitor CoCosNet [56] that also

leverages cross-domain correspondence but learns at low-

resolution. The two works are initially proposed for gener-

ating images at resolution 256 × 256. For a fair compari-

son, we retrain their models on Deepfashion and MetFaces

at resolution 512×512 and make appropriate modifications

in order to generate high-quality translation results.

Quantitative evaluation. We first present quantitative eval-

uation from three directions following [56]. (1) Image qual-

ity is evaluated with two widely adopted metrics. One is

Fréchet Inception Distance score (FID) [15] that aims to

calculate the distance between Gaussian fitted feature dis-

tributions of real and generated images. The other one

11470



Figure 5: More results at resolution of 512×512 by CoCosNet v2. For each group, 1st row: exemplars; 2nd row: our results.

Figure 6: Our results on the ADE20k dataset. Left to right:

input, our results, the exemplar.

is sliced Wasserstein distance (SWD) [20] that attempts

to measure the Wasserstein distance between the distribu-

tions of real images and synthesized ones. Both metrics

have been shown that a lower score indicates higher qual-

ity images; (2) Semantic consistency is evaluated between

the output and the input by calculating the cosine simi-

larity between high-level features representing semantics,

i.e., relu3 2, relu4 2 and relu5 2 of an ImageNet pre-

trained VGG model [5]; (3) Style relevance is evaluated

between the output and the exemplar with low-level fea-

tures, relu1 2, and relu2 2 that mostly encode the color

and texture information. The comparison results are shown

in Table 1, Table 2, and Table 3 respectively. We can see

that CoCosNet v2 significantly outperforms prior competi-

tive methods in the three aspects, suggesting that CoCosNet

v2 synthesizes images of higher quality, better preserved se-

mantics and more relevant style.

Qualitative comparison. We show qualitative comparison

with the competitors in Figure 4. It can be clearly seen that

CoCosNet v2 produces the most visually appealing results

and the least visible artifacts. We find that the distinctive

patterns in the exemplar have been remarkably well pre-

served in the semantically corresponding regions of the out-

put, e.g., the texture patterns of the dress in pose-to-body

translation, which has been washed out in SPADE and Co-

CosNet. On the other hand, our output depicts subtle details

that are of particular importance to a high-resolution image,

demonstrating the advantage of CoCosNet v2. Figure 5-6

shows more diverse results under different exemplars. We

also demonstrate 1024×1024 results in Figure 1.

4.2. Ablation study

Full-resolution correspondence. We validate the effec-

tiveness of full-resolution correspondence, which benefits

CoCosNet v2 in producing fine textures in the ultimate out-

put. We explore the translation results when correspon-

dence is established at certain level of limited resolution.

11471



Figure 7: Comparison of warped images at different resolution levels. From left to right: edge, warped images at 642, 1282,

2562, 5122, output, exemplar. The warped image at 5122 exhibits more details.

Figure 8: Comparison of warped images for different variants of GRU-assisted refinement. From left to right: exemplar,

pose, warped images for using only PatchMatch propagation, only ConvGRU, PatchMatch propagation with convolution,

CoCosNet v2 using PatchMatch propagation with convGRU, and ground truth. CoCosNet v2 produces the most faithful

warping image.

Figure 9: Oil portrait. Given a portrait, CoCosNet v2 can

transfer it to a customized oil painting with style from a

given exemplar.

Specifically, we vary the largest resolution, i.e. the dimen-

sion of the latent space, from 642 to 5122 and see how the

performance changes. We evaluate the warping on Deep-

fashion dataset as we consider the person image under a

different pose as the exemplar as well as the ground truth.

Hence, we can measure the warping with L1, PSNR and

SSIM [48]. The numerical results in Table 4 show that hier-

archical PatchMatch offers a more accurate correspondence

in high-resolution. The qualitative study in Figure 7 shows

that full-resolution correspondence captures more details,

which further benefits the high-quality synthesis.

GRU-assisted refinement. We present a comprehensive

analysis to justify the important component in our architec-

ture, i.e. GRU-assisted refinement. We study three variants

that are different in each iteration: 1) using only PatchMatch

propagation; 2) using only ConvGRU refinement; 3) us-

ing PatchMatch propagation assisted with convolution. The

comparison with our full model (PatchMatch propagation

assisted with ConvGRU) are presented in Table 5 numer-

ically and Figure 8 visually. We can see that only adopt-

ing PatchMatch propagation or ConvGRU produces infe-

rior results. We conjecture that the reason may be 1) only

PatchMatch propagation cannot backward the gradient to

the correctly matched patches, and hence get trapped in the

local optimum; 2) only ConvGRU does not consider neigh-

borhood coherence and thus fails to preserve local textures.

Moreover, we find that CoCosNet v2 is better than the third

variant, which demonstrates that ConvGRU plays an impor-

tant role in utilizing the history information.

4.3. Application of oil portrait
We present an intriguing application of oil portrait that

transfers a portrait to a custom oil painting with differ-

ent styles specified by the exemplar. This is achieved by

extracting the edges from real faces, e.g., images from

CelebA [30], and applying the model trained from Met-

Faces. We show several examples in Figure 9.

5. Conclusion
We propose to learn the semantic correspondence in full-

resolution. To achieve that, we introduce an effective al-

gorithm CoCosNet v2 that efficiently establishes the cor-

respondence through iterative refinement in a coarse-to-

fine hierarchy. At each level, the propagation and GRU-

based propagation are alternatively performed. CoCosNet

v2 leads to photo-realistic outputs with fine textures as well

as visually appealing images at large resolutions, 5122 and
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Cun, and Camille Couprie. Inspirational adversarial image

generation. arXiv preprint arXiv:1906.11661, 2019. 2
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