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Abstract

On existing public benchmarks, face forgery detection

techniques have achieved great success. However, when

used in multi-person videos, which often contain many peo-

ple active in the scene with only a small subset having been

manipulated, their performance remains far from being sat-

isfactory. To take face forgery detection to a new level,

we construct a novel large-scale dataset, called FFIW10K,

which comprises 10,000 high-quality forgery videos, with

an average of three human faces in each frame. The

manipulation procedure is fully automatic, controlled by

a domain-adversarial quality assessment network, making

our dataset highly scalable with low human cost. In ad-

dition, we propose a novel algorithm to tackle the task

of multi-person face forgery detection. Supervised by

only video-level label, the algorithm explores multiple in-

stance learning and learns to automatically attend to tam-

pered faces. Our algorithm outperforms representative ap-

proaches for both forgery classification and localization on

FFIW10K, and also shows high generalization ability on ex-

isting benchmarks. We hope that our dataset and study will

help the community to explore this new field in more depth.

1. Introduction

The rise of synthetic audiovisual media is forcing us to-

wards a critical and unsettling realization: our belief that

video and audio recordings are reliable representations of

reality is no longer tenable. In particular, since emerging

in 2017, the deepfake phenomenon has grown rapidly, re-

quiring face forensics to recognize potentially manipulated

facial regions in images and videos. Accurate face forgery

detection1 would have an immediate and far-reaching im-

pact in alleviating the malicious intents of deepfakes, such

as, face recognition attacks [42] and fake news [36, 4].

To help with this, several benchmarks have been estab-

lished. The pioneering large-scale dataset, i.e., FaceForen-

sics++[63], has greatly contributed to spurring interest and

*Corresponding author: Wenguan Wang.
1In this work, “forgery” refers to altering imagery by swapping faces.

Figure 1: Representative examples from FFIW10K , showing

multi-person video frames with only a few faces being forged.

Can you recognize the manipulated ones?2

progress in the area of face forgery detection. However,

as algorithms evolve, there have been signs of performance

saturation on this dataset [62]. More recent datasets (e.g.,

DeeperForensics-1.0 [37], DFDC [22], Celeb-DF[50]) thus

employ more advanced synthesis techniques to produce

highly realistic tampered faces. Even so, all previous

datasets are subject to a significant limitation: they have a

strong selection bias [69] to favor trimmed videos, each of

which involves only one person. Thus, they provide insuffi-

cient representation of true visual world, which makes them

inappropriate and unreliable to evaluate face forgery detec-

tion models in real-world, multi-person circumstances.

To take the research of face forensics into a new level, we

introduce a new large-scale dataset, called FFIW10K, pro-

moting empirical study of face forgery detection in multi-

person scenarios. In FFIW10K, each video involves multiple

individuals but only some, not all, faces are manipulated

(see Fig. 1). This raises a significant challenge to current

techniques: even for the fake videos, real faces are still in

the majority. In particular, FFIW10K features 10,000 high-

fidelity manipulated videos, with 12 seconds long on aver-

age, resulting in 33 hours of video in total. In comparison

with existing datasets, FFIW10K has several distinguished

features: i) Real-world complexity. The number of identities

in each frame ranges from one to fifteen, with three on av-

erage, yielding a better representation of real visual scenes.

ii) High fidelity with low human cost. The synthesis qual-

ity is controlled by a quality assessment network (Q-Net),

which provides an effortless way to measure the realism of

2Answer: The middle person in the left image and the rightmost of the

back row in the right image are fake.
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forged faces. iii) Large scale. FFIW10K is comparable to

the largest current dataset [37] in terms of the number of

unique fake videos (see Table 1), and, more importantly,

provides videos under multi-person settings.

FFIW10K provides both video- and face-level annota-

tions, allowing benchmarking methods on both forgery clas-

sification and localization tasks. In addition, to bring the

research into a more natural setting, FFIW10K provides

two benchmark settings. In the first setting, benchmarking

methods can make use of face-level supervision. However,

in the second one, only video-level labels are allowed to be

accessed during training. This makes the task more valuable

from both academic and practical perspectives.

Along with FFIW10K, we propose a discriminative atten-

tion model for face forgery classification and localization

in multi-person scenarios. The model explores the idea of

multiple instance learning [20, 52] and can be trained with

video-level label only. It comprises three essential parts: i)

a multi-temporal-scale instance feature aggregation module

that summarizes short-term, long-term and global features

of each face tracklet to obtain a robust and discriminative

representation; ii) an attention-based bag feature aggrega-

tion module that adaptively aggregates the representations

of all face tracklets into a video-level representation; and

iii) a sparse regularization loss to enforce the sparsity of

face selection for real/fake discrimination. The sparsity-

regularized attention learning mechanism is tasked with au-

tomatically selecting possible tampered faces during classi-

fication, promoting the localization ability of the system.

In summary, our contributions are three-fold: i) To pave

the avenue for face forgery detection in open world, we con-

tribute FFIW10K dataset to the community, which is dis-

tinctive in its real-world complexity. As far we know, it is

the first large-scale face forensics dataset for fully uncon-

strained, multi-person face forgery detection. ii) We pro-

pose a model-agnostic quality assessment model for synthe-

sis quality management. Trained independently of deepfake

methods, the model has high flexibility and accessibility,

and can facilitate future dataset construction. iii) We pro-

pose a discriminative attention model for multi-person face

forgery detection. By revisiting multiple instance learning

and gathering diverse temporal context, it provides promis-

ing performance on both fake video classification and fake

face localization tasks with only video-level supervision.

2. Related Work

Existing Face Forensics Datasets. Being the foundations

of more advanced techniques, the pursuit of better datasets

has attracted substantial research interest in the area of face

forgery detection (see Table1). Early attempts can be traced

back to MICC-F2000 [5] and DSI-1 [19], in which faces

were manipulated in still images under strictly constrained

conditions. In recent years, great efforts have been devoted

#Synthetic #Face
Dataset Year Pub. #Real #Fake

Methods Per-frame

UADFV [79] 2018 ICASSP 49 49 1 1

DeepFake-TIMIT [42] 2018 arXiv 320 640 2 1

Deep Fake Detection [9] 2019 - 363 3,068 5 1

FaceForenscics++ [63] 2019 ICCV 1,000 4,000 4 1

DFDC Preview [22] 2019 arXiv 1,131 4,113 2 ∼1

Celeb-DF [50] 2020 CVPR 590 5,639 1 1

DeeperForensics-1.0 [37] 2020 CVPR 50,000 10,000† 1 1

FFIW10K (Ours) 2020 - 10,000 10,000 3 3.15

Table 1: Comparisons of FFIW10K with existing datasets. As

far as we know, FFIW10K is the first specializing in unconstrained,

multi-person face forgery detection. †: in DeeperForensics-

1.0 [37], each fake video is randomly perturbed for augmentation,

and the perturbed videos are counted as new fake videos. Ignor-

ing perturbation, DeeperForensics-1.0 only contains 1,000 unique

fake videos, much fewer than the 10,000 in FFIW10K.

to establishing video-based datasets, such as UADFV [79],

DF-TIMIT [42], FaceForensics++ [63], DFDC [21], Celeb-

DF [50], VideoForensicsHQ [27] and DeeperForensics-

1.0[37]. With constantly upgraded face forgery techniques

(e.g., FaceSwap [2], NeuralTextures [65], FaceShifter [45],

NVP [64]), videos of forged faces in some datasets seem

deceptively real to the human eye. These datasets have un-

doubtedly advanced this field. Nonetheless, they are still

limited in that most videos come from simple scenarios with

only one or two identities. Therefore, benchmarking algo-

rithms on these datasets is not sufficient for measuring their

performance in practical scenarios.

To address the limitations of previous datasets, we intro-

duce FFIW10K which targets at multi-person face forgery

detection. FFIW10K is unique in its real-world complex-

ity (i.e., it covers multiple individuals), high-fidelity manip-

ulation (i.e., its quality is guaranteed by a model-agnostic

quality assessment network, Q-Net) and scalability (i.e., it

is constructed in a unconstrained, automatic condition).

Neural Face Synthesis and Face Forensics Dataset Con-

struction. Neural face manipulation has been a long-

standing research topic in computer vision and computer

graphics for over two decades[58]. The very first work, i.e.,

Video Rewrite [11], automatically synthesizes human faces

with proper lip sync to a given audio signal. Introduced

later, face swapping systems [2, 66, 67] typically follow

computer graphics pipelines, fitting a parametric 3D face

model to target faces for manipulation. However, the perfor-

mance of these methods relies heavily on the quality of the

3D model. Some alternatives [41, 65] thus alleviate this by

combining graphics pipelines with learnable components,

which can use imperfect 3D models for synthesis. More re-

cently, GAN-based models [1, 78, 59, 45, 50, 37] have be-

come popular due to their concise and flexible framework,

which does not require expensive manual operation or ac-

quisition hardware. This thus enables them to be frequently

engaged in constructing face forensics datasets.
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Although current deepfake generators can produce high-

quality manipulations when source and target faces yield

strong consistency (in terms of color, pose, illumination),

they easily suffer from occlusions, glasses, profile faces or

sudden motions. Therefore, during face forensics dataset

construction, extensive human interventions are often in-

cluded to guarantee the quality of collected data, by man-

ually filtering out those suboptimal tampered examples [50,

37]. Thus building large-scale face forensics datasets is

costly and time-consuming. We instead devise a quality

assessment network to post-control the face manipulation

procedure. The network is trained with domain-adversarial

learning on a set of automatically collected training samples

and is independent from face synthesis techniques. Thus it

yields high flexibility and generalization, and allows large-

scale dataset construction in a labor-efficient manner.

Face Forgery Detection. Recently, active research has

been devoted to synthetic content detection in portrait

videos [68, 73], in order to fight against the emerging threat

of face swapping techniques. Early models [8, 49, 42, 54,

79, 4] make use of hand-crafted features (e.g., blinking pat-

terns, temporal flickering, face warping artifacts), which

are manually designed to capture visual artifacts and in-

consistencies generated in the fake face synthesis process.

However, due to the limited representation ability of hand-

designed features, they do not fit well towards more so-

phisticated facial manipulation techniques. With the ad-

vance of deep neural networks, recent approaches are built

upon modern network architectures (e.g., Xception [16],

I3D [12]), and address image- [3, 80, 63, 75, 57, 68] or

video-level [31, 6, 71, 37, 53] forgery classification. Some

methods [7, 56, 46, 35, 23, 43] further focus on fine-

grained localization of manipulated regions to provide bet-

ter interpretability. Additionally, frequency domain anal-

ysis [62, 28, 15, 25, 24, 53], texture statistics [51], audio

features [17, 55], and biological signals [18, 33, 61, 26] are

also becoming popular for recognizing fake content.

Despite their success, current deep learning methods typ-

ically conduct forgery classification on trimmed videos and

are prone to failing in real-world, multi-person scenarios.

Though [47] made an initial attempt to address this, it is still

confined to constrained scenarios due to the lack of large-

scale datasets. In contrast, our FFIW10K enables us to make

a more in-depth exploration of this new direction.

3. FFIW10K Dataset

Challenging datasets are catalysts for progress in the

computer vision community. We therefore introduce

FFIW10K to provide a better benchmark and help identify

conditions under which current algorithms fail, with the

hope of promoting further research efforts. Exemplars of

FFIW10K are shown in Figs. 1 and 2. In the following, we

present some important aspects of FFIW10K .

Figure 2: Exemplar frames of deepfake datasets. From left

to right: 1st row shows tampered faces in FaceForensics++ [63],

Celeb-DF [50] and DeeperForensics-1.0 [37]; 2nd row shows ex-

amples in FFIW10K created by FSGAN [59], DeepFaceLab [60]

and FaceSwap [2]. Manipulated faces are denoted by red boxes.

3.1. Pristine Video Collection

To align with our target of multi-person face forgery de-

tection, we collect pristine videos in the wild, ensuring that

a large number of videos contain more than one individual.

We start by searching a collection of videos from YouTube

based on diverse keyword queries. To alleviate selection

bias, the search is conducted by 10 people with self-chosen

queries in different languages. For video quality, we only

download high-resolution videos (480p or higher), yield-

ing a total of 4,000 raw videos. Then, we split each video

into four uniform clips, and randomly select one 12-second

sequence from each. We filter out static or crowded se-

quences, as well as sequences containing few human faces.

This results around 12,000 sequences, which we used as

pristine videos for facial manipulation.

3.2. Facial Manipulation Procedure

For face swapping, we randomly select two videos from

the pristine collection, i.e., a target video in which a tar-

get face will be replaced, and a source video providing the

identity of a source face that will be swapped onto the tar-

get face. Since both the source and target videos contain

multiple identities, we pre-process them with off-the-shelf

face detection and tracking algorithms [44, 77] to obtain a

set of face tracklets. We then select the tracklets with the

longest duration and highest resolution for swapping. To

enrich the diversity of manipulated videos, we create each

video with one of three face swapping methods, including

two learning-based methods (DeepFaceLab [60] and FS-

GAN [59]), and one graphic-based method (FaceSwap [2]).

Though these methods can produce compelling results, they

still show weaknesses under varying conditions. For ex-

ample, DeepFaceLab performs poorly in the presence of

glasses and extreme poses, and FSGAN is weak in main-

taining an even skin tone in dark scenes. Instead of pre-

vious works [50, 37] involving dense human interventions

in dataset construction, we design a fully automatic proce-

dure so that our dataset can be easily scaled. We develop

a quality assessment network to quantitatively score each
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(a) Number of faces per frame (b) Histogram of fake faces per video

Figure 3: Statistics of FFIW10K (§3.3). (a) Distribution of face

number per frame.(b) Ratio distribution of tampered faces.

manipulated face, and discard the synthetic faces with low

scores (see Fig. 5 (b)), i.e., only 10, 000 fake videos with

high quality scores and from different pristine videos are

selected to build FFIW10K. The network allows us to build

FFIW10K with low human cost. For conciseness, we defer

the discussion of the quality control procedure to §4, after

we have provided all the necessary details of FFIW10K.

3.3. Dataset Features and Statistics

To offer deeper insights into FFIW10K, we next discuss

its various attractive properties and descriptive statistics.

Real-World Complexity. Existing datasets fall in short

of containing just one or two identities in each video (see

Table 1), which does not accurately reflect the distribution

in the real world. However, FFIW10K is designed to in-

volve more human faces (1–15 per frame, 3.15 on average).

The distribution of face number in each frame is shown in

Fig. 3(a). Another challenge FFIW10K provides is that each

video contains both real and fake faces. We analyze the ratio

of the number of tampered faces against the number of all

faces in each video in Fig. 3 (b). As seen, in many videos,

only a small percentage of faces are manipulated. These

statistics are more representative of real world-applications

and allow for in-depth benchmark analysis.

High Fidelity with Low Human Cost. We organize a

user study to verify the quality of FFIW10K. Specifically,

a total of 50 computer science students are invited to as-

sess the realness of synthetic videos in FFIW10K as well as

two previous high-quality datasets (i.e., Celeb-DF [50] and

DeeperForensics-1.0 [37]). Following [37], we randomly

select 30 videos from each dataset and prepare a web-based

platform to play each video once to the participants. Each

participant is asked to score each video at five levels (0.2 –

clearly fake, 0.4 – fake, 0.6 – borderline, 0.8 – real, 1.0 –

clearly real). For each video, we average the scores of all

users as the final score. Fig. 4 shows the results. As seen,

more videos in FFIW10K are rated as ‘real’ and ‘clearly real’

than in the other two datasets. This can be attributed to: i)

the intrinsic difficulties of multi-person face forgery detec-

tion; and ii) the effectiveness of the Q-Net in quality control.

Large Scale. As shown in Table 1, FFIW10K consists of

10K synthetic as well as 10K real videos, with about 33
hours and more than 7.2M frames in total. Note that the

number of unique fake videos in FFIW10K is ten orders of

Figure 4: Statistics of user study on data fidelity (§3.3).

magnitude larger than DeeperForensics-1.0, which treats a

manipulated video and its distorted versions (perturbed by

Gaussian blur, JPEG compression, etc.) as different videos.

Dataset Annotation. For completeness, FFIW10K provides

both face-level and video-level labels; a total of 3.2M real

faces and 1.1M fake faces of 3.6K persons are annotated.

Note that our method explores only the usage of video-level

labels, addressing high utility in practical applications.

Dataset Split. We split FFIW10K into separate train,

val and test sets. Following random selection of pris-

tine video clips, we arrive at a unique split consisting of

16,000 training, 500 validation, and 3,500 test videos. In

each split, each fake video is companied with its real video.

4. Domain-Adversarial Quality Control

Domain-Adversarial Quality Assessment Network (Q-

Net). As mentioned in §3.2, for facilitating dataset con-

struction, we design a Q-Net FQ (VGG16-based) that auto-

matically evaluates the quality of each swapped face and

hence allows us to effortless filter out low-fidelity faces.

The main challenge here is that it is hard to collect precise

quality annotations directly from the face swapping algo-

rithms (i.e., DeepFaceLab[60], FSGAN[59], FaceSwap[2]).

Inspired by [30], we collect data in a semi-supervised way.

Our algorithm is built on the observation that, for most

generative models, the quality of their synthesized images

progressively improves as the training continues. This en-

ables us to collect face images generated by various un-

conditional generative models (i.e., StyleGAN [39], Style-

GAN2 [40], PGGAN [38]) in different iterations and use the

corresponding iteration number as the pseudo groundtruth

quality score. Specifically, for each generated face Ii, the

pseudo score is defined as: si = 0.9×n/N , where n and

N indicate the iteration number and the maximum iteration,

respectively. We train each model [39, 40, 38] on FFHQ[39]

for N =5,000 iterations and select 20 images per iteration,

leading to a total of 300,000 training samples {Ii, si}i.

Directly learning on the collected data is insufficient,

since the Q-Net may overfit to specific artifacts of differ-

ent generative models [80, 24], rather than learning dis-

criminative and informative representations for realism per-

ception. This will lead to poor generalization when tested

on FFIW10K due to the domain shift between the train-

ing and testing distributions. To address this issue, we in-

troduce domain-adversarial regularization [29] to encour-
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Figure 5: (a) Training stage of Q-Net. (b) Facial manipulation and

Q-Net based quality control during the construction of FFIW10K.

age domain-invariant feature learning in the course of the

optimization. Concretely, we assign each training sam-

ple Ii an extra domain label di ∈ {StyleGAN, StyleGAN2,
PGGAN}. For each Ii, we let FQ predict both the quality

score and domain label. As shown in Fig. 5(a), with all the

training samples {Ii, si, di}i, F
Q is learned by minimizing:

LQ =
∑

i
Ll1(ŝi, si)− αLCE(d̂i, di), (1)

where Ll1 and LCE are l1 and cross-entropy losses, respec-

tively, ŝ and d̂ indicate the estimated quality score and do-

main label, respectively, and α > 0. Through the domain-

adversarial regularization (i.e., −αLCE(d̂i, di)), our Q-Net

is enforced to learn discriminative feature representations

that are invariant to the change of data distributions, hence

gaining improved generalization ability.

To evaluate FQ, we carry out a user study over a set of

images to measure the consistency between model predic-

tions and human assessments (see supplementary). The re-

sults from the user study confirm our Q-Net is effective.

Q-Net based Quality Control. After training, Q-Net is

employed to automate the construction of FFIW10K. For

each swapped face τ , created by DeepFaceLab, FSGAN

or FaceSwap, we compute its quality score through Q-Net:

ŝ = FQ(τ). Then, for each manipulated face tracklet, it

will be preserved only if its quality score, averaged over the

swapped faces it contains, is larger than 0.6 (see Fig. 5(b)).

5. Face Forgery Detection Framework

5.1. Discriminative Attention Model

In this section, we elaborate on our discriminative atten-

tion model for multi-person face forgery detection, which

falls into the multiple instance learning (MIL) regime [20,

52]. In MIL, labels are associated with groups of instances

(or bags), while instance labels are unobserved. The learn-

ing procedure aims to combine instance knowledge and pre-

dict labels on the bag level. In our problem, each video V
corresponds to a bag, with its class label lV ∈ {fake, real}.

A bag consists of K instances with unknown labels, each of

which is a tracklet of faces, obtained by [44, 77]. We then

formulate MIL-based face forgery detection as:

max
aV∈[0,1]K

log p(lV |{Yk}
K
k=1,aV) + log p(aV), (2)

where Yk denotes the representation of the k-th tracklet in-

stance, and aV is a tracklet-aware attention vector, in which

each value measures the likelihood of the corresponding

tracklet being fake. The first term log p(lV |{Yi}
K
i=1,aV)

prefers aV with high discriminative capacity for classifica-

tion, while the second term log p(aV) models the prior dis-

tribution of aV . With Eq. (2), we design a multi-temporal-

scale instance feature aggregation module (§5.2) to learn

instance representations {Yk}
K
k=1, an attention-based bag

feature aggregation module (§5.3) to fuse {Yk}
K
k=1 into a

video descriptor according to aV , and a sparse attention

regularization loss (§5.4) to model the distribution of aV .

5.2. MultiTemporalScale Instance Feature Aggre
gation

Let us denote Γ = {τ1, . . . , τT } as a tracklet instance

with T face regions detected from V , each face region τt is

represented by a feature vector xt ∈ R
D. Here we aim to

learn a compact representation Y for Γ:

Y = F(x1, . . . ,xT ) ∈ R
D
, (3)

where the aggregation function F can be naturally imple-

mented as a global pooling operation (e.g., max-pooling,

average pooling or log-sum-exponential pooling [10]) over

all the input features. However, global statistics cannot de-

scribe rich relations among different face regions, especially

the temporal order within the tracklet, which are informa-

tive for recognizing temporal inconsistency(e.g., eye blink-

ing patterns[48], temporal artifacts[31]) in manipulated face

sequences. We thus propose a multi-temporal-scale feature

aggregation module for more discriminative instance repre-

sentation learning. Formally, suppose X = [x1, . . . ,xT ]∈
R

D×T be the raw tracklet representation in matrix form. F
is achieved by a sequence of short-term Fs, long-term F l

and global Fg aggregation operations (see Fig. 6):

short-term aggregation: S = Fs(X) ∈ R
D×T

, (4)

long-term aggregation: L = F l(S) ∈ R
D×T

, (5)

global aggregation: Y = Fg(L) ∈ R
D
. (6)

Here, Fg denotes max-pooling. S and L are intermediate

features after short-term Fs and long-term F l aggregation

operations, respectively, which will be detailed later.

Short-Term Feature Aggregation. We propose a densely

connected dilated temporal convolution module to achieve

Fs in Eq. (4). The module combines the advantages of

atrous convolution[14] and dense connectivity[34] to effec-

tively enlarge the field of view of filters to capture large tem-

poral context. Specifically, Fs is a stack of L atrous convo-

lutional layers, i.e., {F atr conv
l }Ll=1, where the dilation rate rl
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Figure 6: Framework of the proposed discriminative attention model (§5) for face forgery detection in multi-person scenarios.

is increased layer by layer. Each F atr conv
l takes the concate-

nated features of all proceeding layers, [S0,S1, . . . ,Sl−1]∈
R

(l×D)×T as inputs, and outputs:

Sl = F atr conv
l ([S0,S1, . . . ,Sl−1]) ∈ R

D×T
, (7)

where S0 =X . Here, F atr conv is able to efficiently capture

temporal patterns over a relatively wide range without dras-

tically increasing the number of parameters. The dense con-

nection structure enables gradually assembling more tem-

poral cues from different layers. Therefore, with a large

receptive field, Fs finally produces a powerful, short-term

descriptor S for the tracklet Γ, by comprehensively model-

ing and fusing context over different local temporal scales.

In practice, each F atr conv
l is implemented by: bn-relu-

conv(1× 1)-bn-relu-conv(3× 3, rl)-bn-conv(1× 1).

Here, the first 1× 1 conv reduces the feature dimension

to (l×D)/4 for computational efficiency, the 3×3 conv
with dilation rate rl facilitates multi-scale feature learning,

and the second 1×1 conv outputs the feature Sl∈R
D×T at

l-th layer. We use L=3 layers of dilated convolution with

rates r={1, 2, 4}, respectively, as shown in Fig. 6.

Long-Term Feature Aggregation. In addition to the short-

term temporal context learning, we conduct long-term con-

text aggregation F l (Eq. (5)) over short-term feature S to

learn a non-local informative representation for the tracklet

Γ. Specifically, we employ self-attention [72, 76] to model

the long-range, multi-level dependencies among temporal

features in S (see Fig. 6). We first compute the normalized

correlation between each pair of temporal feature vectors in

S=[s1, . . . , sT ]∈R
D×T through pairwise dot product:

A = softmax(S⊤
S)

= softmax([s1, . . . , sT ]
⊤[s1, . . . , sT ]) ∈ [0, 1]T×T

.
(8)

The affinity matrix A stores similarity scores correspond-

ing to all pairs of features in S, i.e., the (i, j)-th element

of A gives the similarity between si and sj . softmax(·)

normalizes each column of the input. Next, attention sum-

maries are computed as SA∈R
D×T , and used to generate

the long-term descriptor L for Γ in a residual form:

L = F l(S) = SA+ S ∈ R
D×T

. (9)

Thus L encodes both the long-term SA and short-term in-

formation S, with enhanced representability.

5.3. AttentionBased Bag Feature Aggregation

After applying max-pooling based global aggregation

Fg over L (Eq. (6)), we get a compact and discriminative

representation Y ∈ R
D for each tracklet Γ. For video V ,

all the K detected tracklets form a bag. We further adap-

tively aggregate all instance features {Yk}
K
k=1 into a global

bag-level representation, using learnable attention:

OV =
∑K

k=1
akYk ∈ R

D
, (10)

where aV = (a1, . . . , aK) ∈ [0, 1]K is a vector of scalar

attention weights, and each weight ak is computed by:

ak =
exp{w⊤ tanh(W⊤

Yk)}∑K

k′=1 exp{w
⊤ tanh(W⊤Yk′)}

∈ [0, 1]. (11)

Here w ∈ R
C and W ∈ R

D×C are learnable parameters.

Through the attention-aware pooling, our method enjoys

high flexibility to absorb faithful knowledge from represen-

tative instances for more accurate video-level classification,

and better interpretability to locate the manipulated faces

according to the attention aV . For face forgery localization,

we regard a tracklet Γk as fake if ak > 0.75. The threshold

0.75 is determined by grid search over FFIW10K val.

5.4. Loss Function

Given the video-level feature representation OV ∈R
D, a

fully-connected layer is added for forgery classification. In

addition, since only a sparse subset of faces are manipulated

in most videos, we introduce sparse regularization over the
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attention vector aV to select a few most possibly tampered

faces. Thus the overall training objective is defined as:

L = LCE(l̂V , lV) + βLSparsity(aV). (12)

Here, LCE indicates the binary cross-entropy loss, and

LSparsity is a sparse regularization term that is formulated

as the l1 norm of aV , i.e., LSparsity(aV)=‖aV‖1. The coef-

ficient β>0 controls the trade-off between the two terms.

5.5. Implementation Details

Preprocessing. For each video, we detect human faces in

each frame [44] and associate them across frames to obtain

a set of tracks [77]. To incorporate more spatial context, we

extend each face region by a factor of 1.2 along the width

and height, uniformly resized into 224×224 resolution.

Training Details. We employ ResNet-50 [32] as the back-

bone network and extract features after the average pooling

layer as the representation of each face (D = 2048). The

whole network is trained end-to-end using the Adam op-

timizer with learning rate 1e-4 and batch size 32. During

training, we apply random perturbations (e.g., horizontal

flipping, color jitter) on each track for data augmentation.

The coefficient β in Eq.(12) is empirically set to 0.001.

Reproducibility. Our model is implemented on PyTorch

and trained on four NVIDIA Tesla V100 GPUs. To provide

full details of our method, our codes are released.

6. Experiment

On top of FFIW10K, we examine the proposed as well as

representative face forgery detection methods on two tasks:

face forgery classification (§6.1) and localization (§6.2).

Then, we conduct experiments for assessing cross-dataset

generalization abilities of various approaches in §6.3. Fi-

nally, in §6.4, a set of ablation studies are performed.

Competitors. Most previous approaches are designed for

single-person scenarios, and, in practice, suffer from train-

ing divergence on FFIW10K (due to the influence of large

amounts of real faces in manipulated videos). Therefore,

we train these models on FFIW10K train with face-level

labels. In particular, we select four frame-based (i.e., Xcep-

tion [63], MesoNet [3], FWA[49], PatchForensics [13]) and

three video-based (i.e., C3D[70], TSN[74], I3D[12]) mod-

els for comparison. Note that these models show com-

pelling performance on existing datasets [63, 50, 37]. In

addition, S-MIL[47] is employed as another baseline which

can be trained using only video-level labels. All training

protocols follow the original papers unless stated otherwise.

Evaluation Protocol. To fairly benchmark FFIW10K , we

devise a unified evaluation protocol that is applicable to all

the methods. In particular, each test video is first parsed

into a set of face tracklets, and each approach determines

the possibility of each tracklet to be fake. This is natural for

video-based methods since they work on tracklets, while for

frame-level methods we use the average score of all faces in

classification localization
Methods

ACC (%) AUC (%) mAP (%)

frame-based methods: using face-level labels as supervision

Xception [63] 54.1 56.1 17.9

MesoNet [3] 53.8 55.4 17.7

PatchForensics [13] 58.9 61.6 18.9

FWA [49] 60.2 63.1 19.2

video-based methods: using face-level labels as supervision

TSN [74] 61.1 62.8 21.7

C3D [70] 64.3 65.5 23.9

I3D [12] 68.8 69.5 29.7

video-based methods: using video-level labels as supervision

S-MIL [47] 59.8 61.2 -

Ours 69.4 70.9 30.8

Table 2: Quantitative results for face forgery classification and

localization on test set of FFIW10K (§6.1 and §6.2).

each tracklet as its score. Based on the tracklet-level predic-

tions, we compute area under the receiver operating charac-

teristic curve (AUC) as the metric of the classification task,

as well as mean average precision (mAP) for the localiza-

tion task. Following conventions [63, 50, 37], we also report

video-level accuracy score (ACC) for classification.

6.1. Face Forgery Classification

We first investigate the classification performance of the

approaches on FFIW10Ktest. Although this task has been

well studied in single-person scenarios, we observe from

Table 2 that previous methods produce poor classification

results on FFIW10K, even though they are trained with face-

level labels. Our model outperforms all the compared meth-

ods by a large margin. This is encouraging given that our

model only accesses to video-level labels. We note that our

model significantly outperforms S-MIL [47], which is also

trained using video-level labels. Additionally, we can ob-

serve that the top performance in FFIW10K is still far from

being satisfactory, thus we hope that our new dataset could

encourage continuous efforts in this challenging task.

6.2. Face Forgery Localization

We next analyze the performance of the approaches on

face forgery localization. This task is more practical and

challenging, yet is rarely explored in the literature. As

shown in Table 2, the video-based methods [74, 70, 12] con-

sistently outperform image-based methods [63, 3, 13, 49]

in terms of mAP. Benefiting from our multi-temporal-scale

feature aggregation (§5.2) and attention-based selection

(§5.3) mechanisms, our approach achieves the best perfor-

mance, even without precise, face-level supervision. Some

visual results are depicted in Fig. 7, showing the strong

capability of our model in isolating high-fidelity tampered

faces from complex, multi-person scenes.

6.3. CrossDataset Evaluation and Generalization

Furthermore, we examine the cross-dataset performance

of various approaches and the generalization ability of our
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Figure 7: Visual results for face forgery localization on test

set of FFIW10K (§6.2).

FF++ DFDC Preview Celeb-DF
Methods

[63] [22] [50]

Xception-FF++ [63] 99.2 49.9 48.2

Capsule-FF++ [57] 96.6 53.3 57.5

Xception-c40-FF++ [63] 95.5 69.7 65.5

F3Net-FF++ [62] 99.9 - -

Face X-ray-FF++ [46] 99.2 73.5 74.8

TRN-FF++ [53] 99.1 - 76.7

Xception-c40-FFIW10K 95.7 71.3 66.9

Ours-FF++ 99.5 72.8 75.3

Ours-FFIW10K 99.3 74.1 78.3

Table 3: Cross-dataset generalization evaluation for face

forgery classification, in terms of AUC (%). See §6.3 for details.

FFIW10K . As shown in Table 3, all comparative methods

are trained on FF++ train [63] and evaluated on test sets

of FF++ [63], DFDC Preview [22], and Celeb-DF [50], re-

spectively. “Ours-FF++”, also trained on FF++, produces

comparable performance against other competitors, verify-

ing the efficacy of our model. In addition, we evaluate the

generalization ability of our FFIW10K. We train our model

as well as Xception-c40 [63] on FFIW10K train and re-

port their performance on other datasets. We see that both

“Ours-FFIW10K” and “Xception-c40-FFIW10K” outper-

form their alternatives, i.e., “Ours-FF++” and “Xception-

c40-FF++”, which are trained on FF++ train. Hence,

“Ours-FFIW10K” shows superior performance on DFDC

Preview and Celeb-DF. These experiment results reveal that

FFIW10K has a low data bias and is well qualified to be used

for training and evaluating face forgery detection models.

6.4. Model Ablations

We next conduct ablative studies of our model on

FFIW10K test. The results are summarized in Table 4.

Instance Feature Aggregation. To study the impact of

our multi-temporal-scale context aggregation (Eqs. (4-6)),

we first develop two baselines by directly applying max- or

avg-pooling over raw tracklet feature X to obtain a global

compact descriptor Y , without multi-temporal-scale fea-

ture learning. We can easily find that both models perform

significantly worse than our full model across all metrics.

This confirms that the global statistics are not eligible for

encoding high-order relationships in X , resulting in poor

performance. We further separately analyze the short-term

(Eq. (4)) and long-term (Eq. (5)) aggregation modules. As

classification localization
Aspect Variants

ACC(%) AUC(%) mAP(%)

Full Model - 69.4 70.9 30.8

Instance Feature

Aggregation(§5.2)

max-pooling 64.5 66.2 24.6

avg-pooling 63.9 65.7 24.1

w/o short-term (Eq.(4)) 68.3 69.7 29.6

w/o long-term (Eq.(5)) 69.0 70.4 30.2

Bag Feature

Aggregation(§5.3)

max-pooling 67.3 69.5 -

avg-pooling 64.7 66.8 -

Loss Function(§5.4) w/o Lsparsity (Eq.(12)) 68.6 70.3 28.5

Table 4: Ablation study on test set of FFIW10K (see §6.4).

seen, by dropping the short-term module, the model en-

counters a performance drop (70.9%→ 69.7% over AUC,

and 30.8%→29.6% over mAP). A similar trend is also ob-

served after discarding the long-term aggregation module.

Bag Feature Aggregation. To investigate the efficacy of

the learnable attention mechanism for bag feature aggre-

gation, we compare it with two baseline models which

carry out the video-level feature summarization in Eq. (10)

by max- and avg-pooling, respectively. We see that our

attention-based aggregation mechanism brings favorable

performance improvements over the baselines for classifi-

cation, which can be attributed to its ability to automatically

highlight the most possible instances for discrimination.

Efficacy of LSparsity. At last, we study the necessity of the

sparsity constraint LSparsity in Eq. (12). Since the term pro-

vides an appropriate modeling of the data distribution (i.e.,

tampered faces are sparse in manipulated videos), it con-

tributes to great performance improvements, especially in

the localization task (28.5%→30.8% in terms of mAP).

7. Limitation and Discussion

For our dataset, its difficulty is limited to the adopted

face swapping algorithms. This limitation is also shared

by existing datasets. Considering the rapid advance of face

swapping and forgery detection techniques, it is hard to

maintain a long life-span for face forensics datasets. Our

domain-adversarial quality control strategy may provide a

feasible solution – one can automatically update the dataset

by using more advanced deepfake techniques. For our

model, it faces difficulties in the scenes with slow illumi-

nation change and stable motions. In such cases, the ma-

nipulated faces within a same tracklet usually show strong

consistency and less artifacts. Thus the long-term fea-

tures are less informative, easily leading to inferior perfor-

mance. Hence, current study for “forgery” is mainly around

face swapping. However, given the broader concerns about

how imagery is being altered in order to influence political

sphere, “forgery” should be explored in a larger extent, such

as manipulating body movements, changing facial expres-

sions, synthesizing realistic talking head videos, or swap-

ping faces under controllable camera characteristics.
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[19] Tiago José De Carvalho, Christian Riess, Elli Angelopoulou,

Helio Pedrini, and Anderson de Rezende Rocha. Exposing

digital image forgeries by illumination color classification.

IEEE TIFS, 8(7):1182–1194, 2013. 2

[20] Thomas G Dietterich, Richard H Lathrop, and Tomás
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