
Effective Sparsification of Neural Networks with Global Sparsity Constraint

Xiao Zhou1*, Weizhong Zhang1*, Hang Xu2, Tong Zhang1

1The Hong Kong University of Science and Technology 2Huawei Noah’s Ark Lab

xzhoubi@connect.ust.hk, weizhong@ust.hk, xu.hang@huawei.com, tongzhang@tongzhang-ml.org

Abstract

Weight pruning is an effective technique to reduce the

model size and inference time for deep neural networks in

real-world deployments. However, since magnitudes and

relative importance of weights are very different for differ-

ent layers of a neural network, existing methods rely on ei-

ther manual tuning or handcrafted heuristic rules to find

appropriate pruning rates individually for each layer. This

approach generally leads to suboptimal performance. In

this paper, by directly working on the probability space, we

propose an effective network sparsification method called

probabilistic masking (ProbMask), which solves a natural

sparsification formulation under global sparsity constraint.

The key idea is to use probability as a global criterion for

all layers to measure the weight importance. An appealing

feature of ProbMask is that the amounts of weight redun-

dancy can be learned automatically via our constraint and

thus we avoid the problem of tuning pruning rates individu-

ally for different layers in a network. Extensive experimen-

tal results on CIFAR-10/100 and ImageNet demonstrate that

our method is highly effective, and can outperform previous

state-of-the-art methods by a significant margin, especially

in the high pruning rate situation. Notably, the gap of Top-1

accuracy between our ProbMask and existing methods can

be up to 10%. As a by-product, we show ProbMask is also

highly effective in identifying supermasks, which are sub-

networks with high performance in a randomly weighted

dense neural network.

1. Introduction

Weight pruning [9] is a popular technique for alleviating

the weight redundancy in deep neural networks (DNNs) to

improve inference efficiency and decrease computation de-

mands. Typical pruning algorithms usually prune the unim-

portant weights by developing proper criteria. It is repeat-

edly reported in the literature [8, 22, 39, 21] that by prun-

ing one can reduce the neural network size and improve
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the inference efficiency significantly with quite slight or

even negligible loss on performance, which makes deploy-

ing large-scale DNNs on equipment with limited computa-

tional and memory budget possible.

What can serve as a suitable global comparator to mea-

sure weight importance and identify sparsity level for differ-

ent layers is a long-standing problem [7] though impressive

results have been achieved. We know that the core module

in pruning is the explicit or implicit criterion for identify-

ing the redundant weights, and it is difficult to develop a

global criterion for the weights in all the layers. For exam-

ple, in [9], the authors propose a simple yet effective cri-

terion, i.e., for each layer it prunes all the weights below a

certain threshold in a fully trained network. The threshold

is obtained by sorting weight by its magnitude and retriev-

ing the weight magnitude at the target pruning rate. The

criterion is weight magnitude in this case. Notice that the

magnitudes of the weights across layers could be quite dif-

ferent and different layers could have different amount of

redundancy. If we use a global threshold for all the lay-

ers, then almost all the weights in certain layers could be

pruned in order to achieve high enough pruning ratio, which

will be verified in Section 5. Thus, we need to set a proper

threshold or pruning ratio for each layer individually. In the

networks with numerous layers, it is very difficult and even

impossible to find the optimal thresholds or pruning ratios

for all the layers manually. One reasonable compromise for

such dilemma is to set sparsity level uniformly for different

layers. However, this results in imperfect weight allocation

obviously and gives unsatisfactory results on high pruning

rates.

In this paper, to address the above limitations, we pro-

pose an effective network sparsification method called prob-

abilistic masking (ProbMask). Firstly, we know that net-

work pruning can be naturally formulated into a problem

of finding a sparse binary mask m as well as the weights

at the same time to minimize the empirical loss (1). If the

component mi is equal to 0, it means that the correspond-

ing weight is pruned. However, it is a discrete optimization

problem and hard to solve. We notice that if we view the

components mi in the mask as independent Bernoulli ran-
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dom variables with probability si being 1 and probability

(1− si) being 0 and reparameterize them w.r.t. its probabil-

ity, then the loss in problem (1) would become continuous

over the probability space. Due to the nature of probabil-

ity, probability can be used as a global criterion in all the

layers. Therefore, we can control the model size via forc-

ing the sum of all the probabilities si of the mask smaller

than a proper value, leading to a global sparsity constraint in

the probability space. In this way, the discrete optimization

problem (1) is transformed into a constrained expected loss

minimization problem (2) over a probability space, which

is continuous. Finally, we adopt the Gumbel-Softmax trick

to solve the continuous problem. As the optimizer goes on,

the probabilities si would converge to either 0 or 1, i.e., m

would become close to a deterministic sparse mask. Thus,

a fully trained mask would have quite low variance, mak-

ing the loss of the sampled sparse network according to m

close to the excepted loss in problem (2). Another appeal-

ing feature of our proposed method is that the amount of

weight redundancy in each layer can be identified automat-

ically by our global sparsity constraint and thus we do not

need to choose different pruning ratios for different layers.

Experimental results on network pruning and supermask

[40] finding demonstrate that our method is much more ef-

fective than the state-of-the-art methods on both small scale

datasets and large scale datasets and can outperform them

with a significant margin when the pruning rate is high.

The contribution and novelty of ProbMask can be sum-

marized as follows:

1) We provide evidence showing that probability can

serve as a suitable global comparator to measure weight

importance and identify sparsity level for different layers,

which is a long-standing problem [7].

2) We present a natural formulation of global sparsity

constraint, and an optimization method that is practically

effective. Our solution fixes the training and testing perfor-

mance discrepancy problem observed in practice, which led

to the failure of previous methods [23] on ImageNet [7].

3) We demonstrate the effectiveness of using probability

as global comparator on small-scale and large-scale prob-

lems and various models and achieve state-of-the-art results

on Top-1 accuracy and accuracy-versus-FLOPS curve.

4) We show ProbMask can also serve as a powerful tool

for identifying supermasks, which are subnetworks with

high performance in a randomly weighted dense neural net-

work, and we achieve state-of-the-art results on Top-1 ac-

curacy on CIFAR-100 under high pruning rates.

Notations: Let ‖ · ‖0, ‖ · ‖1 and ‖ · ‖2 be the ℓ0, ℓ1 and

ℓ2 norm of a real valued vector, respectively. We denote

1 ∈ R
n to be a vector with all components equal to 1. In

addition, {0, 1}n is the set of n-dimensional vectors with

each coordinate valued in {0, 1}.

2. Related Work

Below, we first review the related work on network prun-

ing. Next we review training methods for obtaining sparse

networks which can be divided into two groups: dense-to-

sparse training and sparse-to-sparse training. Then we re-

view some probability-based methods for obtaining sparse

networks and point out some limitations to differentiate

them from our work. Finally we review another line of re-

search on Lottery Tickets Hypothesis, SuperMask and Fore-

sight Pruning.

2.1. Network Pruning

Network Pruning [10, 8, 39, 21, 24, 14, 41, 17, 34,

30, 38] has been extensively studied in recent years to re-

duce the model size and improve the inference efficiency

of deep neural networks. Since it is a widely-recognized

property that modern neural networks are always over-

parameterized, pruning methods are developed to remove

unimportant parameters in the fully trained dense networks

to alleviate such redundancy. According to the granular-

ity of pruning, existing pruning methods can be roughly

divided into two categories, i.e., unstructured pruning and

structured pruning. The former one is also called weight

pruning, which removes the unimportant parameters in an

unstructured way, that is, any element in the weight tensor

could be removed. The latter one removes all the weights

in a certain group together, such as kernel and filter. Since

structure is taken into account in pruning, the pruned net-

works obtained by structured pruning are available for ef-

ficient inference on standard computation devices. In both

structured and unstructured pruning methods, their key idea

is to propose a proper implicit or explicit criterion (e.g.,

magnitude of the weight [9, 10, 8, 41, 6, 28, 1, 26, 35],

scores based on Hessian, momentum or gradient [5, 20, 39,

19, 11, 4]) to evaluate the importance of the weight, kernel

or filter and then remove the unimportant ones. The results

in the literature [8, 22, 39, 21, 30, 18, 5, 35] demonstrate

that pruning methods can significantly improve the infer-

ence efficiency of DNNs with minimal performance degra-

dation, making the deployment of modern neural networks

on resource-limited devices possible.

2.2. Dense­to­sparse and Sparse­to­sparse Training

We follow the convention of [18] to divide train-

ing algorithms for obtaining sparse networks into two

groups: dense-to-sparse training and sparse-to-sparse train-

ing. Dense-to-sparse training starts with a dense network

and obtains a sparse network at the end of the training

[10, 41, 27, 6, 30, 36, 32, 23, 35]. ProbMask belongs to the

group of dense-to-sparse training. [9, 41, 6, 30] follows the

idea of using weight magnitude as the criterion. [41] man-

ually set a uniform sparsity budget for different layers. [30]

achieves strong results but needs multiple rounds of pruning
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and retraining. [36] assigns auxiliary scores to weights and

use it as the criterion. [36] suffers from the bias induced by

the approximation of the step function and will have gra-

dient vanishing problem when using ReLU and SoftPlus as

the approximator. This makes the auxiliary scores hard to

act as a global criterion. [32, 23, 27] base its criterion on

reparameterization of probability and have the most con-

nections with our work. We will fully discuss them in the

next subsection.

Sparse-to-sparse training starts with a sparse network

and maintain the sparsity during training [1, 26, 28, 5, 4]. It

uses criterion like weight magnitude, weight gradient mag-

nitude, momentum of weight to reallocate sparsity through

training. Conceptually, sparse-to-sparse training can reduce

the computational cost during training but it is hard to take

effect without the support of sparse convolution framework

on GPU. The performance of sparse-to-sparse training gen-

erally falls behind dense-to-sparse training under the same

setting as shown in [33, 18].

2.3. Probability­based Methods

Compared to directly treating probability as the train-

able variable, [32, 23, 27] consider probability as the hid-

den state and optimize on another space by reparameteri-

zation of probability. [32, 23, 27] achieve strong empir-

ical results while we observe several shortcomings in the

reparameterization process. [32] approximates the gradient

through sampling process by biased STE (straight-through

estimator) [2] and represent probability as the output of a

hard-sigmoid function which induces gradient vanishing.

[23] reparameterizes w.r.t hard-concrete and [23] is reported

to fail to work on ImageNet dataset because of the perfor-

mance gap between training and testing phases [7]. [27]

also exhibits gradient vanishing problem due to function

pattern of KL divergence and performance gap between

training and testing phases by generating the test model by

a cut-off manner rather than sampling. We solve the afore-

mentioned problems by directly optimizing over probability

space. We empirically demonstrate that probabilities finally

converge to either 0 or 1 after training in Section 5, leading

to a binary mask and fixing the training and testing perfor-

mance discrepancy problem observed in practice. Besides,

by explicilty control the model size via global sparsity con-

straint, users don’t need to tune regularization parameters

to achieve desired model size, which is a missing feature in

[32, 23, 27].

2.4. Lottery Tickets Hypothesis, Supermask and
Foresight Pruning

Lottery Ticket Hypothesis was proposed in [6], which

conjectures and verifies that there exists sparse subnetworks

which can be trained directly to achieve even better per-

formance than dense counterparts with less training time.

[40] further analyzes the conditions for such phenomenon

to hold and propose supermask, which conveys an intrigu-

ing idea that a good mask is enough to achieve surpris-

ingly good performance with randomly initialized weights.

[29] further asks the question what’s hidden in a randomly

weighted neural network and proposes a more effective al-

gorithm on finding supermasks. Lottery Ticket Hypothesis

also sheds light on whether we could find such subnetwork

without training a dense network. [20] propose the first al-

gorithm to find such subnetworks and [33] further improves

performance on high pruning rates. However, both of them

could not achieve better performance than the latest pruning

methods.

3. Effective Sparsification with Global Sparsity

Constraint

Below, we present our proposed network sparsification

framework and the method for solving the minimization

problem in the framework.

3.1. A Probabilistic Sparsification Framework

Let D be a dataset consisting of N i.i.d. samples

{(x1,y1) , . . . , (xN ,yN )}, w ∈ R
n be the weights of a

neural network. We denote m ∈ {0, 1}n to be the masks

of the weights. mi = 0 means the weight wi is pruned and

otherwise wi is kept. The problem of training sparse neu-

ral networks can be naturally formulated into the following

empirical risk minimization problem:

min
w,m

L(w,m) :=
1

N

N
∑

i=1

ℓ (h (xi;w ◦ m) ,yi) (1)

s.t. w ∈ R
n, ‖m‖1 ≤ K and m ∈ {0, 1}n,

where h(·;w ◦ m) is output of the pruned network with ◦
being the element-wise product of two vectors, and ℓ(·, ·)
is the loss function, e.g, the squared loss for regression or

cross entropy loss for classification. K = kn is the model

size we want to reduce the network to, i.e., the number of

remaining weights after pruning and k is the remaining ra-

tio of model weights. In this framework, the model size

is controlled by a single constraint which avoids tuning the

pruning rate for each layer. However, since the objective is

discrete with respect to the mask m, problem (1) is hard to

solve and thus cannot be applied in practice.

We notice that if we view each component of mask m

as a binary random variable and reprameterize problem (1)

with respect to the distributions of this random variable,

then problem (1) can be relaxed into an excepted loss min-

imization problem over the weight and probability spaces,

which is continuous. We need to point out that this is a

very tight relaxation since empirical observations show that

probabilities si converge to 0 or 1 after training (Section 5).
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Specifically, we can view mi as a Bernoulli random vari-

able with probability si to be 1 and 1 − si to be 0, that is

mi ∼ Bern(si), where si ∈ [0, 1]. Assuming the variables

mi are independent, then we can get the distribution func-

tion of m, i.e., p(m|s) = Πn
i=1(si)

mi(1−si)
(1−mi). Thus,

the model size can be controlled by the sum of the proba-

bilities si, i.e., 1⊤s, since Em∼p(m|s)‖m‖0 =
∑n

i=1 si.
Then the discrete constraint ‖m‖1 ≤ K in problem (1) can

be transformed into 1⊤s ≤ K with each si ∈ [0, 1], which

is continuous and convex. Therefore, problem (1) can be

relaxed into the following excepted loss minimization prob-

lem:

min
w,s

Ep(m|s) L(w,m) (2)

s.t. w ∈ R
n,1⊤s ≤ K and s ∈ [0, 1]n.

Discussion. Appealing features of ProbMask:

• The constraints in problem (2) can be rewritten as

‖s‖1 ≤ K and s ∈ [0, 1]n. Due to this ℓ1 norm con-

straint, the optimal s is sparse. Most of si would be ei-

ther 0 or 1 with high probability, making m converge

to a deterministic mask. Therefore, s after training

would have a quite low variance and thus the loss of

a randomly sampled m would be close to the expected

loss in Eqn.(2).

• Compared with problem (1), problem (2) is continu-

ous. Moreover, the feasible region of problem (2) is

quite simple, which is actually the intersection of the

cube [0, 1]n and the half space 1⊤s ≤ K. For such

simple set, the projection operator has an explicit ex-

pression, please see Theorem 1 for the details. This

makes it possible to adopt the efficient optimization

algorithms such as projected gradient descent to solve

problem (2).

• In our framework, the problem is reparameterized with

respect to probability, which can be used as a global

criterion to measure the importance of the weights in

different layers. Note that the constraint is applied over

all probability for different layers, rather than setting

a uniform sparsity across layers. The amount of re-

dundancy in each layer of the neural network can be

learned automatically in the process of solving prob-

lem (2), which will be verified in Section 5. Therefore,

we avoid setting pruning ratio for each layer manually.

The benefits of globally comparable property of prob-

ability on the model size and accuracy will be further

verified in Section 4.

3.2. Optimization with Projected Gradient Descent

Below, we present our training method for problem (2).

We update both the weights w and the probability s at train-

ing time. At test time, we obtain the sparse network w ◦ s

by sampling according to probability s. We adopt projected

gradient descent(PGD) as the optimizer and the details are

as follows.

[Gradient Computation] The difficulty lies in comput-

ing the gradient of the expected loss with respect to the

probability. Therefore, in this paper, we adopt Gumbel-

Softmax [16, 25] trick to calculate the gradient, with which

the gradient w.r.t. weights and probability can be calculated

in the following form:

∇s,w Ep(m|s) L (w,m)

=Eg0,g1
∇s,wL

(

w,1
(

log(
s

1− s
) + g1 − g0 ≥ 0

)

)

(3)

≈Eg0,g1
∇s,wL

(

w, σ
( log( s

1−s
) + g1 − g0

τ

)

)

(4)

≈
1

I

I
∑

i=1

∇s,wL
(

w, σ
( log( s

1−s
) + g1

(i) − g0
(i)

τ

)

)

, (5)

where 1(A) ∈ {0, 1}n is the indicator function. g0 and

g1 are two random variables in R
n, with each element i.i.d

sampled from Gumbel(0, 1) distribution. g1
(i) and g0

(i)

with i = 1, 2, . . . , I are 2I sampled instances. σ(·) :
R

n → (0, 1)n here is the element-wise sigmoid function,

i.e., σ(x) = 1
1+e−x

for any x ∈ R
n. τ is a tempera-

ture annealing parameter decreasing linearly during training

and precise choice of the decreasing function contributes

to convergence of probability to a deterministic state. We

will present empirical obersavtions in Section 5 and pro-

vide some informal insights on such contribution from pre-

cise choice of temperature decreasing function in appendix.

From Eqn.(4) to Eqn.(5), multiple networks are sampled to

obtain a steady gradient flow with a low variance. The proof

of the equations above is placed in appendix.

[Projected Gradient Descent] We denote the feasible

region of probability in problem (2) as C, that is C = {s |
‖s‖1 ≤ K and s ∈ [0, 1]n}. The theorem below shows

that the projection of a vector onto C can be calculated ef-

ficiently, which makes PGD applicable.

Theorem 1. For each vector z, its projection s in the set C
can be calculated as follows:

s = min(1,max(0, z − v∗21)). (6)

where v∗2 = max(0, v∗1) with v∗1 being the solution of the

following equation

1⊤[min(1,max(0, z − v∗11))]−K = 0. (7)

The equation (7) can be solved by bisection method ef-

ficiently. Now we can apply PGD to solve problem (2) di-

rectly on probability space with explicit sparsity constraint.

We provide a complete view of ProbMask in Algorithm 1,

and supplementary messages can be found in appendix.
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Algorithm 1 Probabilistic Masking (ProbMask)

Input: target remaining ratio kf , a dense network w.

1: Initialize w, assign probabilities s to weights w, let s = 1 and τ = k = 1.

2: for training epoch t = 1, 2 . . . T do

3: Decrease the temperature annealing parameter by τ = 0.97(1− t/T ) + 0.03.

4: Update k according to Eqn.(8).

5: for each training iteration do

6: Sample mini batch of data B = {(x1,y1) , . . . , (xB ,yB)}.
7: Generate g1

(i) and g0
(i) with each element sampled from Gumbel(0, 1), i = 1, 2, . . . , I .

8: s← projC(z),with z = s− η 1
I

∑I

i=1∇sLB

(

w, σ
( log( s

1−s
)+g1

(i)−g0
(i)

τ

)

)

.

9: w ← w − η 1
I

∑I

i=1∇wLB

(

w, σ
( log( s

1−s
)+g1

(i)−g0
(i))

τ

)

)

10: end for

11: end for

12: return A pruned network w ◦m by sampling a mask m from the distribution p(m|s).

[Gradually Increasing Pruning Rate] We increase the

pruning rate gradually to make a smooth transformation

from dense to sparse status. We ultilize the increasing func-

tion of [41],

k = kf + (1− kf )

(

1−
t− t1
t2 − t1

)3

, (8)

where t ∈ {t1, t1 + 1, . . . , t2} is the current epoch number

and kf is the targeted remaining ratio. k keeps 1 before

epoch t1 and kf after epoch t2.

Remark 1. ProbMask directly works on the probability

space without any further reparameterization, avoiding the

drawback of gradient vanishing [32, 27]. Together with the

global sparsity constraint, ProbMask finally learns a deter-

ministic state of probability, resulting in a little performance

gap in testing and training phases.

Remark 2. ProbMask can be trained with randomly ini-

tialized weights or from pretrained weights. ProbMask can

explicitly control the sparsity by choosing a proper K to

achieve a desired model size and does not need to search

any parameters.

4. Experiment

In this section, we conduct a series of experiments to

evaluate the performance of our proposed method. We di-

vide the experiments into two parts. In part one, we con-

duct lots of relatively small-scaled experiments on CIFAR-

10/100 datasets with modern architectures VGG19 [31] and

ResNet32 [13] to verify some appealing properties of our

method. In part two, we verify the superiority of our method

over state-of-the-art methods by conducting experiments on

ImageNet [3]. We choose six representative methods PBW

(Pruning by Weight, [10]), MLPrune [39], RIGL [5], STR

[18], DNW[25], GMP [41]) as baselines. PBW [10] is a

classic magnitude-based pruning method. MLPrune [39] is

a latest Hessian-based pruning method showing overall bet-

ter performance [33] against various sparse-to-sparse train-

ing methods (SET [26], DEEPR [1], DSR [28]), so we com-

pare with these sparse-to-sparse training methods implicitly

in CIFAR experiments. DNW [35], GMP [41], STR [18] are

state-of-the-art methods on dense-to-sparse training. RIGL

[5] is the state-of-the-art sparse-to-sparse training method.

Due to the space limitation, we postpone the experimental

configurations and MobileNetV1 [15] experiments into ap-

pendix.

4.1. VGG19 and ResNet32 on CIFAR­10/100
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Figure 1. Comparison of Top-1 Accuracy on CIFAR-10/100.

Table 1 presents the detailed accuracy of PBW, MLPrune
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and ProbMask at different pruning ratios. It is very hard to

accurately tune weight decay parameter in STR to obtain

the desired pruning ratio. Therefore we tune the weight de-

cay parameter manually to make it have roughly the same

pruning ratio range with ProbMask, i.e., 90% to 99.9%.

The results in both Table 1 and Figure 1 demonstrate

that our ProbMask can steadily outperform the baselines

and the superiority becomes more significant at higher prun-

ing ratios. From Table 1, we can see that when prune rate

come to 99.5% or higher on CIFAR-10/100, PBW and ML-

Prune would seriously degrade or even collapse, while our

ProbMask can still achieve significantly higher. Figure 1

shows that on CIFAR-100 with VGG19, the gap between

ProbMask and STR would be roughly 2% on average when

the remaining ratio is in the range of [0.9, 0.98]. Pruning

ResNet32 is more challenging since VGG19 has about 10

times parameters than ResNet32. In this case, the gap be-

comes more significant especially at high pruning ratios,

which can be up to 5% on CIFAR-100 experiments. The su-

periority of ProbMask over such high prune ratios attributes

to our global sparsity constraint, allowing us to have non-

uniform sparsity budgets across layers. This will be further

validated in the ablation study in Section 5.

4.2. ResNet50 on ImageNet­1K

In this section, we evaluate the performance of our Prob-

Mask on ImageNet with ResNet50. Table 2 and Figure 2 re-

port the detailed accuracy at different pruning ratios. Prob-

Mask steadily outperforms state-of-the-art methods with a

large margin, especially when the pruning ratio is high than

98%. Notably the gap comes up to 5% at 98% sparsity

and 10% at 99% sparsity. DNW and GMP allocate uniform

sparsity budget. They present reasonably good performance

at 90% sparsity while falling behind ProbMask by about

9% at 98% sparsity. This validates our previous claim that

identifying weight allocation for different layers really mat-

ters. Uniform sparsity budget is a reasonable compromise

but obviously don’t give a perfect solution. STR attempts

to learn weight allocation for different layers but don’t give

perfect results. ProbMask presents much better perfomance

on high spasity regions, leading to a gap about 10% percent

at 99% sparsity. With the global comparable nature of prob-

ability, ProbMask easily learns a much better weight alloca-

tion scheme for different layer. We also compare ProbMask

with Sparse VD [27] on sparsity 90%. Sparse VD finds a

subnet with 73.84% Top-1 Acuucracy, a weaker result than

ProbMask. We also observe noticable fluctuations between

different runs, and this can be expected because Sparse VD

adopts crude cut-off practice rather than sampling. This in-

evitably results in perfomance gap in training and testing

phases. ProbMask learns a deterministic mask at the end

of training, fixing the training and testing performance dis-

crepancy problem. Figure 3 reports the accuracy-versus-

FLOPs for ProbMask and compared methods. It shows that

ProbMask finds a smaller mask with comparable accuracy

and FLOPs and achieve state-of-the-art result on it.
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Figure 2. ProbMask comfortably beats state-of-the-art methods in

all sparsity regions. Notably, the gap comes up to 5% at 98%

sparsity and 10% at 99% sparsity.
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Figure 3. ProbMask obtains a smaller sparse network with compa-

rable accuracy and FLOPs, still achieving state-of-the-art result on

accuracy-vesus-FLOPs curve.

4.3. Powerful Tool for Finding Supermasks

Previous works on supermasks, i.e, subnetworks achiev-

ing good performance with weights fixed at random state,

focus on sparsity region [10%, 90%]. Here, we would like

to explore the performance of supermasks with higher spar-

sity, [90%, 99%]. We conduct experiments on modern ar-

chiteture ResNet32 and dataset CIFAR-100, a harder task

than CIFAR-10 where a large portion of previous experi-

ments are conducted. In this experiment, weights are fixed

at initialization state by Kaiming Normal [12]. Hyperpa-

rameters follow the same as previous CIFAR experiments.

According to Figure 4, we observe that ProbMask easily

scales to ultra sparse region with about 50% accuracy and
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Dataset CIFAR-10 CIFAR-100

Ratio 90% 95% 98% 99% 99.5% 99.9% 90% 95% 98% 99% 99.5% 99.9%

VGG19 93.84 - - - - - 72.56 - - - - -

PBW [9] 93.87 93.57 92.83 90.89 10.00 10.00 72.41 70.53 58.91 1.00 1.00 1.00

MLPrune [39] 93.70 93.45 92.48 91.44 88.18 65.38 71.56 70.31 66.77 60.10 50.98 5.58

ProbMask 93.94 94.00 94.05 93.38 92.65 89.79 74.48 73.94 72.22 71.41 70.10 60.41

ResNet32 94.78 - - - - - 75.94 - - - - -

PBW [9] 93.67 92.68 89.04 77.03 73.03 38.64 72.19 68.42 58.23 43.00 20.75 5.96

MLPrune [39] 93.20 91.70 85.64 76.88 67.66 36.09 70.33 61.73 37.86 22.38 13.85 5.50

ProbMask 94.96 94.16 93.30 91.79 89.34 76.87 74.09 73.06 70.35 65.57 57.25 26.72

Table 1. Accuracy of VGG19 and ResNet32 on CIFAR-10/100 at different pruning ratios.

2% remaining weights, while state-of-the-art method edge-

popup [29] collapse with less than 30% accuracy. It is a sur-

prising result that a subnet with 2% fixed random weights

still succeeds in obtaining nearly 50% accuracy on a task

with 100 categories. It shows that the structure in networks

already provides valuable information for classification.

Dataset ImageNet

Ratio 90% 95% 98% 99%

ResNet50 77.01 - - -

PBW[9] 69.44 56.84 22.46 5.98

MLPrune[39] 60.98 30.89 3.16 0.77

GMP[41] 73.91 70.59 57.90 44.78

DNW[35] 74.00 68.30 58.20 -

STR[18] 74.31 70.40 61.46 50.35

RIGL[5] 72.00 67.50 - -

ProbMask 74.68 71.50 66.83 61.07

Table 2. Accuracy of ResNet50 on ImageNet at different pruning

ratios. ProbMask steadily beats previous state-of-the-art methods

on Hessian-based pruning, weight magnitude pruning, dense-to-

sparse training and sparse-to-sparse training. RIGL improves with

the help of ERK (Erdós-Rényi-Kernel) but will result in doubling

the FLOPs at inference time, so we put it in Figure 2).

5. Furthur Analysis

[Global Comparability of Probability] Table 1 shows

that PBW and MLPrune collapse on CIFAR-10/100 when

the pruning ratio is as high as 99.9%. To explore the reason,

we plot the remaining ratio across layers at pruning ratio of

90% and 99.9% on CIFAR-10 in Figure 5. It shows that

when the pruning ratio is high, PBW and MLPrune prune

almost all the weights in certain layers with remaining ratio

approaching 10−6. The reason is that the proposed weight

importance measure in PBW and MLPrune are not glob-
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Figure 4. ProbMask can find a supermask with just 2% remaining

weights and nearly 50% accuracy on CIFAR-100. Weights are

fixed at initialization state.

ally comparable. Although the weight importance scores

in different layers have been normalized in MLPrune, their

magnitudes are still quite different. A global threshold

could remove almost all the weights in certain layers in or-

der to achieve high enough pruning ratio. The pruning ra-

tio of ProbMask varies in a proper range, attributed to the

global comparable nature of probability. We observe that

the learned sparsity budget is a wise balance between uni-

form sparsity budget and cutting one layer off. The first and

last layer are assigned a bit more budget above average and

several important bottleneck layers are detected automati-

cally to assign more budget.

[Superiority of Global Sparsity Constraint over

Layer-wise Constraint] In layer-wise constraint, we force

all the pruning ratios in each layer to be equal and also

equal to the one in the global constraint. The experiment

is conducted on CIFAR-10 with ResNet32 and the results

are given in Table 3. It shows that the gap grows up rapidly

when the pruning ratio is larger than 98%. For example,
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Figure 5. ProbMask learns a wise balance between uniform spar-

sity budget and abominably cutting one layer off, leading to com-

pelling performance over sparsity range [90%, 99.9%].
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Figure 6. Weight importance score histogram of ResNet32 from

MLPrune with pruning rate 99.9%. Note that the index of of x-

axis is scaled to 1e-2 for Layer 1, and 1e-4 for Layer 23, 26, 30.

This means that there exist two orders of magnitude difference

across layers among weight importance scores.

when the pruning ratio is 99.9%, the accuracy of global

sparsity constraint can be up to 57.75% higher than the

layer-wise one. This points out the importance of identi-

fying sparsity budget for different layers again by ablation

study.

[Convergence to Deterministic Mask] To show that the

mask trained by our ProbMask can converge to a determin-

istic mask after training, we randomly choose some layers

from VGG19 and present their distribution of the probabil-

ity value after training in Figure 7. We can see that after

training, almost all of the probabilities si can converge to ei-

ther 0 and 1, leading to a deterministic mask. This attributes

Dataset CIFAR-10

Ratio 90% 95% 98% 99% 99.5% 99.9%

ResNet32 94.78 - - - - -

LSB 94.89 94.09 92.64 90.89 74.6 19.12

GSB 94.96 94.16 93.30 91.79 89.34 76.87

Table 3. Comparing Layerwise Sparsity Budget (LSB, assigning

uniform budget across layers) and Global Sparsity Budget (GSB)

of ProbMask on ResNet32. GBS begins to take effect when spar-

sity comes up to 98% and becomes prominent when sparsity is

larger than 99.5%.
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Figure 7. Probability histogram of VGG19 trained by ProbMask

on CIFAR-10 at pruning rate 90%.

to ℓ1 norm in our global sparsity constraint over the prob-

ability space and the precise chosen temperature annealing

scheme.

6. Conclusion

This paper proposes an effective network sparsification

method ProbMask and demonstrates state-of-the-art results

on various models and datasets. We provide evidence that

probability can serve as a suitable global comparator to

measure weight importance and solve the training and test-

ing performance discrepancy problem observed in practice.

ProbMask can also serve as a powerful tool for identifying

subnetworks with high performance in a randomly weighted

dense neural network.
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