
Decoupled Dynamic Filter Networks

Jingkai Zhou12∗ Varun Jampani3 Zhixiong Pi24 Qiong Liu1† Ming-Hsuan Yang235

1South China University of Technology 2University of California at Merced 3Google Research
4Huazhong University of Science and Technology 5Yonsei University

Abstract
Convolution is one of the basic building blocks of CNN

architectures. Despite its common use, standard convo-

lution has two main shortcomings: Content-agnostic and

Computation-heavy. Dynamic filters are content-adaptive,

while further increasing the computational overhead.

Depth-wise convolution is a lightweight variant, but it usu-

ally leads to a drop in CNN performance or requires a

larger number of channels. In this work, we propose the

Decoupled Dynamic Filter (DDF) that can simultaneously

tackle both of these shortcomings. Inspired by recent ad-

vances in attention, DDF decouples a depth-wise dynamic

filter into spatial and channel dynamic filters. This decom-

position considerably reduces the number of parameters

and limits computational costs to the same level as depth-

wise convolution. Meanwhile, we observe a significant

boost in performance when replacing standard convolution

with DDF in classification networks. ResNet50 / 101 get

improved by 1.9% and 1.3% on the top-1 accuracy, while

their computational costs are reduced by nearly half. Ex-

periments on the detection and joint upsampling networks

also demonstrate the superior performance of the DDF up-

sampling variant (DDF-Up) in comparison with standard

convolution and specialized content-adaptive layers. The

project page with code is available1.

1. Introduction

Convolution is a fundamental building block of convolu-

tional neural networks (CNNs) that have seen tremendous

success in several computer vision tasks, such as image

classification, semantic segmentation, pose estimation, to

name a few. Thanks to its simple formulation and opti-

mized implementations, convolution has become a de facto

standard to propagate and integrate features across image

pixels. In this work, we aim to alleviate two of its main

shortcomings: Content-agnostic and Computation-heavy.

Content-agnostic. Spatial-invariance is one of the promi-

nent properties of a standard convolution. That is, convolu-

∗Work carried out during the visit of J. Zhou and Z. Pi at UC Merced
†Corresponding author
1https://thefoxofsky.github.io/project_pages/ddf

Figure 1. Comparison between convolution, the dynamic filter,

and DDF. Top: Convolution shares a static filter among pixels

and samples. Medium: The dynamic filter generates one complete

filter for each pixel via a separate branch. Bottom: DDF decouples

the dynamic filter into spatial and channel ones.

tion filters are shared across all the pixels in an image. Con-

sider the sample road scene shown in Figure 1 (top). The

convolution filters are shared across different regions such

as buildings, cars, roads, etc. Given the varied nature of

contents in a scene, a spatially shared filter may not be op-

timal to capture features across different image regions [52,

42]. In addition, once a CNN is trained, the same convolu-

tion filters are used across different images (for instance im-

ages taken in daylight and at night). In short, standard con-

volution filters are content-agnostic and are shared across

images and pixels, leading to sub-optimal feature learning.

Several existing works [23, 48, 42, 57, 49, 45, 22, 11] pro-

pose different types of content-adaptive (dynamic) filters for

CNNs. However, these dynamic filters are either compute-

intensive [57, 23], memory-intensive [42, 22], or special-

ized processing units [11, 48, 49, 45]. As a result, most

of the existing dynamic filters can not completely replace

6647

standard convolution in CNNs and are usually used as a

few layers of a CNN [49, 45, 42, 22], or in tiny architec-

ture [57, 23], or in specific scenarios, like upsampling [48].

Computation-heavy. Despite the existence of highly-

optimized implementations, the computation complexity of

standard convolution still increases considerably with the

enlarge in the filter size or channel number. This poses a

significant problem as convolution layers in modern CNNs

have a large number of channels in the orders of hundreds

or even thousands. Grouped or depth-wise convolutions

are commonly used to reduce the computation complexity.

However, these alternatives usually result in CNN perfor-

mance drops when directly used as a drop-in replacement

to standard convolution. To retain similar performance with

depth-wise or grouped convolutions, we need to consider-

ably increase the number of feature channels, leading to

more memory consumption and access times.

In this work, we propose the Decoupled Dynamic Fil-

ter (DDF) that simultaneously addresses both the above-

mentioned shortcomings of the standard convolution layer.

The full dynamic filter [57, 23, 49, 45] uses a separate net-

work branch to predict a complete convolution filter at each

pixel. See Figure 1 (middle) for an illustration. We observe

that this dynamic filtering is equivalent to applying atten-

tion on unfolded input features, as illustrated in Figure 3.

Inspired by the recent advances in attention mechanisms

that apply spatial and channel-wise attention [36, 50], we

propose a new variant of the dynamic filter where we de-

couple spatial and channel filters. In particular, we adopt

separate attention-style branches that individually predict

spatial and channel dynamic filters, which are then com-

bined to form a filter at each pixel. See Figure 1 (bottom)

for an illustration of DDF. We observe that this decoupling

of the dynamic filter is efficient yet effective, making DDF

to have similar computational costs as depth-wise convo-

lution while achieving better performance against existing

dynamic filters. This lightweight nature enables DDF to be

directly inserted as a replacement of the standard convolu-

tion layer. Unlike several existing dynamic filtering layers,

we can replace all k × k (k > 1) convolutions in a CNN

with DDF. We also propose a variant of DDF, called DDF-

Up, that can be used as a specialized upsampling or joint-

upsampling layer.

We empirically validate the performance of DDF by

drop-in replacing convolution layers in several classifica-

tion networks with DDF. Experiments indicate that apply-

ing DDF consistently boosts the performance while reduc-

ing computational costs. In addition, we also demonstrate

the superior upsampling performance of DDF-Up in object

detection and joint upsampling networks. In summary, DDF

and DDF-Up have the following favorable properties:

• Content-adaptive. DDF provides spatially-varying fil-

tering that makes filters adaptive to image contents.

• Fast runtime. DDF has similar computational costs as

depth-wise convolution, so its inference speed is faster

than both standard convolution and dynamic filters.

• Smaller memory footprint. DDF significantly reduces

memory consumption of dynamic filters, making it pos-

sible to replace all standard convolution layers with DDF.

• Consistent performance improvements. Replacing a

standard convolution with DDF / DDF-Up results in con-

sistent improvements and achieves the state-of-the-art

performance across various networks and tasks.

2. Related Work

Lightweight convolutions. Given the prominence of con-

volutions in CNN architectures, several lightweight vari-

ants have been proposed for different purposes. Dilated

convolutions [4, 56] increase the receptive field of the fil-

ter without increasing parameters or computation complex-

ity of the standard convolution. Several lightweight mobile

networks [17, 39, 16] use depth-wise convolutions instead

of standard ones, which separately convolve each channel.

Similarly, grouped convolutions [26] group input channels

and convolve each group separately resulting in parameter

and computation reduction. However, directly replacing a

standard convolution with depth-wise or grouped convo-

lutions usually leads to performance drops. One needs to

widen the model to achieve competitive performance with

these lightweight variants of convolution. In contrast, the

proposed DDF layer can be directly used as a lightweight

drop-in replacement to standard convolution layer.

Dynamic filters. For the dynamic filters, the filter neigh-

borhoods and/or filter values are dynamically modified or

predicted based on the input features. Some recent ap-

proaches dynamically adjust the filter neighborhoods by

adaptive dilation factors [58], estimating the neighborhood

sampling grid [8], or adapting the receptive fields [43]. An-

other kind of dynamic filters, more closely related to our

work, adjusts or predicts filter values based on input features

[55, 59, 5, 23, 48, 42, 57, 49, 45, 22]. In particular, semi-

dynamic filters, such as WeightNet [34], CondConv [55],

DyNet [59], and DynamicConv [5], predict coefficients

to combine several expert filters. The combined filter is

still applied in a convolutional manner (spatially shared).

CARAFE [48] proposes a dynamic layer for upsampling,

where an additional network branch is used to predict a 2D

filter at each pixel. However, these channel-wise shared 2D

filters cannot encode channel-specific information. Several

full dynamic filters [23, 57, 49, 45] use separate network

branches to predict a complete filter at each pixel. As illus-

trated in Figure 2 (middle) and briefly explained in the In-

troduction, these dynamic filters can only replace a few con-

volution layers or can only be used in small networks due to

computational reasons. Specifically, adaptive convolutional

6648

(a) Decoupled Dynamic Filter Operation (DDF Op). (b) Decoupled Dynamic Filter Module (DDF Module).

Figure 2. Illustration of the DDF operation and the DDF module. The orange color denotes spatial dynamic filters / branch, and the

green color denotes channel dynamic filters / branch. The filter application means applying the convolution operation at a single position.

‘GAP’ means the global average pooling and ‘FC’ denotes the fully connected layer.

kernels [57] are only used in small networks. SOLOv2 [49]

and CondInst [45] employ dynamic filters in the last few

layers of the segmentation model. PAC [42] uses a fixed

Gaussian kernel on adapting features to modify the standard

convolution filter at each pixel, which is also impractical for

large architectures due to high memory consumption. The

proposed DDF is lightweight even compared with the stan-

dard convolution layer and thus can be used across all the

layers even in large networks.

Attention mechanisms. Inspired by the role of attention

in human visual perception [21, 38, 7, 50], several ap-

proaches [54, 47, 46, 18, 36, 50] propose to use atten-

tion layers that dynamically enhance/suppress feature val-

ues with predicted attention maps. SMemVQA [54] gen-

erates question-guided spatial attention to capture the cor-

respondence between individual words in the question and

image regions. The residual attention network [47] adopts

encoder-decoder branches to model spatial attention and re-

fine features. VSGNet [46] leverages the spatial configu-

ration of human-object pairs to model attention. Besides

spatial attention, SENet [18] introduces the squeeze-and-

excitation structure to encode channel-wise attention and re-

weights the feature channels. Subsequent methods combine

spatial and channel-wise attention. BAM [36] uses spatial

and channel-wise attention in parallel, whereas CBAM [50]

sequentially applies spatial and channel-wise attention. In

this work, we draw connections between dynamic filters and

attention layers. Inspired by spatial and channel-wise at-

tention, we propose DDF that uses decoupled spatial and

channel dynamic filters.

3. Preliminaries

Standard convolution. Given an input feature representa-

tion F ∈ R
c×n with c channels and n pixels (n = h × w,

h and w are the width and height of the feature map); the

standard convolution operation at ith pixel can be written as

a linear combination of input features around ith pixel:

F ′

(.,i) =
∑

j∈Ω(i)

W [pi − pj]F(.,j) + b, (1)

where F(.,j) ∈ R
c denotes the feature vector at jth pixel;

F ′ ∈ R
c′×n denotes output feature map with F ′

(.,i) ∈ R
c′

denoting ith pixel output feature vector. Ω(i) denotes

the k × k convolution window around ith pixel. W ∈
R

c′×c×k×k is a k × k convolution filter, W [pi − pj] ∈

R
c′×c is the filter at position offset between i and jth pix-

els: [pi − pj] ∈ {(− (k−1)
2 ,− (k−1)

2), (− (k−1)
2 ,− (k−1)

2 +

1), ..., ((k−1)
2 ,

(k−1)
2)} where pi denotes 2D pixel coordi-

nates. b ∈ R
c′ denotes the bias vector. In standard convo-

lution, the same filter W is shared across all pixels and filter

weights are agnostic to input features.

Dynamic filters. In contrast to standard convolution, dy-

namic filters leverage separate network branches to gener-

ate the filter at each pixel. The spatially-invariant filter W in

Eq. 1 becomes the spatially-varying filter Di ∈ R
c′×c×k×k

in this case. The dynamic filters enable learning content-

adaptive and flexible feature embeddings. However, pre-

dicting such a large number (nc′ck2) of pixel-wise filter

values requires heavy side-networks, resulting in both com-

pute and memory intensive network architectures. Thus,

dynamic filters are usually only employed in either tiny net-

works [23, 57] or can only replace a few standard convolu-

tion layers [49, 45, 42, 22] in a CNN.

4. Decoupled Dynamic Filter

The goal of this work is to design a filtering operation

that is content-adaptive while being lighter-weight than a

standard convolution. Realizing both the properties with a

single filter is quite challenging. We accomplish this with

our Decoupled Dynamic Filter (DDF), where the key tech-

nique is to decouple dynamic filters into spatial and channel

ones. More formally, the DDF operation can be written as:

6649

Figure 3. Connection between dynamic filters and attention.

The dynamic filter is similar to applying attention on the unfolded

feature.

F ′

(r,i) =
∑

j∈Ω(i)

D
sp
i [pi − pj]D

ch
r [pi − pj]F(r,j), (2)

where F ′
(r,i) ∈ R denotes the output feature value at the

ith pixel and rth channel, F(r,j) ∈ R denotes the input fea-

ture value at the jth pixel and rth channel. Dsp ∈ R
n×k×k

is the spatial dynamic filter with D
sp
i ∈ R

k×k denoting the

filter at ith pixel. Dch ∈ R
c×k×k is the channel dynamic

filter with Dch
r ∈ R

k×k denoting the filter at rth channel.

Figure 2(a) shows the illustration of DDF operation. We

predict both channel and spatial dynamic filters from the in-

put feature, using which we perform the above DDF opera-

tion (Eq. 2) to compute the output feature map. Comparing

general dynamic filters (See Section 3) with DDF clearly

indicates that DDF reduces the nc′ck2 sized dynamic filter

into much smaller nk2 spatial and ck2 channel dynamic fil-

ters. In addition, we implement DDF operation in CUDA

alleviating any need to save intermediate multiplied filters

during network training and inference.

DDF module. Based on DDF operation, we carefully de-

sign a DDF module that can act as a basic building block in

CNNs. For that, we want the filter prediction branches to be

lightweight as well in addition to the DDF operation itself.

We notice the connection between dynamic filters and at-

tention mechanisms, using which we design attention-style

branches to predict spatial and channel filters. Figure 3 il-

lustrates the connection between dynamic filters and atten-

tion. Applying dynamic filters on a feature map is equiva-

lent to applying attention on unfolded features. That is, we

unfold the F ∈ c×n feature map into Fu ∈ c×n×k2 fea-

ture map where neighboring feature values are unfolded as

separate channels. Applying dynamic filters on the original

feature map F is the same as re-weighting the unfolded fea-

ture map Fu using the generated filter tensor as attention.

Following the recent advances in attention literature [36,

50] that propose to use lightweight branches to predict spa-

tial and channel-wise attention, we design two attention-

style branches that can generate spatial and channel dy-

namic filters for DDF. Figure 2(b) illustrates the structure

of spatial and channel filter branches in the DDF module.

The spatial filter branch only contains one 1 × 1 convolu-

tion layer. The channel filter branch first applies the global

average pooling to aggregate input features, then generates

channel dynamic filters via a squeeze-and-excitation struc-

ture [18], where the squeeze ratio is denoted as σ ∈ R
+.

As generated filter values can be extremely large or small

for some input features, directly using them for convolution

will make the training unstable. So, we propose to do filter

normalization (FN):

D
sp
i = αsp D̂

sp
i − µ(D̂sp

i)

δ(D̂sp
i)

+ βsp

Dch
r = αch

r

D̂ch
r − µ(D̂ch

r)

δ(D̂ch
r)

+ βch
r ,

(3)

where D̂sh
i , D̂ch

r ∈ R
k×k are the generated spatial and

channel filters before normalization, µ(·) and δ(·) cal-

culate the mean and standard deviation of the filter,

αsp, αch
r , βsp, βch

r are the running standard deviation and

mean values which are similar to those coefficients in the

batch normalization (BN) [20]. FN can limit generated fil-

ter values into a reasonable range, thereby avoiding the gra-

dient vanishing/exploding during training.

4.1. Computational Complexity.

Table 1 shows the parameter, space and time complexity

comparisons between standard convolution (Conv), Depth-

wise convolution (DwConv), full dynamic filters (DyFil-

ter) [23, 57, 49, 45], and our DDF filter. For analysis, we use

the same notation as before - n : Number of pixels; c: Chan-

nel number; k : Filter size (spatial extent); σ : Squeeze ratio

in DDF channel filter branch. For simplicity, we assume

that both input and output features have c channels. We

also assume that DyFilter adopts a lightweight filter predic-

tion branch with a single 1× 1 convolution layer.

Number of parameters. The prediction branch of DyFilter

takes c channel features as input and produces c2k2 channel

output, where each pixel output corresponds to a complete

filter at that pixel. Thus, the DyFilter prediction branch has

c3k2 parameters, which is quite high even for small values

of c. For DDF, the spatial filter branch predicts filter ten-

sors with k2 channels and thus contain ck2 parameters. The

channel filter branch has σc2 parameters for the squeeze

layer, and σc2k2 parameters for the excitation layer. In to-

tal, DDF prediction branches contain ck2 + σc2(1 + k2)
parameters, which is far fewer than those for DyFilter. De-

pending on the values of σ, k, and c (usually set to 0.2, 3,

and 256), the number of parameters for the DDF module

can be even lower than a standard convolution layer.

Time complexity. The spatial filter generation of DDF

needs 2nck2 floating-point operations (FLOPs), and the

channel filter generation takes 2σc2(1 + k2) FLOPs. The

filter combination and application needs 3nck2 FLOPs. In

total, DDF needs 5nck2 + 2σc2(1 + k2) FLOPs with time

complexity of O(nck2 + c2k2). The term c2k2 can be ig-

nored since n >> c, k. Thus, the time complexity of DDF

6650

Table 1. Comparison of the parameter number and computa-

tional costs. ‘Params’ means the number of parameters, ‘Time’

represents the time complexity, ‘Space’ denotes the space com-

plexity of generated filters.

Filter Conv DwConv DyFilter DDF

Params c
2
k
2

ck
2

c
3
k
2

ck
2 + σc

2(1 + k
2)

Time O(nc2k2) O(nck2) O(nc3k2) O(nck2 + c
2
k
2)

Space – – O(nc2k2) O((n+ c)k2)

Table 2. Comparison of the inference latency and the max allo-

cated memory. The size of the input feature is set to 2 × 256 ×

200× 300, which is the common size of the P1 layer in FPN [30].

The guidance feature size of PAC is the same as the input one.

Filter Conv DwConv PAC DDF

Memory 356.3M 236.0M 3406.4M 245.7M

Latency 7.5 ms 1.0 ms 46.4 ms 3.0 ms

approximately equals to O(nck2), which is similar to that of

depth-wise convolution and better than a standard convolu-

tion with time complexity of O(nc2k2). The time complex-

ity of DyFilter is O(nc3k2), with 2nc3k2 FLOPs for filter

generation and 2nc2k2 FLOPs for filter application. Thus

the time complexity of DyFilter is almost c2 times higher

than that of DDF, which is quite significant. Table 2 com-

pares the inference time between four kinds of filters, where

we adopt PAC [42] as the representative of dynamic filters.

Refer to the supplementary for more latency comparisons

on different input sizes.

Space/Memory complexity. Table 1 also compares the

space complexity of generated filters. Standard and depth-

wise convolutions do not generate content-adaptive filters.

DyFilter generates a complete filter at each pixel with a

space complexity of O(nc2k2). DDF has a much smaller

space complexity of O((n + c)k2), since it only needs to

store 2d spatial filters with nk2 (shared by channels) and

channel filters with ck2. See Table 2 for the comparison of

the max allocated memory between four kinds of filters.

In summary, DDF has a time complexity that is simi-

lar to depth-wise convolution, which is considerably better

than a standard convolution or dynamic filter. Remarkably,

despite generating content-adaptive filters, the number of

parameters in a DDF module is still smaller than that of a

standard convolution layer. The space complexity of DDF

can be hundreds or even thousands of times smaller than full

dynamic filters, when c or n are in the orders of hundreds

which is quite common in practice.

5. DDF Networks for Image Classification

Image classification is considered as a fundamental task

in computer vision. To demonstrate the use of DDFs as

basic building blocks in a CNN, we experiment with the

widely used ResNet [15] architecture for image classifi-

cation. ResNets stack multiple basic/bottleneck blocks in

Figure 4. Structure of the DDF bottleneck block. We replace the

3× 3 convolution layer with DDF and keep the original hyperpa-

rameters, especially using the same number of channels.

which 3 × 3 convolution layers are adopted for spatial em-

bedding. We substitute these 3 × 3 convolution layers in

all stacked blocks with DDF. We refer to such a modified

ResNet with DDF as ‘DDF-ResNet’. Figure 4 illustrates

the use of DDF in a ResNet bottleneck block, we refer to it

as DDF bottleneck block.

We evaluate DDF-ResNets on the ImageNet dataset [10]

with the Top-1 and Top-5 accuracy. DDF-ResNets are

trained using the same training protocol as [27]. In partic-

ular, we train models for 120 epochs by the SGD optimizer

with the momentum of 0.9 and the weight decay of 1e-4.

The learning rate is set to 0.1 with batch size 256 and de-

cays to 1e-5 following the cosine schedule. The input image

is resized and center-cropped to 224× 224.

Ablation study. We comprehensively analyze the effect

of different components in a DDF module. We choose

ResNet50 [15] as our base network architecture and exper-

iment with different modifications to DDF. Table 3 shows

the results of ablation experiments. First, we analyze the

effect of spatial and channel dynamic filters in DDF with

classification accuracy. Table 3(a) shows there is a signif-

icant drop in performance when we replace convolutions

with only spatial dynamic filters. This is expected as spatial

dynamic filters are shared by all channels, thus cannot en-

code channel-specific information. By replacing the convo-

lution with the channel dynamic filters, the top-1 accuracy

is improved by 1.6%. Using the full DDF module, with both

spatial and channel dynamic filters, improves the top-1 ac-

curacy by 1.9%. These results show the importance of both

the spatial and channel dynamic filters in DDF.

Table 3(b) compares different normalization schemes in

a DDF module. Replacing the proposed filter normalization

with a standard batch normalization [20] or a sigmoid ac-

tivation leads to considerable drops in accuracy. Sigmoid

activation individually processes each filter value and may

not capture the correlation between them, while batch nor-

malization considers all the filters in a batch, which may

weaken the filter dynamics across samples.

We also evaluate DDF under different squeeze ratios σ,

which is used to control the feature channel compression

in the channel filter branch. As shown in table 3(c), using

higher squeeze ratios will significantly increase the number

of parameters, while only bringing marginal performance

improvements. Hence, we set the squeeze ratio to 0.2 by

6651

Table 3. Ablation studies on the ImageNet dataset. We list the

classification performance of different DDF-ResNet50 variants,

where we use ResNet50 as the base network architecture.

(a) Effect of spatial and channel filters in DDF.

Spatial Channel Top-1 / Top-5 Acc.

Base Model 77.2 / 93.5

X 74.4 / 92.0

X 78.7 / 94.2

X X 79.1 / 94.5

(b) Comparison of different normalization schemes.

Batch-Norm Sigmoid Filter-Norm

Top-1 Acc. 76.0 78.2 79.1

Top-5 Acc. 92.0 93.8 94.5

(c) Comparisons with different squeeze ratios σ.

σ Params FLOPs Top-1 / Top-5 Acc

0.2 16.8M 2.298B 79.1 / 94.5

0.3 18.1M 2.299B 79.0 / 94.5

0.4 19.4M 2.300B 79.2 / 94.5

Table 4. Comparison against related filters on the ImageNet

dataset. ‘–’ denotes the unreported value.

Arch Conv Type Params FLOPs Top-1 Acc

R18

Base Model [15] 11.7M 1.8B 69.6

Adaptive [57] 11.1M – 70.2

DyNet [59] 16.6M 0.6B 69.0

DDF 7.7M 0.4B 70.6

R50

Base Model [15] 25.6M 4.1B 77.2

DyNet [59] – 1.1B 76.3

CondConv [55] 104.8M 4.2B 78.6

DwCondConv [55] 14.5M 2.3B 78.3

DwWeightNet [34] 14.4M 2.3B 78.0

DDF 16.8M 2.3B 79.1

default. In addition, even the parameter number increases

with enlarging the squeeze ratio, the FLOPs remain low be-

cause the computational costs of the channel filter branch

are minimal, as analyzed in Section 4.1.

Comparisons with other dynamic filters. Next, we com-

pare the use of DDF with respect to some existing dynamic

filters using different ResNet base architectures: ResNet18

(R18) and ResNet50 (R50). Table 4 shows the param-

eters, FLOPs, and accuracy comparisons. Specifically,

we compare DDF with adaptive convolutional kernel [57]

(Adaptive), DyNet [59], Conditionally parameterized con-

volutions (CondConv/DwCondConv) [55], and depth-wise

WeightNet (DwWeightNet) [34]. The ‘Adaptive’ [57] can

only be used in R18 due to its large running memory

consumption. Results show that using DDF consistently

boosts the performance of base models, while also signif-

Table 5. Comparison with state-of-the-art variants of ResNet50

and ResNet101 on the ImageNet dataset. Variants include at-

tention mechanisms: SE, BAM, CBAM, AA; and block modifi-

cations: ResNeXt, Res2Net, and our DDF. Besides official results

from the respective work, we list re-trained results (in brackets)

under the same training protocol (that we use) as in [27].

Method Params FLOPs Top-1 Acc

ResNet50 (base) [15] 25.6M 4.1B 76.0 (77.2)

SE-ResNet50 [18] 28.1M 4.1B 77.6 (77.8)

BAM-ResNet50 [36] 25.9M 4.2B 76.0

CBAM-ResNet50 [50] 28.1M 4.1B 77.3

AA-ResNet50 [2] 25.8M 4.2B 77.7

ResNeXt50 (32×4d) [53] 25.0M 4.3B 77.8 (78.2)

Res2Net50 (14w-8s) [12] 25.7M 4.2B 78.0

DDF-ResNet50 16.8M 2.3B 79.1

ResNet101 (base) [15] 44.5M 7.8B 77.6 (78.9)

SE-ResNet101 [18] 49.3M 7.8B 78.3 (79.3)

BAM-ResNet101 [50] 44.9M 7.9B 77.6

CBAM-ResNet101 [50] 49.3M 7.8B 78.5

AA-ResNet101 [2] 45.4M 8.1B 78.7

ResNeXt101 (32×4d) [53] 44.2M 8.0B 78.8 (79.5)

Res2Net101 (26w-4s) [12] 45.2M 8.1B 79.2

DDF-ResNet101 28.1M 4.1B 80.2

icantly reducing the number of parameters and FLOPs. It

is worth noting that, DwWeightNet has worse performance

than DDF, and even inferior to the channel-only DDF in Ta-

ble 3(a), although it has a similar design as the channel-only

DDF. This is due to the use of sigmoid activation during the

filter generation in DwWeightNet (more analysis in the sup-

plementary).

Comparisons with state-of-the-art ResNet variants. We

also compare DDF-ResNets with other state-of-the-art vari-

ants of ResNet50 and ResNet101 architectures in Table 5.

Specifically, we compare with attention mechanisms of

SE [18], BAM [36], CBAM [50] and AA [2]; and also

block modifications of ResNeXt [53] and Res2Net [12]. Re-

sults clearly show that DDF-ResNets achieve the best per-

formance while also having the lowest number of parame-

ters and FLOPs. DDF-ResNet50 can be further improved

by tricks in training and evaluation, and can achieve 81.3%

top-1 accuracy. Refer to the supplementary for more details.

Recently, neural architecture search (NAS) meth-

ods [44, 33] can obtain architectures with outstanding

speed/accuracy trade-off. The proposed DDF module can

also contribute to the search space of NAS methods as a

new fundamental building block.

6. DDF as Upsampling Module

An advantage of dynamic filters compared with standard

convolution is that one could predict dynamic filters from

guidance features instead of input features. Following this,

we propose an extension of the DDF module, where spa-

6652

Figure 5. Structure of the DDF-Up module. When the upsam-

pling scale factor is set to 2, the DDF-Up module contains 4

branches. For typical upsampling, the guidance feature is pre-

dicted from input features via a depth-wise convolution layer.

(a) FPN with DDF-Up.

(b) Joint upsampling with DDF-Up.

Figure 6. Applications of the DDF-Up module. DDF-Up can be

seamlessly embedded into the top-down upsampling path in the

FPN [30] network for object detection and the decoder part of a

joint upsampling architecture.

tial dynamic filters are predicted using separate guidance

features instead of input features. Such joint filtering with

input and guidance features is useful for several tasks such

as joint image upsampling [42, 28, 29], cross-modal image

enhancement [51, 9, 6], texture removal [32] to name a few.

Figure 5 illustrates the DDF Upsampling (DDF-Up) mod-

ule, where the number of DDF operations used is set to x2

for the upsampling factor x (e.g., 4 DDF operations when

the upsampling factor is 2). We stack and pixel-shuffle [40]

the resulting features from the DDF operations to form out-

put features. For typical upsampling (without guidance), we

use the same structure with a slight modification. We com-

pute guidance features from input ones using a depth-wise

convolution layer. DDF-Up can be seamlessly integrated

into several existing CNNs, where typical/joint upsampling

operators are needed. Here we present two applications in

Table 6. Comparison of different upsampling modules in

FPN [30] on the COCO minival split. We show FLOPs (for

upsampling modules) and mAp scores on small (mApS), medium

(mApM), large (mApL), and all-scale (mAp) objects.

Method FLOPs mApS mApM mApL mAp

Nearest (base) 0.00B 21.2 41.0 48.1 37.4

Bilinear 0.02B 22.1 41.2 48.4 37.6

Deconv [35] 12.57B 21.0 41.1 48.5 37.3

P.S. [40] 50.18B 21.4 41.5 48.6 37.7

CARAFE [48] 2.14B 22.6 42.0 49.8 38.5

DDF-Up 0.58B 22.1 42.4 49.9 38.6

object detection and joint depth upsampling tasks.

Object detection with DDF-Up. Detecting objects in an

image is one of the core dense prediction tasks in com-

puter vision. We adopt FasterRCNN [37] with the Feature

Pyramid Network (FPN) [30] as our base detection archi-

tecture and embed DDF-Up modules into FPN. FPN is an

effective U-net shaped feature fusion module, where the de-

coder pathway upsamples high-level features while combin-

ing low-level ones. As illustrated in Figure 6(a), we replace

the nearest-neighbor upsampling modules in FPN with our

DDF-Up modules.

We analyze the effectiveness of DDF-Up modules with

experiments on the COCO detection benchmark [31] which

contains 115K training and 5K validation images. We report

standard COCO [31] metrics for small (mApS), medium

(mApM), large (mApL), and all-scale (mAp) objects on

the minival split. We implement our models based on the

MMDetection [3] toolbox and train them using the stan-

dard training protocol therein. Specifically, we train dif-

ferent models for 12 epochs using the SGD optimizer with

a momentum of 0.1 and the weight decay of 1e-4. We use

a batch size of 16 and set the learning rate to 0.2 which de-

cays by the factor of 0.1 at 8 and 11th epochs. We resize the

shorter side of the input image to 800 pixels, while keeping

the longer side no larger than 1333 pixels.

We compare DDF-Up with the generic nearest-neighbor

(Nearest) and bilinear (Bilinear) interpolations, as well

as learnable Deconvolution (Deconv) [35], Pixel Shuffle

(P.S.) [40], and CARAFE [48] upsampling modules. Ta-

ble 6 exhibits the comparison results. FPN with DDF-Up

yields a 1.2% mAp improvement over the baseline which

adopts the nearest-neighbor interpolation. DDF-Up also

brings obvious improvements against static-filtering upsam-

pler (like Deconv and P.S.), and is on par with the recent dy-

namic upsampling technique CARAFE while utilizing only

one-third of FLOPs as CARAFE.

Joint depth upsampling with DDF-Up. We analyze the

use of DDF-Up as a joint upsampling module by integrat-

ing it into a joint depth upsampling network. Here, the task

6653

Input Guidance Bilinear PAC-Net [42] DDF-Up-Net (Ours) GT

Figure 7. 16× joint depth sampling results on sample images. DDF-Up-Net recovers more depth details compared with PAC-Net [42]

and other techniques.

is to upsample a low-resolution depth map given a higher-

resolution RGB image as guidance. This experiment al-

lows to compare DDF-Up with content-adaptive filtering

techniques such as Pixel-Adaptive Convolution (PAC) [42]

which is a current state-of-the-art for this task. We use a

similar network architecture to PAC-Net [42], where we

employ our DDF-Up modules instead of PAC joint upsam-

pling modules. We call the resulting network ‘DDF-Up-

Net’. Figure 6(b) illustrates DDF-Up-Net where we first

encode low-resolution input features from the given depth

map (X) and high-resolution guidance features (G) from

RGB images. Then, we employ DDF-Up in the decoder

to joint upsample depth features with guidance features and

obtain high-resolution depth output (Xup). Each DDF-Up

module does 2× upsampling, we sequentially use k DDF-

Up modules when the upsampling factor is 2k.

We conduct experiments on the NYU depth V2

dataset [41] which has 1449 RGB-depth pairs. Follow-

ing PAC-Net [42], we use the nearest-neighbor downsam-

pling to generate low-resolution inputs from the ground-

truth (GT) depth maps. We split the first 1000 samples for

training and the rest for testing. We train DDF-Up-Net for

1500 epochs using the Adam optimizer [24]. We use a batch

size of 8 and set the learning rate to 1e-4 which decays by

the factor 0.1 at 1000 and 1350th epochs. During train-

ing, the input images are resized and random-cropped to

256× 256.

Table 7 reports Root Mean Square Error (RMSE) scores

of different techniques for three upsampling factors, i.e.,

4×, 8×, and 16×. DDF-Up-Net performs better than

state-of-the-art techniques across all the upsampling factors.

It surpasses the standard CNN techniques like DJF [28]

and DJF+ [29] by a large margin. It also improves over

dynamic-filtering PAC [42] while reducing computational

costs by an order of magnitude. See Table 2 for the cost

comparison between PAC and DDF-Up. We visualize sam-

pled 16× upsampling results in Figure 7, where we can see

that DDF-Up-Net recovers more details compared to PAC-

Net and other techniques.

Table 7. Joint depth upsampling results on the NYU Depth V2

dataset. We exhibit RMSE results (in the order of 10−2, lower is

better) of different techniques and different upsampling factors.

Method 4× 8× 16×

Bicubic 8.16 14.22 22.32

MRF (32×4d) 7.84 13.98 22.20

GF [14] 7.32 13.62 22.03

Ham et al. [13] 5.27 12.31 19.24

FBS [1] 4.29 8.94 14.59

JBU [25] 4.07 8.29 13.35

DMSG [19] 3.78 6.37 11.16

DJF [28] 3.54 6.20 10.21

DJF+ [29] 3.38 5.86 10.11

PAC-Net [42] 2.39 4.59 8.09

DDF-Up-Net 2.16 4.40 7.72

7. Conclusion

In this work, we propose a lightweight content-adaptive

filtering technique called DDF, where our key strategy is

to predict decoupled spatial and channel dynamic filters.

We show that DDF can seamlessly replace standard con-

volution layers, consistently improving the performance of

ResNets while also reducing model parameters and compu-

tational costs. In addition, we propose an upsampling vari-

ant called DDF-Up, which boosts performance as both a

general upsampling module in detection and a joint upsam-

pling module in joint depth upsampling. DDF-Up also is

more computationally efficient compared with specialized

content-adaptive layers. Overall, DDF has rich representa-

tive capabilities as a content-adaptive filter while also being

computationally cheaper than a standard convolution, mak-

ing it highly practical to use in modern CNNs.

8. Acknowledgement

This work is supported in part by the National Natural

Science Foundation of China (No.61976094). M.-H. Yang

is supported in part by NSF CAREER 1149783.

6654

References

[1] Jonathan T Barron and Ben Poole. The fast bilateral solver.

In ECCV, 2016. 8

[2] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional net-

works. In ICCV, 2019. 6

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-

heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,

Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,

Chen Change Loy, and Dahua Lin. MMDetection: Open

mmlab detection toolbox and benchmark. arXiv preprint

arXiv:1906.07155, 2019. 7

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2017. 2

[5] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong

Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution: At-

tention over convolution kernels. In CVPR, 2020. 2

[6] Yukyung Choi, Namil Kim, Soonmin Hwang, Kibaek Park,

Jae Shin Yoon, Kyounghwan An, and In So Kweon. Kaist

multi-spectral day/night data set for autonomous and assisted

driving. IEEE Transactions on Intelligent Transportation

Systems, 2018. 7

[7] Maurizio Corbetta and Gordon L Shulman. Control of goal-

directed and stimulus-driven attention in the brain. Nature

Reviews Neuroscience, 2002. 3

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In ICCV, 2017. 2

[9] Pingyang Dai, Rongrong Ji, Haibin Wang, Qiong Wu, and

Yuyu Huang. Cross-modality person re-identification with

generative adversarial training. In IJCAI, 2018. 7

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 5

[11] Raghudeep Gadde, Varun Jampani, Martin Kiefel, Daniel

Kappler, and Peter V Gehler. Superpixel convolutional net-

works using bilateral inceptions. In ECCV, 2016. 1

[12] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu

Zhang, Ming-Hsuan Yang, and Philip HS Torr. Res2net: A

new multi-scale backbone architecture. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019. 6

[13] Bumsub Ham, Minsu Cho, and Jean Ponce. Robust image

filtering using joint static and dynamic guidance. In CVPR,

2015. 8

[14] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. In ECCV, 2010. 8

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 5, 6

[16] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In ICCV, 2019. 2

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 3, 4, 6

[19] Tak-Wai Hui, Chen Change Loy, and Xiaoou Tang. Depth

map super-resolution by deep multi-scale guidance. In

ECCV, 2016. 8

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. ICML, 2015. 4, 5

[21] Laurent Itti, Christof Koch, and Ernst Niebur. A model

of saliency-based visual attention for rapid scene analysis.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 1998. 3

[22] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learning

sparse high dimensional filters: Image filtering, dense crfs

and bilateral neural networks. In CVPR, pages 4452–4461,

2016. 1, 2, 3

[23] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V

Gool. Dynamic filter networks. In NeurIPS, 2016. 1, 2, 3, 4

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015. 8

[25] Johannes Kopf, Michael F Cohen, Dani Lischinski, and Matt

Uyttendaele. Joint bilateral upsampling. ACM Transactions

on Graphics, 2007. 8

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, 2012. 2

[27] Duo Li, Anbang Yao, and Qifeng Chen. Psconv: Squeezing

feature pyramid into one compact poly-scale convolutional

layer. In ECCV, 2020. 5, 6

[28] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan

Yang. Deep joint image filtering. In ECCV, 2016. 7, 8

[29] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan

Yang. Joint image filtering with deep convolutional net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2019. 7, 8

[30] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 5, 7

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 7

[32] Feng Liu and Michael Gleicher. Texture-consistent shadow

removal. In ECCV, 2008. 7

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. ICLR, 2019. 6

[34] Ningning Ma, Xiangyu Zhang, Jiawei Huang, and Jian Sun.

Weightnet: Revisiting the design space of weight networks.

In ECCV, 2020. 2, 6

6655

[35] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.

Learning deconvolution network for semantic segmentation.

In ICCV, 2015. 7

[36] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So

Kweon. Bam: Bottleneck attention module. BMVC, 2018.

2, 3, 4, 6

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015. 7

[38] Ronald A. Rensink. The dynamic representation of scenes.

Visual Cognition, 2000. 3

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 2

[40] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, 2016. 7

[41] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012. 8

[42] Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik

Learned-Miller, and Jan Kautz. Pixel-adaptive convolutional

neural networks. In CVPR, 2019. 1, 2, 3, 5, 7, 8

[43] Domen Tabernik, Matej Kristan, and Aleš Leonardis.

Spatially-adaptive filter units for compact and efficient deep

neural networks. International Journal of Computer Vision,

2020. 2

[44] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In CVPR, 2019. 6

[45] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-

lutions for instance segmentation. In ECCV, 2020. 1, 2, 3,

4

[46] Oytun Ulutan, ASM Iftekhar, and Bangalore S Manjunath.

Vsgnet: Spatial attention network for detecting human object

interactions using graph convolutions. In CVPR, 2020. 3

[47] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In

CVPR, 2017. 3

[48] Jiaqi Wang, Kai Chen, Rui Xu, Ziwei Liu, Chen Change Loy,

and Dahua Lin. Carafe: Content-aware reassembly of fea-

tures. In ICCV, 2019. 1, 2, 7

[49] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-

hua Shen. Solov2: Dynamic, faster and stronger. arXiv

preprint arXiv:2003.10152, 2020. 1, 2, 3, 4

[50] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. Cbam: Convolutional block attention module.

In ECCV, 2018. 2, 3, 4, 6

[51] Ancong Wu, Wei-Shi Zheng, Hong-Xing Yu, Shaogang

Gong, and Jianhuang Lai. Rgb-infrared cross-modality per-

son re-identification. In ICCV, 2017. 7

[52] Jialin Wu, Dai Li, Yu Yang, Chandrajit Bajaj, and Xiangyang

Ji. Dynamic filtering with large sampling field for convnets.

In ECCV, 2018. 1

[53] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 6

[54] Huijuan Xu and Kate Saenko. Ask, attend and answer: Ex-

ploring question-guided spatial attention for visual question

answering. In ECCV, 2016. 3

[55] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. In NeurIPS, 2019. 2, 6

[56] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-

tion by dilated convolutions. ICLR, 2016. 2

[57] Julio Zamora Esquivel, Adan Cruz Vargas, Paulo

Lopez Meyer, and Omesh Tickoo. Adaptive convolu-

tional kernels. In ICCV Workshops, 2019. 1, 2, 3, 4,

6

[58] Rui Zhang, Sheng Tang, Yongdong Zhang, Jintao Li, and

Shuicheng Yan. Scale-adaptive convolutions for scene pars-

ing. In ICCV, 2017. 2

[59] Yikang Zhang, Jian Zhang, Qiang Wang, and Zhao Zhong.

Dynet: Dynamic convolution for accelerating convolutional

neural networks. arXiv preprint arXiv:2004.10694, 2020. 2,

6

6656

