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Abstract

Temporal grounding aims to localize temporal bound-

aries within untrimmed videos by language queries, but it

faces the challenge of two types of inevitable human un-

certainties: query uncertainty and label uncertainty. The

two uncertainties stem from human subjectivity, leading to

limited generalization ability of temporal grounding. In

this work, we propose a novel DeNet (Decoupling and De-

bias) to embrace human uncertainty: Decoupling — We ex-

plicitly disentangle each query into a relation feature and

a modified feature. The relation feature, which is mainly

based on skeleton-like words (including nouns and verbs),

aims to extract basic and consistent information in the pres-

ence of query uncertainty. Meanwhile, modified feature as-

signed with style-like words (including adjectives, adverbs,

etc) represents the subjective information, and thus brings

personalized predictions; De-bias — We propose a de-bias

mechanism to generate diverse predictions, aim to allevi-

ate the bias caused by single-style annotations in the pres-

ence of label uncertainty. Moreover, we put forward new

multi-label metrics to diversify the performance evaluation.

Extensive experiments show that our approach is more ef-

fective and robust than state-of-the-arts on Charades-STA

and ActivityNet Captions datasets.

1. Introduction

As the increasing demand for video understanding, many

related works have drawn increasing attention, e.g. ac-

tion recognition [31, 37, 23] and temporal action detec-

tion [50, 20]. These tasks rely on trimmed videos or pre-

defined action categories, yet most videos are untrimmed

and associated with open-world language descriptions in

real scenarios. Temporal grounding task aims to localize

corresponding temporal boundaries in an untrimmed video

*This is the corresponding author.
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Figure 1. Example of temporal grounding task with two types

of uncertainties. Query uncertainty: For one same event, there

are different language expressions. Label uncertainty: Given one

same query and video, different annotators may provide a variety

of temporal boundaries.

by a language query. Thus, models need to understand both

fine-grained video content and complex language queries.

Recently, this task has also shown its potential in a wide

range of applications, e.g. video captioning [26, 41, 5],

video object segmentation [7, 13] and video question an-

swering [19, 14, 35].

We observe there lies inherent uncertainty in temporal

grounding task and classify it into two types: 1) One is

query uncertainty stemming from different expressions for

one same event. As shown in Figure 1, three queries are

attached to the same moment. Previous approaches usually

leverage LSTM-based [45, 47] networks to encode entire

language as a deterministic vector. However, the variety of

expressions makes it challenging to extract discriminative

semantic features, sometimes leading to quite different pre-

dictions for the same event. 2) The other is label uncertainty

representing subjective boundaries for one same event. As

shown in Figure 1, for the same query A and video, tempo-

ral boundaries annotated by different people exist disagree-

8445



ment. Due to the expensive cost of multiple-labeling, most

of previous models [24, 28] are optimized using single-style

annotations (which means each sample is labeled by one an-

notator), whereas the inherent uncertainty of event localiza-

tion [29] is ignored. As a result, models may learn single-

style prediction bias from training datasets, leading to lim-

ited generalization performances.

Considering the fact that uncertainty can cover a broad

range of human perspectives, it should be embraced to pro-

mote robust temporal grounding. Furthermore, we argue

single-annotation, single prediction is not reasonable in the

presence of uncertainty, and diversity of predictions is an

effective way to alleviate the bias caused by single-style an-

notations. Therefore, the key challenge is how to obtain di-

verse predictions. Inspired by linguistic knowledge, we find

consistent discriminative information lies in a skeleton-like

relation phrase (including nouns and verbs), and query un-

certainty mainly exists in a style-like modified phrase (in-

cluding adjectives, adverbs, etc). On one hand, the rela-

tion phrase is beneficial to robust temporal grounding. On

the other hand, the modified phrase may be largely associ-

ated with human preferences and brings personalized dif-

ferences. Based on this intuition, our main idea is to lever-

age various expressions stemming from query uncertainty

to obtain a diverse yet plausible prediction set that fits label

uncertainty.

In this paper, we propose one novel DeNet (Decoupling

and De-bias) to embrace the two types of uncertainties in

the temporal grounding task. First of all, a decoupling

method is introduced to disentangle each query into a re-

lation feature and a modified feature using Parts-of-Speech

(PoS). While discriminative and consistent information is

obtained from the relation feature, personalized informa-

tion can be also reserved in the modified feature. Then, a

de-bias mechanism is proposed to generate diverse predic-

tions, which includes sampling operation, multiple choice

learning (MCL) [10], clustering, etc. Specifically, we en-

code the modified feature as a Gaussian distribution and

adopt a sampling operation in the latent space to obtain mul-

tiple query representations. To tackle the dilemma between

multiple predictions and single-style annotations, we intro-

duce a min-loss from MCL to optimize DeNet to generate

diverse predictions. In the inference stage, multiple predic-

tions are clustered into one diverse yet plausible prediction

set. Moreover, we devise multi-label metrics to meet for

multiple testing annotations situations. Finally, DeNet is

evaluated on two popular datasets Charades-STA [6] and

ActivityNet Captions [2, 16] in terms of standard metrics

and new multi-label metrics. To sum up, the main contribu-

tions of our work are as follows:

(1) We first attempt to embrace two types of human un-

certainties: query uncertainty and label uncertainty, in one

unified network DeNet to model robust temporal grounding.

(2) We develop a decoupling module in the language en-

coding, and one de-bias mechanism in the temporal regres-

sion. With the two designs, diverse yet plausible predictions

can be obtained to fit human diversity in real scenarios.

(3) We devise new multi-label metrics to meet multiple

annotations and verify the effectiveness and robustness of

DeNet on both Charades-STA and ActivityNet Captions.

2. Related Work

Temporal grounding. As a challenging task in video un-

derstanding, temporal grounding needs to capture semantic

information in both videos and language queries.

In the video encoding component, most previous ap-

proaches [6, 22, 1, 38, 47] follow a proposal-based frame-

work, where untrimmed videos are clipped into multi-scale

segments as proposal candidates. Gao et al. [6] and Liu et

al. [22] adopt a sliding window to combine each central-

clip feature and its context-clip features as one proposal

candidate. Hendricks et al. [1] and Wang et al. [38] con-

catenate local features and global feature to better cover

contexts. To further explore dependencies across multiple

candidates, Zhang et al. [47] generate multi-scale segments

and construct a 2D temporal adjacent map. However, too

many proposals will burden models during the training pro-

cess. Recently, some approaches [24, 45, 28, 11] adopt a

proposal-free framework. For example, Zeng et al. [45]

extract sequential clip-level features, then directly predict

temporal boundaries in a subsequent network. In this paper,

the proposed DeNet follows the proposal-free framework to

reduce the training computation cost.

Language encoding also plays an important role in the

temporal grounding task. Most approaches employ LSTM-

based layers [45, 47, 24, 39] or GRU-based layers [28, 43]

to encode entire language queries. Recently, some ap-

proaches [49, 48, 21] leverage syntactic dependency parser

to capture underlying semantic structures. Besides, Mun et

al. [24] and Yuan et al. [44] attempt to capture discrimi-

native features from queries using an attention mechanism.

These methods aim to obtain more subtle query represen-

tations, yet we follow a different motivation. On the one

hand, we hope to obtain discriminative information from

various expressions to achieve robust predictions. On the

other hand, we attempt to reserve personalized differences

to achieve diversified predictions. Thus, we adopt an ex-

plicit decoupling method to disentangle each query into the

relation feature and the modified feature.

Multiple choice learning. In contrast to single-output

learning, multiple choice learning (MCL) [10] is proposed

to produce multiple outputs based on one min-loss. Given

a training sample, MCL takes account of all hypotheses

and only updates networks according to the best hypothe-

sis. One accurate and diverse prediction set can be obtained

in this way. Inspired by MCL, we consider diversity is an
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Figure 2. An overview of our proposed model for the temporal grounding task. (a) In the video-language encoding component, we use a

pretrained 3D CNN to extract the sequential video feature and disentangle the query into relation feature and modified feature by Parts-of-

Speech. Then, a sampling operation is applied in the latent space to generate multiple query representations. (b) In the temporal regression

component, two independent branches are set to generate multiple predictions. (c) In the inference stage, we adopt a clustering method to

obtain a fixed-size prediction set.

effective way to model human uncertainty, and introduce

the min-loss into temporal grounding to predict all possi-

ble temporal boundaries in the absence of multiple annota-

tions. However, note that our proposed method is signif-

icantly different from traditional MCLs. Firstly, MCL fo-

cuses on ensemble learning, whereas we focus on temporal

grounding. Then, most MCL approaches [18, 17, 32] pro-

duce the multi-output {fi(x)}
N
i=1 based on multiple ”base

classifiers”, whereas our method generates the multi-output

{f(x̂i)}
N
i=1 via multiple features.

3. Proposed Method

3.1. Method overview

Given an untrimmed video V and an open-world lan-

guage description Q as a query, temporal grounding aims to

localize the start-end boundary bse within V. Specifically,

the untrimmed video is represented as V = {vi}
T
i=1, where

vi denotes the i-th video clip and T is the total number of

video clips. The query is represented as Q = {wi}
S
i=1,

where wi denotes the i-th word and S is the total number of

words. In this work, models should output matched tempo-

ral times {bse}
N = {(ts, te)}

N corresponding to the query

Q, where N is the number of predictions.

As illustrated in Figure 2, DeNet contains two main com-

ponents: video-language encoding and temporal regression.

In the video-language encoding component, we adopt a de-

coupling method to disentangle each query into a relation

feature and a modified feature using PoS, where the mod-

ified feature is encoded as a distribution. Then, the video-

language feature is fed into the temporal regression compo-

nent to predict multiple temporal boundaries. In the training

stage, two independent branches are optimized by single-

output loss and multi-output loss, respectively. In the in-

ference stage, we cluster the collection of predictions into a

fixed-size prediction set and evaluate them in both standard

metrics and new multi-label metrics.

3.2. Video­language encoding

Video encoding. Firstly, an untrimmed video is represented

as a collection of clips V = {vi}
T
i=1, where each clip cov-

ers C frames (C = 16 in this work). Analogous to [47], we

use a pretrained 3D CNN model to extract clip-level fea-

tures, then sample fixed Tm clips from T clips so as to ob-

tain a fixed-length video feature Ṽ ∈ R
dv×Tm , where dv

is the dimension of the video feature. Furthermore, a zero-

padding operation is applied if there are less than Tm clips

in an untrimmed video. Finally, two extra Fully Connected

layers are implemented to obtain a final video embedding

FV ∈ R
dv×Tm as:

FV = W2ReLU(W1Ṽ), (1)

where W1, W2 ∈ R
dv×dv are learnable parameters, the

superscript V indicates the video modality.
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Language encoding. For a language query Q = {wi}
S
i=1

with S words, we take advantage of Glove [27] to map each

word to a 300-dimensional vector, then set two Bi-LSTM

layers to get word-level features {hi}
S
i=1 ∈ R

dl×S , where

dl is the feature dimension of each word. In our observa-

tion, query uncertainty mainly lies in the modified phrase

and discriminative information are in the relation phrase.

For example, ”a person is washing their hands in the sink”

can be broken down into relation phrase [person, washing,

hands, sink] and modified phrase [a, is, their, in, the]. Here,

the spaCy toolbox1 is used to generate PoS tags that denote

word types, like verbs, adjectives. Then, we average word-

level features associated with the relation phrase to get a

relation feature fLr . Similarly, the remaining word-level fea-

tures are selected and averaged as a modified feature fLm.

Then, we concatenate the two types of features and set a

Fully Connected layer to obtain a final query embedding as:

fL = W3[f
L
r , f

L
m] + b3, (2)

where W3 ∈ R
dl×2dl , b3 ∈ R

dl are the learnable parame-

ters, [·, ·] denotes concatenation and the superscript L indi-

cates the language modality. Considering the fact that most

variances stem from the modified phrase, we encode corre-

sponding modified feature as a distribution instead of a de-

terministic vector. Here, we adopt the Gaussian distribution

N (u, σ2) as in many existing works [40]. From a proba-

bilistic perspective, it means that the feature is regarded as a

random variable to model uncertainty [42]. fLm is set as the

distribution center u and a collection of modified features

are sampled from the Gaussian distribution N (fLm, σ2). A

reparameterisation trick is used to obtain the modified fea-

ture f̂Lm = fLm + ǫ, ǫ ∼ N (0, σ2). Finally, a variant query

embedding is formulated as:

f̂L = W4[f
L
r , f̂

L
m] + b4. (3)

From another perspective, the distribution representation

is equivalent to adding small perturbations in the modified

feature. We provide two rationales illustrating its advan-

tages. On the one hand, models will further focus on the

relation feature and pay less attention to the modified fea-

ture. Thereby, the model is more robust. On the other hand,

the sampling process can be viewed as query augmentation.

Based on multiple query features, models can generate mul-

tiple personalized predictions.

Multimodal fusion. When both videos and language em-

beddings are obtained, we need to model the interaction of

them. First of all, fL and f̂L are replicated for Tm times

to get sequential embeddings FL, F̂L ∈ R
dl×Tm , respec-

tively. Then, multimodal features FM , F̂M ∈ R
dm×Tm are

produced by fusing video embedding and query embedding:

FM = ||FV ◦ FL||F , (4)

1https://spacy.io/

F̂M = ||FV ◦ F̂L||F , (5)

where ◦ denotes the Hadamard product and || · ||F is the

Frobenius normalization (ℓ2-norm). Note that dm, dv and

dl are consistent for dimension matching.

3.3. Temporal regression

When we obtain a collection of multimodal features,

a temporal regression network is constructed to predict

matched temporal boundaries. It is composed of two in-

dependent branches, where each branch contains a stack of

temporal blocks and a regression layer. The single-output

branch associated with FM produces a top-1 prediction.

The multi-output branch associated multiple F̂M produces

multiple predictions covering possible annotations.

Each temporal block contains a Temporal Convolutional

layer and a Multi-head Attention layer [34]. The Temporal

Convolutional layer aims to capture temporal dependencies

in the neighbor clips and the Multi-head Attention layer is

to capture long-range temporal dependencies. For the n-th

temporal block, its output F(n) ∈ R
dm×Tm can be formu-

lated as:

F̃(n) = F(n−1) +Conv(F(n−1)), (6)

F(n) = F̃(n) +MultiheadAttention(F̃(n)), (7)

where F(n−1) is the output of previous temporal block.

Conv(·) represents a mapping function in the Temporal

Convolutional layer that contains two 1D convolutional lay-

ers with batch normalization.

Following a stack of temporal blocks, an attention-

guided regression layer is employed to output the start-end

prediction bse. An auxiliary head is implemented here to

predict the center-width bcw to assist temporal grounding.

Thus, the regression layer is formulated as:

a = softmax(W6Tanh(W5F)), (8)

bcw = (tc, tw) = Regcw(

Tm∑

i=1

aiFi), (9)

bse = (ts, te) = Regse(

Tm∑

i=1

aiFi), (10)

where a ∈ R
Tm is an attention coefficient and Regcw,

Regse are two independent Fully Connected layers. Note

that all of predictions are normalized to [0,1].

3.4. Optimization and inference

Optimization. According to the definition of equation 6-

10, we feed FM and the collection of F̂M into the two

branches of temporal regression network and obtain a

single prediction (bse,bcw,a) and multiple predictions

{(b̂se, b̂cw, â)}
K , respectively.
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R@1 = 0 R@5 = 1 R@(5,5) = 3/5 = 0.6 Rβ @(5,5) = 3/4 = 0.75

predictionsannotations/ ignored/

(a) standard metrics (b) multi-label metrics

Figure 3. A example to illustrate differences between proposed

multi-label metrics and standard metrics. The green star denotes

the corresponding annotation that is matched with at least one pre-

diction (with IoU larger than α) and otherwise the corresponding

star is blue. The grey star is the low-quality annotation (with aver-

age IoU smaller than β).

The single-output branch is optimized with two kinds of

loss functions, and one is a regression loss as follows:

Lreg(bse,bcw) = L1(bse−yse)+L1(bcw −ycw), (11)

where L1 denotes L1 distances, and yse, ycw ∈ [0, 1]
denote the start-end and center-width groundtruth, respec-

tively. The other one is an attention loss [44] that forces the

model to focus on clips within groundtruth interval:

Latt(a) = −

∑Tm

i=1 milogai∑Tm

i=1 mi

, (12)

where mi = 1 if the i-th clip is within the groundtruth in-

terval and otherwise mi = 0.

For the multi-output branch, it’s not reasonable to

regress all of {(b̂se, b̂cw, â)}
K with one single annota-

tion. To tackle the dilemma between multiple predictions

and single-style annotations, we introduce a min-loss from

MCL [10] to learn diverse predictions without extra annota-

tions. It only computes a loss between the closest prediction

to the existing annotations. Finally, all of the loss functions

are jointly considered as follows:

Lall = Lsingle + λLmulti

= Lreg(bse,bcw) + Latt(a)

+ λ min
i∈[K]

[Lreg(b̂se,i, b̂cw,i) + Latt(âi)],

(13)

where λ is a trade-off parameter between two regression

branches, and [K] denotes the set {1, ...,K}.

Inference. We only focus on the single prediction bse and

the collection of predictions {b̂se}
K in the inference stage,

where K depends on the number of query embeddings F̂M

sampled in the latent space. Previous approaches adopt

NMS to reduce predictions, yet this method faces two is-

sues: 1) Since the collection of predictions is dense, pre-

dictions are mistakenly suppressed easily. 2) Confidence

scores are necessary to rank predictions. Most approaches

build up an extra branch to predict the confidence scores or

IoU scores, whereas performances are limited. To address

above two issues, we leverage K-Means to cluster {b̂se}
K

into a fixed-size prediction set {b̂se}
N without NMS, where

N is a pre-defined constant. If necessary, we can rank

{b̂se}
N using the distance from single-style prediction bse.

3.5. New evaluation metrics

The standard evaluation metric is ”R@N , IoU=α”. It is

defined as the percentage of at least one of the top-N pre-

dictions having IoU larger than α. This metric only focuses

on whether the single groundtruth is localized successfully.

Due to the label uncertainty, different people localize vari-

ous moment boundaries for the same query. That is to say,

there are multiple acceptable labels for each query. Thus,

we consider the prediction set should be evaluated with

multi-labels instead of a single label.

Recently, Otani et al. [25] provide 5 annotations for

each testing sample on two public datasets. We propose

two multi-label metrics to meet for multi-label situations.

The first metric is ”R@(N,G), IoU=α” that evaluates per-

formances with N predictions and G annotations for each

query. It is defined as the percentage of annotations that

match at least one prediction (with IoU larger than α) in

top-N predictions. This metric is equivalent to the stan-

dard metric ”R@N , IoU=α” if G is set as 1. The second

metric is ”Rβ@(N,G), IoU=α”, where low-quality anno-

tations (with average IoU among annotations smaller than

β) are ignored. Intuitively, when one annotation has a small

average IoU, it tends to be low-quality. Thus, ”Rβ@(N,G),
IoU=α” is equivalent to ”R@(N,G), IoU=α” if β is set as 0.

When there is only one testing sample, Figure 3 illustrates

the results in different metrics. The standard metrics only

compute the matched percentage of single annotation (e.g.

R@1 = 0 and R@5 = 1), our multi-label metrics consid-

ers whether multiple annotations are matched (e.g. R@(5,5)

= 0.6 and Rβ@(5,5) = 0.75). We note that some meth-

ods [1, 12] consider multiple annotations based on standard

metrics that use their aggregator over three out of the four

human annotators. Similar to our proposed ”Rβ@(N,G),
IoU=α”, they ignore part of multi-labels when evaluating.

However, instead of discarding one of four labels that has

the lowest evaluation score, we evaluate the disagreements

among labels and filter out low-quality labels adaptively.

4. Experiments

4.1. Datasets

Charades-STA. This dataset contains 9,848 videos built on

the Charades dataset [30]. Gao et al. [6] provide single

temporal annotation for each language query as Charades-

STA, where 12,408 samples are split into the training set
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Method Feature
R@1 R@1 R@5 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL [6] C3D 23.63 8.89 58.92 29.52

SMRL [38] C3D 24.36 11.17 61.25 32.08

MAC [8] C3D 30.48 12.20 64.84 35.13

MLVI [39] C3D 35.60 15.80 79.40 45.40

CBP [36] C3D 36.80 18.87 70.94 50.19

SAP [4] VGG 27.42 13.36 66.37 38.15

MAN [46] VGG 41.24 20.54 83.21 51.85

2D-TAN [47] VGG 42.80 23.25 80.54 54.14

EXCL [9] I3D 44.10 22.40 - -

TMLGA [9] I3D 52.02 33.74 - -

DRN [45] I3D 53.09 31.75 89.06 60.05

SCDM [43] I3D 54.44 33.43 74.43 58.08

LGI [24] I3D 59.46 35.48 - -

DeNet(ours) I3D 59.70 38.52 91.24 66.83

Table 1. Comparison with state-of-the-art methods on Charades-

STA using standard metrics; bold font indicates best results, un-

derlined second-best.

and 3,720 samples are into the testing set. Recently, Otani et

al. [25] extend 5 temporal annotations for each query (1,000

queries totally) in the testing set.

ActivityNet Captions. This dataset [2] contains 19,209

videos, which was originally proposed by [16] for dense

video captioning task. As the largest dataset in temporal

grounding task, it contains 10,024, 4,926, and 5,044 sam-

ples for the training set, val 1 set, and val 2 set. Due to

the lack of of the testing set, we follow a popular split

method [39] that combines the two validation sets as the

testing set. Besides, Otani et al. [25] extend 5 temporal an-

notations for each query (1,288 queries totally) in the vali-

dation sets.

4.2. Implementation details

In the video encoding, we use pretrained 3D CNN net-

works to extract clip-level features, where each clip contains

16 consecutive frames. Following previous works, we adopt

I3D features [3] for Charades-STA and C3D features [33]

for ActivityNet Captions. The max video length Tm is set

as 128. In the language encoding, we draw 5 samples F̂M

from the latent space and set the standard deviation σ as an

identical matrix I during the training procedure. For dimen-

sion matching, dimension of video embedding dv , dimen-

sion of query embedding dl and dimension of multimodal

feature dm are all set as 512. In the inference procedure,

we set deviation σ as 2I to enlarge the personalized differ-

ences from modified feature, and cluster about 200 results

into fixed 5 predictions using K-means. The trade-off pa-

rameter λ in Equation 13 is set as 0.02. In all experiments,

we use Adam [15] and batch size of 32 for optimization.

Method
R@1 R@1 R@5 R@5

IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

MLVI [39] 45.30 27.70 75.70 59.20

TMLGA [9] 51.28 33.04 - -

CBP [36] 54.30 35.76 77.63 65.89

ABLR [44] 55.68 36.79 - -

2D-TAN [47] 56.92 42.08 82.64 73.01

DRN [45] - 43.95 - 74.87

LGI [24] 58.52 41.51 - -

DeNet(ours) 61.93 43.79 86.02 74.13

Table 2. Comparison with state-of-the-art methods on ActivityNet

Captions (combination of two val sets) using standard metrics;

bold font indicates best results, underlined second-best.

4.3. Comparison with state­of­the­arts

First of all, we compare our model DeNet with other

state-of-the-art methods using standard metrics on two

datasets, which contains CTRL [6], SMRL [38], MAC [8],

MLVI [39], CBP [36], SAP [4], MAN [46], 2D-TAN [47],

EXCL [9], TMLGA [9], DRN [45], SCDM [43], LGI [24]

and ABLR [44]. Table 1 and Table 2 report the results

on Charades-STA and ActivityNet Captions, respectively.

For a fair comparison, all of the performances listed in

Table 2 are based on the combination of two validation

sets on ActivityNet Captions. In the standard metrics, our

method DeNet achieves competitive performances on both

datasets, especially on the Charades-STA dataset. For ex-

ample, DeNet obtains 3.04% gains in ”R@1,IoU=0.7” and

6.78% gains in ”R@5,IoU=0.7”.

Then, to better evaluate performances of multiple

predictions, we compare our model DeNet with some

related methods (including 2D-TAN [47], DRN [45]

and SCDM [43])2 using ”R@(N,G), IoU=α” and

”Rβ@(N,G), IoU=α”. In this work, we take account of at

most 5 predictions (N = 5) and 5 temporal annotations (G

= 5). To reserve an average of 3 annotations for each query,

β is set to 0.5 on Charades-STA, and 0.4 on ActivityNet

Captions. Figure 4 illustrates the results. In contrast to per-

formances in standard metrics, proposal-based methods (i.e.

2D-TAN and SCDM) outperform the proposal-free method

(i.e. DRN) in new multi-label metrics. It means proposal-

based methods tend to better cover multiple-styles annota-

tions, yet most proposal-free models are biased to single-

style annotations. We consider it is because most proposal-

free models tend to produce dense predictions. However,

our proposal-free-based DeNet still outperforms the above

methods on both datasets, e.g. 1.75% gains on ActivityNet

Captions in terms of R@(5,5). It validates our method has

an advantage in matching the multi-styles annotations.

2We test 2D-TAN and DRN using pretrained official models and

SCDM using third-party implementation [25].
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Figure 4. Performances on Charades-STA (top) and ActivityNet

Captions (bottom) using multi-label metrics(IoU = 0.5), and at

most 5 predictions and 5 annotations are taken into consideration.

Best viewed in color.

Method DRN [45] 2D-TAN [47] SCDM [43] DeNet

Dvar 0.338 0.365 0.286 0.223

Table 3. Comparison of robustness for query uncertainty on

Charades-STA. The lower value represents more consistent pre-

dictions for two siamese queries.

4.4. Ablation studies

Robustness for query uncertainty. We conduct exper-

iments to evaluate the robustness for query uncertainty.

Specifically, we explored whether predictions of models can

be consistent when using different queries in the same tem-

poral moment. A subset is selected from the Charades-

STA testing set, where each temporal moment contains two

queries. If a moment contains more queries in the origi-

nal testing set, we randomly select two queries. Finally, the

subset is composed of 848 testing samples (corresponding

to 1696 queries). Then, we use Dvar = 1 − IoU to com-

pute the average distance between top-1 predictions of two

queries. The lower value of Dvar represents more consis-

tent predictions for the two corresponding queries. Table 3

shows a comparison between DeNet with some methods.

Our DeNet outperforms them by 6.3%, which validates the

robustness of our model for query uncertainty.

Robustness for label uncertainty. To evaluate the robust-

ness for label uncertainty, we add perturbations in the tem-

poral boundaries to enlarge the label uncertainty. During

the training procedure, we take annotations ts, te and gen-

erate new annotations t̂s = ts + ǫs(te − ts), t̂e = te +
ǫe(te − ts), ǫs, ǫe ∈∼ U(−0.5, 0.5), where U(−0.5, 0.5)
is uniform distribution. We train our DeNet and 2D-TAN

using new annotations, then still evaluate them using orig-

inal annotations. For a fair comparison, 2D-TAN adopts

the same I3D feature with DeNet. Here, we mainly inves-
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Figure 5. Performances of our DeNet and 2D-TAN with original

annotations and noise annotations using multi-label metrics(IoU =

0.5). Best viewed in color.

Method
R@1 R@5 R@(5,5) R0.5@(5,5)

IoU=0.5 IoU=0.5 IoU=0.5 IoU=0.5

DeNet w/o PoS 57.47 90.90 52.64 58.97

DeNet-Relation 58.12 91.34 54.32 61.76

DeNet-All 58.23 88.76 46.20 50.32

DeNet 59.70 91.24 56.30 64.04

Table 4. Ablation studies of language encoding on Charades-STA;

bold font indicates best results.

tigate the impact of label uncertainty on multiple predic-

tions. Figure 5 shows different results in the multi-label

metrics, where ”original” adopts the previous annotations,

and ”noise” adopts the new annotations. Compared to 2D-

TAN, DeNet only drops slightly using noise annotations,

e.g. 0.35% vs 5.54% in ”R0.5@(5,5), IoU = 0.5”. It also

means that our method can mitigate the reliance on precise

annotations in real scenarios.

Analysis on language encoding. In this subsection, we

investigate the contribution of the language encoding un-

der query uncertainty and set three variant implements. 1)

”DeNet w/o PoS” encodes entire language without PoS. 2)

”DeNet-Relation” encodes the relation feature as a Gaus-

sian distribution rather than modified feature. 3) ”DeNet-

All” encodes both relation feature and modified feature as

Gaussian distributions. Table 4 shows the results.

Firstly, it’s more effective to disentangle language into

two types of features (DeNet) than a single feature (DeNet

w/o PoS). DeNet benefits from Parts-of-Speech parsing

when extracting discriminative features. Secondly, for pro-

ducing multiple predictions, it’s more beneficial to encode

the modified feature as Gaussian distribution instead of the

relation feature (DeNet-Relation). Thirdly, when both two

types of features are encoded as distributions (DeNet-All),

it will cause performance degradation.

Analysis on temporal regression. In this subsection, we

investigate the contribution of our temporal regression un-

der label uncertainty. Firstly, we set two variant imple-
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Method
R@1 R@5 R@(5,5) R0.5@(5,5)

IoU=0.5 IoU=0.5 IoU=0.5 IoU=0.5

DeNet-Boundary 57.88 89.25 55.42 63.14

DeNet-Centerness 57.85 89.17 54.40 62.18

DeNet-Single 57.45 89.19 55.38 62.95

DeNet w/o min-loss 58.90 69.11 42.18 50.61

DeNet 59.70 91.24 56.30 64.04

Table 5. Ablation studies of temporal regression on Charades-

STA; bold font indicates best results.

ments to validate the benefit of predicting the center-width

as an auxiliary head. 1) ”DeNet-Boundary” only predicts

the start-end boundary. 2) ”DeNet-Centerness” only pre-

dicts the center-width. As shown in Table 5, when super-

vised from two perspectives, our model DeNet can obtain

gains in terms of all metrics.

Secondly, we set two variant implements to investigate

settings of two independent branches. 1) ”DeNet-Single”

represents that we only build a single-output branch. 2)

”DeNet w/o min-loss” replaces Lmulti with Lsingle for

multi-output branch. Table 5 summarizes different re-

sults. The original DeNet with two independent regression

branches outperforms the model with only a single-output

branch (DeNet-Single). For each sample, the single-output

branch aims at matching the single-style annotations, yet

the multi-output branch aims at matching potential multiple

annotations. We consider the two different tasks may dis-

turb each other once relied on one same branch. In terms of

multiple predictions, performances will drop dramatically

without min-loss (DeNet w/o min-loss), e.g. 22.13% drop

in ”R@5, IoU = 0.5”. Thus, min-loss is necessary to learn

multiple predictions for the multi-output branch.
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Figure 6. Effect of the number of stacked temporal blocks on

Charades-STA and ActivityNet Captions.

Thirdly, we analyze the impact of the number of stacked

temporal blocks. Each temporal block contains a Temporal

Convolutional layer and a Multi-head Attention layer. Fig-

ure 6 shows results on the Charades-STA and ActivityNet

Captions. We observe that our proposed method DeNet

achieves best performances when the number of stacked

temporal blocks reaches 3 for Charades-STA and 4 for Ac-

tivityNet Captions. We consider that fewer temporal blocks

can not capture the long-range temporal dependencies, yet

more temporal blocks may face over-fitting risk.

Qualitative results. Figure 7 illustrates multiple predic-

tions generated by DeNet. We can find the temporal bound-

aries of different annotations exist disagreement for the

same query. For the same query, the multiple predictions

generated by DeNet can match each annotation as much

as possible. For the same event, predictions of different

queries (i.e. Query A and Query B) tend to be consistent.

Query A : person takes out a box.

Query B : person takes out a box out of the same closet.

Annotations

Predictions

2s 4s 6s 8s 10s 12s2s 4s 6s 8s 10s 12s

Figure 7. Qualitative results on Charades-STA dataset.

5. Conclusion

In this paper, we propose DeNet to embrace human un-

certainty for temporal grounding. Firstly, DeNet adopts

a decoupling method to decompose each query into rela-

tion feature and modified feature by PoS, where consistent

query information and expression variance can be obtained

respectively. Then, DeNet uses a de-bias mechanism to pro-

duce diverse yet plausible predictions, aims to mitigate the

reliance on single-style annotations. Experiments on two

datasets validate its effectiveness and robustness.
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