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Abstract

Long-term actions involve many important visual con-

cepts, e.g., objects, motions, and sub-actions, and there are

various relations among these concepts, which we call ba-

sic relations. These basic relations will jointly affect each

other during the temporal evolution of long-term actions,

which forms the high-order relations that are essential for

long-term action recognition. In this paper, we propose a

Graph-based High-order Relation Modeling (GHRM) mod-

ule to exploit the high-order relations in the long-term ac-

tions for long-term action recognition. In GHRM, each ba-

sic relation in the long-term actions will be modeled by a

graph, where each node represents a segment in a long

video. Moreover, when modeling each basic relation, the

information from all the other basic relations will be in-

corporated by GHRM, and thus the high-order relations

in the long-term actions can be well exploited. To bet-

ter exploit the high-order relations along the time dimen-

sion, we design a GHRM-layer consisting of a Temporal-

GHRM branch and a Semantic-GHRM branch, which aims

to model the local temporal high-order relations and global

semantic high-order relations. The experimental results on

three long-term action recognition datasets, namely, Break-

fast, Charades, and MultiThumos, demonstrate the effec-

tiveness of our model.

1. Introduction

In the computer vision community, there have been many

studies on action recognition. Approaches such as two-

stream networks [24], Inflated-3D networks (I3D) [2], and

temporal segment networks (TSN) [28] have shown their

effectiveness for action recognition. The actions these stud-

ies mainly focus on are from pre-trimmed clips of videos
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Figure 1. 10 frames selected from the long video Q948H in Cha-

rades [23] show “A person sits on a bed, grabs a book off of a

table, finds a picture in the book, puts the book back, and stares

at the picture”. The purple and cyan cues show two basic relation

instances, and there are some connections between them. As the

woman opens the book but then closes it quickly without reading

it, we can infer that the picture is found from this book. Addition-

ally, the woman does not put the book and picture back together,

so she may going to look at the picture. Therefore, the information

in these two basic relation instances can affect each other.

and last only a few seconds, which we call short-term ac-

tions. However, the videos we are usually exposed to in

daily life are more complex long videos, so trimming short-

term actions from those long videos is very time-consuming

and labor-intensive. More importantly, trimming short-term

actions from long videos without considering the possible

internal relations between them will prevent action recog-

nition research from achieving the goal of understanding

complex human behaviors.

In contrast to short-term actions, long-term actions [10,

11, 32] are actions in untrimmed videos that have a very

long execution time. A long-term action generally contains

multiple sub-actions, among which some complicated rela-

tions may exist. The goal of long-term action recognition

is to identify the long-term action or to identify all sub-

actions that occur during the execution of the long-term ac-
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tion. Thus, only long-term action category labels or all sub-

action category labels need to be provided for long-term ac-

tion recognition task, which will largely reduce the cost of

dataset annotation. Therefore, long-term action recognition

provides a feasible way for us to understand complex hu-

man behaviors.

In the long-term actions, there are many important vi-

sual concepts, e.g., objects, motions, and sub-actions. Var-

ious relations may exist among these visual concepts, such

as relations between humans and objects, relations between

sub-actions, etc., which we call basic relations. These ba-

sic relations will jointly affect each other during the tempo-

ral evolution of long-term actions, which forms the high-

order relations in the long-term actions. Therefore, ex-

ploiting the high-order relations in long-term actions from

these basic relations is the key to recognizing long-term ac-

tions. In the example from the Charades [23] dataset shown

in Figure 1, we can find two visual cues in this long video.

The purple cue shows an instance of the basic relation, i.e.,

“grab a book → open the book → close the book → put

the book back”. The cyan cue shows another instance of

the basic relation, i.e., “find a picture → hold the picture

→ stare at the picture”. There are some connections be-

tween these two basic relation instances, which forms the

high-order relations. For example, there is a connection be-

tween the actions open the book, close the book in the

first basic relation instance and the action find a picture

in the second basic relation instance, as finding a picture

from a book makes it reasonable that a person would open

the book but then close it quickly without reading it. Simi-

larly, the actions close the book, put the book back in the

first instance can provide a clue for the action stare at the

picture in the second instance. Therefore, for long-term ac-

tion recognition, it is important to model each basic relation

well. More importantly, to exploit the high-order relations

in the long-term actions, the information from all the other

basic relations should be incorporated while modeling each

basic relation.

In this work, we propose a novel Graph-based High-

order Relation Modeling (GHRM) module, which exploits

the high-order relations from the basic relations in the long-

term actions for recognition. In GHRM, each basic relation

in the long-term actions will be modeled by a graph con-

volutional module, with each segment in a long video as a

graph node. As these basic relations can affect each other

and then form the high-order relations during the temporal

evolution of long-term actions, GHRM will incorporate the

information from all the other basic relations when mod-

eling each basic relation, thus the high-order relations in

the long-term actions can be well exploited. To better ex-

ploit the high-order relations in the long-term actions along

the time dimension, our model constructs the GHRM-layer

based on the GHRM module, which considers both the local

temporal high-order relations and the global semantic high-

order relations by using a Temporal-GHRM branch and

a Semantic-GHRM branch, respectively. The Temporal-

GHRM branch reasons the graph locally to leverage the

temporal context between neighboring segments, while the

Semantic-GHRM branch will reason the graph globally to

leverage the semantic context between segments without the

limitation of temporal distance.

To summarize, the main contributions of this work are:

• A novel GHRM module is proposed to exploit the

high-order relations from the basic relations in the

long-term actions.

• A GHRM-layer consisting of a Temporal-GHRM

branch and a Semantic-GHRM branch is designed to

model the local temporal high-order relations and the

global semantic high-order relations in the long-term

actions.

Our proposed model achieves state-of-the-art perfor-

mance on three popular long-term action recognition

datasets: Breakfast [15], Charades [23], and MultiThumos

[31], which demonstrates the effectiveness of our model.

2. Related Work

2.1. Action Recognition

From the perspective of the duration of actions, action

recognition can be divided into short-term and long-term

action recognition. Short-term actions usually refer to ac-

tions that last only a few seconds, while long-term actions

are often minute-long.

Short-term Action Recognition. Videos in short-term ac-

tion datasets (e.g., UCF101 [25], HMDB-51 [16], Some-

thingV2 [9]) are usually pre-trimmed and last only a few

seconds. Early works such as Karpathy et al. [13] aimed

to recognize short-term actions using 2D CNN. Later, many

works [1, 24, 27] utilized the motion features to capture the

local dynamics on the time dimension. The temporal cues

in action recognition are important: some works [2, 26] ex-

tended the 2D CNN to 3D CNN to model the dependencies

in the time dimension, and others [5, 6, 19] introduced RNN

to learn temporal patterns by treating action recognition as

a sequence modeling problem.

Long-term Action Recognition. As more long-term action

recognition datasets (e.g., Breakfast [15], Charades [23])

have been proposed, many researchers have turned their

attention to long-term action recognition. Sigurdss et al.

[22] stacked CRF on top of the CNN output to model long-

term temporal relations. TRN [34] explored the multi-scale

temporal relations among video segments. Non-local net-

works [29] inserted non-local blocks into 3D CNN to cap-

ture long-range dependencies. Timeception [10] built multi-

scale convolutional layers on top of CNN features that can

recognize complex actions with long-range temporal depen-
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dencies. RhyRNN [32] designed a specific RNN structure

to ease the gradient flow in a long sequence. However, all

these methods struggle to exploit the high-order relations in

the long-term actions and ignore either local temporal rela-

tions or global semantic relations in the long-term actions.

2.2. Graph Convolutional Networks

The graph convolutional networks (GCN) [14] defined

the convolution operation on non-Euclidean structures,

which have shown effectiveness in relation modeling and

have been widely used in many research areas in computer

vision, such as image recognition [4, 17], object detection

[18, 21], and action recognition [3, 7, 30]. However, most

of these GCN-based approaches are not effective enough

for long-term action recognition, as they do not consider

the multiple basic relations in the long-term actions. Zhang

et al. [33] deduced multi-kinds of global semantic relations

of an action using multiple graphs, but they did not con-

sider the relations between these graphs while reasoning on

each graph. In this paper, our proposed GHRM can incorpo-

rate the information from all the other basic relations while

modeling each basic relation, thus the information in differ-

ent graphs will be fused to exploit the high-order relations

in the long-term actions.

3. Our Approach

We denote a long video with L frames by V =
{v1, v2, · · · , vL−1, vL}. Each long video may have two

kinds of ground-truths: i) the long-term action category

ground-truth is Y la ∈ {0, 1, · · · ,M −2,M −1}, where M

is the number of long-term action categories in the dataset;

ii) the sub-action category ground-truth can be given by the

vector Y sa ∈ {0, 1}N , where N is the number of sub-action

categories in the dataset. The long-term action recognition

task aims to recognize the category of the long-term action

Y la or categories of all sub-actions Y sa in a long video.

3.1. Model Overview

In this paper, we propose a model to exploit the high-

order relations in the long-term actions. Figure 2 illus-

trates the framework of our model. For a long video with

L frames, our model first uniformly samples T segments

where each segment has S consecutive frames. Then we

use a feature extractor (e.g., I3D [2]) to extract the segment

features X = {x1, x2, · · · , xT−1, xT }, where xt ∈ R
C is

the feature of the t-th segment and C is the feature dimen-

sion. Based on the segment features, our model learns the

feature Xin by constructing multiple graphs, which will be

the input of stacked GHRM-layers to exploit the high-order

relations in the long-term actions. In addition, our GHRM-

layer contains a Temporal-GHRM branch and a Semantic-

GHRM branch to model the local temporal high-order rela-

tions and global semantic high-order relations respectively,

Video
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Figure 2. Illustration of our framework for long-term action recog-

nition. We first use a backbone model to extract the segment fea-

tures from a long video. Then multiple graphs are constructed

on the embedded extracted features. Features from all graphs

will be fed into GHRM-layer to exploit the high-order relations in

long-term actions. Our GHRM-layer contains a Temporal-GHRM

branch and a Semantic-GHRM branch to capture the local tempo-

ral relations and the global semantic relations respectively. The

output features from these two complementary branches will be

added together as the input of the next GHRM-layer. After each

GHRM-layer, we downsample the segment features in the time di-

mension to half of the original size. Finally, a graph fusion layer

and a classification layer will be applied to recognize the long-term

actions.

and features from these two branches will be fused as the in-

put of the next GHRM-layer. Finally, we fuse these graphs

and use a classification layer to recognize the long-term ac-

tions. In the following, we will elaborate on our model.

3.2. Graph­based High­order Relation Modeling

In this subsection, we describe our Graph-based High-

order Relation Modeling (GHRM) module, which aims to

exploit the high-order relations in the long-term actions.

For each basic relation in the long-term actions, our GHRM

constructs a graph to model it. These basic relations will

affect each other during the temporal evolution of long-

term actions, which forms the high-order relations. GHRM

would incorporate the information from all the other ba-

sic relations during graph reasoning for each basic relation,

thus the high-order relations in the long-term actions can be

well exploited. The overall graph structure of our GHRM

and how GHRM models the high-order relations will be in-

troduced in the following.

3.2.1 Graph Structure

To model multiple basic relations in the long-term actions,

GHRM first constructs a graph on the extracted feature X ∈
R

T×C for each basic relation, where each node represents

a segment in a long video. We denote these K graphs by

G = {G1(V1, E1),G2(V2, E2), · · · ,GK(VK , EK)}, where

K is the total number of basic relations that we want to

model and Gi(Vi, E i) is the i-th graph used to model the i-th

basic relation. In the i-th graph, Vi, and E i denote the vertex

and edge sets, respectively. Each segment node xu ∈ R
C is
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Figure 3. An overview of our proposed GHRM module. There are a total of K graphs for modeling K basic relations in the long-term

actions. For each graph G
i, GHRM first calculates its adjacent matrix A

i with the function gi which would incorporate the information

from all the other graphs. Then, the aggregated feature Xi
agg of the segment nodes in each graph G

i is obtained based on its adjacent matrix

A
i. Finally, the new representation of the segment nodes Xi

out in each graph G
i will be calculated by the embedding function ρi, which

can also incorporate the information from all the other graphs. Best viewed in color.

a vertex in Vi, and E i
(u,v) ∈ {0, 1} in E i indicates whether

there is an edge between the u-th segment node xi
u and the

v-th segment node xi
v in the i-th graph.

The graph reasoning process of GHRM is illustrated in

Figure 3. For each graph Gi(Vi, E i), we first calculate its

adjacent matrix Ai by incorporating the information from

the other graphs. Then node aggregation will be performed

to obtain the aggregated feature Xi
agg of the segment nodes

in each graph Gi based on its adjacent matrix Ai. Finally,

GHRM utilizes an embedding layer ρi, which can also in-

corporate the information from all the other graphs to obtain

the new representation of the segment nodes Xi
out in each

graph Gi (the adjacent matrix Ai and the embedding layer

ρi are the key to modeling the high-order relations, which

will be shown later).

Thus, our GHRM can be formulated as follows for each

graph Gi(Vi, E i):

Xi
agg = AiXi

in,

Xi
out = ρi(X1

agg, · · · , X
K
agg).

(1)

In Equation (1), the input feature Xi
in ∈ R

T×C represents

the segment nodes in the i-th graph, which could be f i(X)
where f i is a learnable layer used to embed the extracted

feature X . Ai ∈ R
T×T is the adjacency matrix of the i-th

graph. Xi
agg ∈ R

T×C is the aggregated node feature in the

i-th graph. ρi is the embedding layer which would incorpo-

rate the information from other graphs to embed the aggre-

gated node feature Xi
agg in the i-th graph. Xi

out ∈ R
T×C is

the new hidden representation of the segment nodes in the

i-th graph.

3.2.2 High-order Relation Modeling

To exploit the high-order relations in the long-term actions,

our proposed GHRM aims to incorporate the information

from all the other graphs through the adjacent matrix Ai

and the embedding layer ρi in the i-th graph Gi during graph

reasoning for the i-th basic relation.

- Construction of Adjacent Matrix Ai. The adjacent ma-

trix in the graph reflects the degree of correlation between

graph nodes, which represents the relation modeled by the

graph. Our GHRM uses a graph to model each basic re-

lation in the long-term actions. These basic relations will

jointly affect each other and then form the high-order rela-

tions during the temporal evolution of long-term actions.

Therefore, we consider the influence of the information

from all the other graphs when constructing the adjacent

matrix Ai for each graph Gi. For the u-th segment node

xi
u ∈ R

C and the v-th segment node xi
v ∈ R

C in the i-th

graph, GHRM will calculate the connection strength value

Ai
(u,v) between them as:

Ai
(u,v) =

{

exp(gi(xu)
T gi(xv))∑

T

w=1
exp(gi(xu)T gi(xw))

, if E i
(u,v) = 1,

0, if E i
(u,v) = 0,

gi(xu) = W i[(x1
u)

T , · · · , (βi(xi
u))

T , · · · , (xK
u )T ].

(2)

When there is an edge between segment nodes xi
u and xi

v ,

i.e., E i
(u,v) = 1 in E i, Ai

(u,v) is calculated as the inner prod-

uct with softmax. And when there is no edge between these

two nodes, i.e., E i
(u,v) = 0, Ai

(u,v) is set as 0. In Equa-

tion (2), W i ∈ R
C×(K·C) is the parameter of embedding

layer gi, which transforms the feature xu into the i-th rela-

tion space, and the feature xu ∈ R
K·C is concatenated from
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the u-th segment nodes in all graphs (βi is the embedding

layer for segment nodes in the i-th graph), so the connec-

tion strength value Ai
(u,v) between segment nodes xi

u and

xi
v in the i-th graph will be affected by all the other graphs.

Therefore, the information from other graphs will be incor-

porated to exploit the high-order relations.

- Embedding Layer ρi. The embedding layer of GCN will

embed the aggregated feature of the segment nodes to the

new hidden representation. GHRM can incorporate the in-

formation from other graphs while embedding the aggre-

gated feature Xi
agg ∈ R

T×C in each graph Gi as follows:

ρi(X1
agg, · · · , X

K
agg) = δ(XaggW

i)

= δ([X1
agg, · · · , γ

i(Xi
agg), · · · , X

K
agg]W

i),
(3)

where δ is a nonlinear function. Wi ∈ R
(K·C)×C is the

parameter of embedding layer ρi in the i-th graph. Xagg ∈
R

T×(K·C) is the concatenated aggregated node feature that

incorporates information from all the other graphs, thus the

high-order relations can be exploited. γi is the embedding

layer for aggregated node feature Xi
agg in the i-th graph.

Remark. By utilizing the adjacent matrix Ai in Equation

(2) and the embedding layer ρi in Equation (3) to reason

each graph Gi(Vi, E i), the information from all the other

graphs can be incorporated, thus the high-order relations in

long-term actions can be well exploited. Compared with

GHRM, Vanilla-GCN (a group of standard GCNs [14]) can

also use multiple separated graphs to model the basic rela-

tions in the long-term actions, which can be seen as a degen-

erated version of our proposed GHRM. However, Vanilla-

GCN will not consider the information exchange between

these graphs, which makes itself lack the ability to exploit

the high-order relations in the long-term actions.

3.3. Structure of GHRM­layer

To better exploit the high-order relations in the long-term

actions along the time dimension, our model constructs the

GHRM-layer based on the GHRM module, which takes

both the local temporal high-order relations and global se-

mantic high-order relations into consideration. GHRM-

layer contains two complementary branches: the Temporal-

GHRM branch, which reasons the graph locally to lever-

age the temporal context between neighboring segments,

and the Semantic-GHRM branch, which reasons the graph

globally to leverage the semantic context between segments

without the limitation of temporal distance.

- Temporal-GHRM. The temporal relations between

neighboring segments in videos are important to understand

the long-term actions. Temporal-GHRM leverages the tem-

poral context in a long video by defining temporal edges

E i in each graph Gi(Vi, E i). For the u-th segment node

xi
u in the i-th graph, Temporal-GHRM restricts its temporal

neighboring nodes xi
v in the i-th graph in a local manner:

E i
(u,v) =

{

1, if |u− v| ≤ ⌊W
2 ⌋,

0, otherwise,
(4)

where W is the window size that refers to the number of

neighboring nodes connected by each segment node.

- Semantic-GHRM. In addition to the temporal relations

between neighboring segments, there are also rich semantic

relations that may exist in any pair of segments (regardless

of the temporal distance between segments) in a long video.

Semantic-GHRM leverages the semantic context in a long

video using a complete graph:

E i
(u,v) = 1, (5)

which means that each pair of segment nodes in each graph

has an edge connected.

Our GHRM-layer takes the feature Xi
in ∈ R

T×C of

each graph Gi together as the input, i.e. Xin ∈ R
K×T×C .

The input feature Xin will flow to the Temporal-GHRM

branch and the Semantic-GHRM branch to capture the lo-

cal temporal high-order relations and the global semantic

high-order relations, respectively. And the output features

XT
out ∈ R

K×T×C and XS
out ∈ R

K×T×C from these two

branches will be fused into Xout ∈ R
K×T×C by adding,

which will then serve as the input of the next GHRM-layer.

3.4. Graph Fusion and Classification Header

As GHRM can incorporate the information from other

graphs during graph reasoning, the relations modeled by

each graph after the stacked GHRM-layers are already high-

order relations. Thus, we fuse these graphs in the following

effective way. For the segment nodes Xi ∈ R
T×C in each

graph Gi, we first use a learnable layer f i : R
C → R

Ĉ

to reduce the feature dimension to Ĉ. Then all graphs will

be fused into a single graph GF with segment nodes XF ∈

R
T×C̃ by concatenating the corresponding node from all

graphs, i.e., XF = [f1(X1), · · · , fK(XK)], where C̃ =
K · Ĉ. After Graph Fusion, we will feed the segment nodes

XF into the final classification header to predict the cat-

egory of the long-term action Y la or the categories of all

sub-actions Y sa in a long video.

4. Experiments

In this section, we first introduce the metrics used in

long-term action recognition and present the details of three

long-term action datasets: Breakfast [15], Charades [23],

and MultiThumos [31]. Then we will demonstrate the effec-

tiveness of our model and compare it with the state-of-the-

arts. After that, we also conduct ablation studies to show the

effect of each component of our model. Finally, we com-

pare our GHRM module with Vanilla-GCN quantitatively

and qualitatively.
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Methods mAP(%) Acc(%)

Kinetics [2] pre-trained backbone

I3D [2] 47.05 58.61

ActionVLAD [8] 60.20 65.48

Timeception [10] 61.82 67.07

VideoGraph [11] 63.14 69.45

Ours 65.86 75.49

Breakfast fine-tuned backbone

I3D [2] 61.19 74.83

Ours 73.89 89.01

Table 1. Long-term action recognition results on Breakfast. For

the Kinetics pre-trained I3D backbone, our proposed model out-

performs the state-of-the-art method VideoGraph [11] by 2.72%

in mAP and 6.04% in Acc. Using the fine-tuned I3D backbone,

our model achieves 73.89% in mAP and 89.01% in Acc, respec-

tively.

Methods Modality mAP (%)

C3D [26] RGB 10.9

Two-stream [24] RGB + Flow 18.6

Two-stream + LSTM [24] RGB + Flow 17.8

ActionVLAD [8] RGB + iDT 21.0

Temporal Fields [22] RGB + Flow 22.4

TRN [34] RGB 25.2

3D ResNet-50 + GCN [30] RGB + RP 37.5

3D ResNet-101 + NL [29] RGB 37.5

I3D [2] RGB 32.9

Timeception [10] RGB 37.2

VideoGraph [11] RGB 37.8

Ours RGB 38.3

Table 2. Long-term action recognition results on Charades.

Our model outperforms the I3D baseline and Non-local Networks

by 5.4% and 0.8% in mAP, respectively. Moreover, compared with

the state-of-the-art method VideoGraph, it achieves 0.5% improve-

ment in mAP.

4.1. Metrics and Datasets

Recognition metrics. The goal of the long-term action

recognition task is to recognize the category of long-term

action or the categories of all sub-actions in a long video.

Therefore, we use Accuracy (Acc) as the evaluation metric

for long-term action classification and Mean Average Pre-

cision (mAP) for sub-action classification.

Breakfast. The Breakfast dataset has 1712 breakfast

preparation-related long videos. These videos record 52

unique participants, each conducting 10 distinct cooking

activities captured in 18 different kitchens. Overall, there

are 48 different sub-actions, where each video contains 6

sub-actions and lasts 2.3 minutes on average. We use the

same split method as proposed in [10] which has 1357 long

videos for training and 355 for testing. As both the long-

term action category labels and the sub-action category la-

bels are provided, we evaluate our model with both the Acc

and mAP metrics.

Charades. Charades is a large dataset with 9848 annotated

long videos, 7985 for training and 1863 for testing. These

long videos record 267 people’s casual daily activities in

15 types of indoor scenes. On average each video is 30

seconds long and has 6.8 sub-actions. Charades has 157

sub-action classes. As Charades only provides sub-action

category labels, we follow Hussein et al. [10] to evaluate

our model using the mAP metric.

MultiThumos. The MultiThumos dataset is a complex

untrimmed dataset which contains 413 long videos, 200
for training and 213 for testing, with a total duration of

30 hours. It is extended from Thumos14 [12] by provid-

ing dense and multi-label annotations for the videos. There

are a total of 65 sub-actions in MultiThumos, with an av-

erage of 11 sub-actions in each video. The metric mAP is

used for evaluation on this dataset.

4.2. Implementation Details

We use PyTorch [20] to implement our model. Follow-

ing the experimental settings in [10], for a long video with L

frames, we uniformly sample 64 segments with 8 consecu-

tive frames in each segment, thus a total of 512 frames will

be sampled from each long video. The segment features

are extracted from the output of the last pooling layer of the

I3D network [2], so the size of each segment feature is 1024
with the spatial dimension maxpooled. To make our GHRM

module more efficient and lightweight, we adopt a channel

sharing strategy on layer gi in Equation (2) and layer ρi in

Equation (3) during graph reasoning for each graph Gi. The

window size W in Temporal-GHRM is 7. We use stochas-

tic gradient descent with a momentum of 0.9 to optimize our

model. The batch size is 32 and the learning rate is 0.5. The

weight decay is set as 10−4. Similar to [10], the backbone

model in our framework will not be end-to-end trained. See

more details in the supplementary material.

4.3. Comparison with the State­of­the­art

Breakfast: Table 1 compares the long-term action recog-

nition results of our model and several related methods on

the Breakfast dataset by stacking four GHRM-layers with

32 graphs on I3D backbone. As shown in Table 1, for the

Kinetics [2] pre-trained I3D backbone, our model outper-

forms the I3D baseline by 18.81% in mAP and 16.88%

in Acc, and outperforms the state-of-the-art method Video-

Graph [11] by 2.72% in mAP and 6.04% in Acc. We also

fine-tune the I3D on the Breakfast dataset to extract better

visual features. Using the fine-tuned I3D as the backbone,

our model achieves 73.89% in mAP and 89.01% in Acc,

which is a large improvement over the fine-tuned I3D.
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Methods mAP (%)

I3D [2] 72.43

Timeception [10] 74.79

Ours 79.89

Table 3. Long-term action recognition results on MultiThumos.

Our model outperforms the I3D baseline and the state-of-the-art

method Timeception by 7.46% and 5.10% in mAP respectively.
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Figure 4. Comparison of the effects of using different numbers of

GHRM-layers. Our model achieves the best results on Charades

and Breakfast using two and four GHRM-layers respectively.

Charades: We compare our model with both short-term

and long-term action recognition methods by stacking two

GHRM-layers with 64 graphs on the I3D backbone. As

shown in Table 2, our model outperforms the I3D baseline

and Non-local Networks [29] which uses a stronger back-

bone by 5.4% and 0.8% in mAP, respectively. Moreover,

our model outperforms the state-of-the-art long-term action

recognition method VideoGraph [11], achieving state-of-

the-art performance on this large dataset.

MultiThumos: We use MultiThumos as the third long-

term action recognition dataset to demonstrate the effective-

ness of our model. By stacking four GHRM-layers with

64 graphs on the Kinetics pre-trained I3D backbone, we

achieve state-of-the-art performance on MultiThumos. As

shown in Table 3, our model can reach 79.89% in mAP,

which exceeds the state-of-the-art method Timeception [10]

by 5.10% in mAP.

4.4. Ablation Studies

Number of GHRM-layers. Stacking multiple GHRM-

layers is effective for modeling the long-term relations in

long videos. In Figure 4, we show the effects of using differ-

ent numbers of GHRM-layers on the Charades and Break-

fast datasets. The results show that stacking two and four

GHRM-layers are sufficient for the Charades and Break-

fast datasets respectively. By stacking more GHRM-layers,

the performance on Breakfast can be continuously boosted,

while it does not on Charades. The reason is that the average

duration of the videos in Breakfast is 2.3 minutes, which is

Number of Graphs mAP on Breakfast mAP on Charades

K=8 61.2 36.5

K=16 63.1 37.5

K=32 65.9 38.0

K=64 65.7 38.3

K=128 63.8 38.1

Table 4. mAP(%) comparisons of different numbers of graphs used

in GHRM. We achieve the best results on Breakfast and Charades

when using 32 and 64 graphs respectively.

Models mAP on Breakfast mAP on Charades

I3D 47.1 32.9

Semantic-GHRM 56.4 36.7

Temporal-GHRM 62.9 37.3

Ours 65.9 38.3

Table 5. The effects of the Temporal-GHRM branch and Semantic-

GHRM branch of our model. The mAP(%) results on both Break-

fast and Charades drop remarkably when either branch is removed.

much longer than 0.5 minutes in Charades.

Number of Graphs. Our GHRM uses a graph to model

each basic relation in the long-term actions, so we analyze

the effects of using different numbers of graphs in GHRM

on both Breakfast and Charades. As shown in Table 4, our

model achieves the best result on Breakfast with 32 graphs,

but 64 graphs are needed for achieving the best result on

Charades. As the long-term actions in Charades are more

diverse, which requires our model to use more graphs on

this dataset.

Model Components. Our GHRM-layer contains a

Temporal-GHRM branch and a Semantic-GHRM branch

that aim to model the local temporal high-order relations

and global semantic high-order relations, respectively. We

ablate these two branches by removing one of them. As

shown in Table 5, the results on both Breakfast and Cha-

rades drop remarkably when either branch is removed,

which demonstrates that our Temporal-GHRM branch and

Semantic-GHRM branch are complementary.

4.5. Comparison with Vanilla­GCN

Both Vanilla-GCN and the proposed GHRM module use

multiple graphs to model the basic relations in long-term

actions. Our GHRM can exploit the high-order relations in

the long-term actions by incorporating the information from

all the other graphs when reasoning on each graph, while the

Vanilla-GCN fails to exploit the high-order relations due to

the lack of information exchange between multiple graphs.

To further demonstrate the effectiveness of modeling high-

order relation on long-term action recognition, we replace

our GHRM module with Vanilla-GCN for quantitative and
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(a) Vanilla-GCN

(b) GHRM

Figure 5. Visualizations of the adjacent matrices in Vanilla-GCN and GHRM. Figure (a) shows 8 adjacent matrices in Vanilla-GCN that

have very similar patterns. Figure (b) shows 8 adjacent matrices in GHRM that have very diverse patterns.

Figure 6. Comparison between GHRM and Vanilla-GCN using

different numbers of graphs on both Charades and Breakfast. Re-

gardless of how many graphs are used, GHRM is much better than

Vanilla-GCN. And with more graphs used, the performance of

our GHRM generally increases, while the performance of Vanilla-

GCN does not.

qualitative comparisons.

Quantitative Analysis. In Figure 6, we compare the per-

formance of our GHRM and Vanilla-GCN on both Cha-

rades and Breakfast with different numbers of graphs K.

As shown in this figure, regardless of how many graphs are

used to model the basic relations in long-term actions, our

GHRM performs much better than Vanilla-GCN. Moreover,

with more graphs used, the performance of our GHRM

generally increases, while the performance of Vanilla-GCN

does not. These results demonstrate high-order relation

modeling is effective to recognize the long-term actions.

Qualitative Analysis. Figure 5 shows 8 adjacent matrices

of a video sample produced by Vanilla-GCN and GHRM

respectively (randomly selected from the 16 semantic ad-

jacent matrices in both modules). Figure 5 (a) shows 8
adjacent matrices in Vanilla-GCN which have very similar

patterns, while Figure 5 (b) shows 8 adjacent matrices in

GHRM that have diverse patterns. This phenomenon indi-

cates that different graphs can interact with each other in

GHRM, such that different basic relations will be figured

out and the high-order relations in the long-term actions can

be naturally exploited. See more visualizations in the sup-

plementary material.

5. Conclusions

In this paper, we propose a Graph-based High-order

Relation Modeling (GHRM) module to tackle the task of

long-term action recognition. Long-term actions involve

many visual concepts, and there are many basic relations

among these concepts. As these basic relations will af-

fect each other and then form the high-order relations dur-

ing the temporal evolution of long-term actions, our pro-

posed GHRM incorporates information from all the other

basic relations when modeling each basic relation, thus the

high-order relations in the long-term actions can be well

exploited from these basic relations. Furthermore, to bet-

ter model the high-order relations in the long-term actions

along the time dimension, a GHRM-layer consisting of a

Temporal-GHRM branch and a Semantic-GHRM branch is

designed to model the local temporal high-order relations

and the global semantic high-order relations in the long-

term actions. The experimental results on three popular

long-term action recognition datasets (i.e., Breakfast, Cha-

rades, and MultiThumos) have demonstrated the effective-

ness of our proposed model.
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