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Abstract

While deep convolutional neural networks (CNNs) have

achieved great success on image de-raining task, most ex-

isting methods can only learn fixed mapping rules between

paired rainy/clean images on a single dataset. This limits

their applications in practical situations with multiple and

incremental datasets where the mapping rules may change

for different types of rain streaks. However, the catastrophic

forgetting of traditional deep CNN model challenges the de-

sign of generalized framework for multiple and incremental

datasets. A strategy of sharing the network structure but in-

dependently updating and storing the network parameters

on each dataset has been developed as a potential solution.

Nevertheless, this strategy is not applicable to compact sys-

tems as it dramatically increases the overall training time

and parameter space. To alleviate such limitation, in this

study, we propose a parameter importance guided weights

modification approach, named PIGWM. Specifically, with

new dataset (e.g. new rain dataset), the well-trained net-

work weights are updated according to their importance

evaluated on previous training dataset. With extensive ex-

perimental validation, we demonstrate that a single network

with a single parameter set of our proposed method can

process multiple rain datasets almost without performance

degradation. The proposed model is capable of achieving

superior performance on both inhomogeneous and incre-

mental datasets, and is promising for highly compact sys-

tems to gradually learn myriad regularities of the different

types of rain streaks. The results indicate that our proposed

method has great potential for other computer vision tasks

with dynamic learning environments.

1. Introduction

In recent years, remarkable progress has been achieved

on single image de-raining and other low-level vision tasks

due to the rapid growth of deep learning [32, 9, 5, 35,

45, 18, 50, 43, 27, 8, 44, 41, 33, 23, 13, 37, 3, 6, 30].

*† Co-first authors contributed equally, * corresponding author.
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Figure 1: Deraining results of PreNet [29] trained sequen-

tially on task sequence Rain100H [40]-Rain100L [40] from

test dataset of Rain100H. (a) Input image with rain streaks.

(b) Result of the model trained sequentially and indepen-

dently (SI). (c) Result of the model trained sequentially with

our PIGWM. (d) The clean image. This figure presents the

de-raining network sufffers from catastrophic forgetting and

PIGWM is capable of maintaining the performance on pre-

vious task.

Single image rain removal aims to recover the clean im-

age from its rain-polluted version, which is the basis for

other downstream computer vision tasks, e.g. object detec-

tion, image classification, person identification, and more

[20, 12, 4, 24, 19, 31, 34]. Despite increasing attentions

and great improvements on image de-raining tasks, exist-

ing deep CNN-based rain removal methods can only learn

fixed mapping rules between paired rainy/clean images on

a single type of dataset due to catastrophic forgetting prob-

lem. In addition, with sequential training on multiple

datasets, current deep neural network leads to almost com-

plete forgetting of former knowledge and largely degrades

the model’s performance on previous tasks, after the model

being trained on the new task.

Aforementioned problems limit their applications in real

dynamic situations where the mapping rules do not remain

the same but change according to different types of rain

streaks. Although haven’t explored for de-raining task,

a strategy of sharing network structure but independently

updating and storing network parameters on each dataset

can be adopted. However, this strategy is not suitable for

compact systems design, since it dramatically increases the

overall training time and parameter space. This hinders the

practical implementation of de-raining algorithms on edge

devices, e.g. mobile phone with limited storage.

In this paper, we aim to solve the catastrophic forgetting
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Figure 2: Schematic of our proposed parameter importance

guided weights modification. The ellipse represents param-

eter distribution sub-space. The abscissa is the parameter

importance. The arrow indicates the parameter updating

process. In the top of figure, the black dot in Task 0 space

evaluated as relatively unimportant is much more updated

to the black dot in Task 1 space with relatively greater im-

portance. On the contrary, in the bottom of figure, the black

dot in Task 0 space evaluated as relatively more important is

much less updated. Broadly speaking, the more important

the weight is, the less it is updated. This scheme is capa-

ble of obtaining favorable performance on new task while

maintaining that on previous task.

problem for multiple and incremental datasets that is appli-

cable to compact systems. To this end, one dynamic learn-

ing condition is examined: sequentially training the multi-

ple rain datasets with a single model. As shown in Figure

1, training the multiple rain datasets sequentially and inde-

pendently will largely degrade the model’s performance on

previous task.

Specifically, we first introduce the continual learning

scheme to handle different types of rain streaks using a sin-

gle model. A parameter importance guided weights mod-

ification approach, named PIGWM is proposed to over-

come catastrophic forgetting for image de-raining. For con-

venience, a dataset is considered as a Task and a list of

datasets can be denoted as Task 0, Task 1 . . . , Task n − 1
where n is the length of the list. When training on new

task (e.g. new rain dataset), the network weights obtained

on previous rain dataset are updated depending on param-

eter importance evaluated on previous rain task. The more

important the weight is, the less it is updated. The pro-

posed PIGWM enables obtaining favorable performance on

new task while maintaining the performance on previous

task. For instance, as shown in Figure 2, if the weight ob-

tained from Task 0 is evaluated as relatively unimportant, it

is more frequently updated with increasing attention to im-

prove the performance on Task 1. On the contrary, the im-

portant weight obtained from Task 0 is less possible to be

updated in order to maintain the performance on previous

task. Generally speaking, the more important the weight is,

the less it is updated in subsequent training. This scheme is

capable of obtaining superior performance on new dataset

while maintaining that on previous one. To the best of our

knowledge, it is the first attempt to solve the catastrophic

forgetting problem on rain removal task.

The major contributions of this paper are as follows:

1) It is the first attempt to deal with the catastrophic for-

getting problem on image rain removal. We introduce

the continual learning scheme to handle different types

of rain streaks with a single model.

2) A parameter importance guided weights modification

approach, named PIGWM is proposed to overcome

catastrophic forgetting for image de-raining. This may

be easily extended to other computer vision tasks in a

plug-and-play manner.

3) Extensive experiments on multiple type of rain streak

benchmarks validate the superior performance of our

proposed method.

2. Related Work

Image Rain Removal. Recently, CNN-based methods have

achieved reliable progress in single image de-raining. Fu et

al. [11, 10] first introduce deep learning mapping scheme

to the de-raining problem. They map high-frequency part

of rain image to the rain streak layer by utilizing a deep

residual network. However, the method still cannot han-

dle large and sharp rain streaks. Yang et al. [40] construct a

joint rain detection and removal network. However, it might

falsely remove vertical textures and generate underexposed

illumination [41]. Further, more complicated CNN-based

architectures are designed to improve the performance on

rain removal, including non-local operation based encoder-

decoder network [22], multi-stages network [47], condi-

tional generative adversarial network [48], deep convolu-

tional and recurrent neural network that removes rain streak

stage by stage [25, 29] and so on. Besides, there is a

tendency to integrate model-driven approaches with data-

driven approaches for taking advantage of image prior and

powerful feature mapping [23, 35]. However, due to cur-

rent deep learning based methods mostly suffering from the

catastrophic forgetting problem, existing deep CNN-based

promising rain removal methods can only learn fixed map-

ping rules between paired rainy/clean images on a single

type of dataset. When dealing with different types of rain

datasets, these models cannot maintain their performance

well simultaneously on multiple datasets as they do on sin-

gle dataset. To this end, we introduce the continual learning

scheme into image rain removal.

Continual Learning. The methods of overcoming catas-

trophic forgetting can be mainly divided into three cate-

gories: transfer learning approaches, rehearsal mechanisms,

and parameter regularization methods [2, 15, 7, 28, 49, 21,

26, 1]. In detail, transfer learning approaches and rehearsal
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Figure 3: The detail illustration of our proposed parameter importance guided weight modification in different types of rain

dataset(recorded as Task 0, Task 1 and more). The parameter importance module, which is updated after training the model

on one task, is responsible for saving the importance of each weight for the previous tasks. When facing the new task,

the network is updated under the restriction of the importance in order to obtain favorable performance on new task while

maintaining that on previous tasks.

mechanisms are computationally expensive since they re-

quire to record the old tasks’ targets and compute old tasks’

forward pass process for each novel data sample. In con-

trast, parameter regularization methods are cost-effective.

They only attempt to hinder forgetting by imposing con-

straints on the updating of the weights in CNNs by regu-

larization such as freezing or consolidating the weights of

CNNs well trained on previous tasks. The representative

method of classic parameter regularization is attributed to

EWC [21]. EWC quantifies how much essential each pa-

rameter is for a task with the diagonal of the Fisher infor-

mation matrix [26] and protecting critical weights with an

additional regularization to restrict their movement when

updating for the new task. Further, memory aware synapses

(MAS) [1] compute the parameter importance based on how

sensitive the predicted output function is to a change in this

parameter, and penalize changed important parameters. In

this paper, we propose the first and second-order parameter

importance to jointly estimate the status of one parameter

in determining the performance of the whole model more

accurately.

3. Continual Learning for Single Image Rain

Removal

Recent years have gained promising progress in single

image rain removal with designing complicated deep neural

networks. However, existing state-of-the-art approaches al-

most suffer from the catastrophic forgetting problem. That

is, when training on the continual learning tasks, the net-

work always forgets the previous knowledge and results

in the model’s performance degrading abruptly on previ-

ous task. To solve this problem, we propose a parameter

importance guided weights modification approach, named

PIGWM whose detail illustration is in Figure 3 to overcome

catastrophic forgetting for the image de-raining community.

3.1. Parameter Importance Calculation

Most of deep learning based de-raining methods may be

capable of obtaining off-the-shell results by heuristically

constructing a complicated neural network architecture in

an end-to-end fashion. These methods always consider the

CNN as an encapsulated end-to-end mapping module for

mapping the input image to its clean version. Specifically,

for the rain imaging process, it can be formulated as:

O = R+B, (1)

where the O and B represent the rain-polluted image and

the clean image respectively. The CNN based methods treat

the rain removal as mapping the input to the output. The

loss function is employed to evaluate the difference between

the output and the ground truth, recorded as:

G = F (O), (2)

minimize l(B,G), (3)

where F indicates the CNN equipped de-raining architec-

ture, l indicates the conventional loss (e.g. MSE [39]) to

train de-raining network.

We consider the situation where the neural network is

trained on Task n and Task n + 1 sequentially, in which

the mapping rules do not remain the same. Suppose the pa-

rameter set of de-raining architecture F is denoted θn =
{θn1 , θ

n
2 , . . . , θ

n
m} when a network is trained on Task n,

where m is depth of the network, and the continual two

rainy image sets are denoted as Xn, Xn+1 and their clean
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counterparts are remarked as Y n, Y n+1 respectively. For

xn ∈ Xn, yn ∈ Y n, suppose xn is random variable,

which is independently and identically distributed to P
n,

and (xn, yn) is the rainy/clean image pair. If xn is fed into

network, the degradation of performance on Task n intro-

duced by the training of network on Task n+1 is evaluated

by:

∆F (θn+1, θn;xn, yn) = Dist(F (xn; θn+1), F (xn; θn))

∆
= |l(F (xn; θn+1), yn)− l(F (xn; θn), yn)|,

(4)

where | · | denotes absolute value operator,
∆
= means def-

inition, Dist measures distance between F (xn; θn+1) and

F (xn; θn)), l represents conventional loss used by training

de-raining network. For simplicity, (4) is rewritten as:

∆F (θn+1, θn;xn, yn) = |l(θn+1;xn, yn)− l(θn;xn, yn)|.
(5)

In the following, we will give the expression of parame-

ter importance and the detailed process of obtaining it, in

which we consider the computational complexity and stor-

age space in actual implementation. Taking the element of

parameter θnk (k-th depth) for example, the change of pa-

rameter θnk when model is trained on the new Task n+ 1 is

denoted as δθnk whose mathematical form is

δθnk = θn+1
k − θnk . (6)

To evaluate ∆F (θn+1, θn;xn, yn), we take the Taylor ex-

pansion of l(θ;xn, yn) at point θnk , which is an infinite sum

of terms that are expressed in the form of target function’s

derivatives at a single point:

l(θnk + δθnk ;x
n, yn) = l(θnk ;x

n, yn) +
(

∇θn

k
l
)T
· δθnk

+
1

2
(δθnk )

T ·H · δθnk +O(‖δθnk‖
3
),

(7)

where H denotes Hessian matrix:

H = ∇2
θn

k

l(θnk ;x
n). (8)

Then maintaining the performance on previous Task n cor-

responds to minimize:

E
xn∼Pn

[

∆F (θn+1
k , θnk ;x

n, yn)
]

≈ E
xn∼Pn

[
∣

∣

∣

∣

∇θn

k
lT · δθnk +

1

2
(δθnk )

T ·H · δθnk

∣

∣

∣

∣

]

.
(9)

The right of (9) is denoted by µ(θnk , θ
n+1
k ). From this mo-

tivation, when training de-raining model on Task n + 1,

we add a regularization term based on conventional loss to

keep the knowledge of Task n. Unfortunately, µ(θnk , θ
n+1
k )

does not meet practical requirements for the term with the

reason that in order to calculate the expectation, it is nec-

essary to continuously iterate over the training data of the

previous Task n for single forward propagation on Task

n + 1, which will undoubtedly greatly increase computa-

tional complexity on Task n+ 1. What’s worse, the storage

requirement brought by Hessian matrices is very tremen-

dous. Specifically speaking, we consider the weight pa-

rameter of one convolutional layer, whose dimension is

represented by o × i × k × k where o, i, k denotes out-

put channel number, input channel number, kernel size re-

spectively. The need of storage of its Hessian matrix is

(o× i×k×k)×(o× i×k×k). With the consideration that

image de-raining network is generally of the architecture

of deep stack of convolutional layers, Hessian matrices of

the whole neural network will introduce intolerable storage

consumption.

In this paper, we introduce a resource-friendly regular-

ization term g(θnk , θ
n+1
k ) from which we derive first and

second-order parameter importance. g(θnk , θ
n+1
k ) is compu-

tationally simpler than µ(θnk , θ
n+1
k ) and needs reasonably

additional storage space but still theoretically and practi-

cally effective. Specifically, g(θnk , θ
n+1
k ) relieves the entan-

glement of the previous Task n in the regularization term

on Task n + 1. When calculating the loss on Task n + 1,

there is no need to iterate over the training data of the previ-

ous task, which greatly reduces the computational burden.

The following is the process by which we obtain the mod-

ified regularization term. At the same time, this process

theoretically proves the effectiveness of the regularization

term, because it provides higher bound than µ(θnk , θ
n+1
k )

so that if the value of g(θnk , θ
n+1
k ) is small enough, that of

µ(θnk , θ
n+1
k ) is smaller automatically which ensures the per-

formance on the previous Task n when the model is trained

on Task n+ 1.

µ(θnk , θ
n+1

k
) = E

xn∼Pn

[
∣

∣

∣

∣

∇θn
k
l
T · δθnk +

1

2
(δθnk )

T ·H · δθnk

∣

∣

∣

∣

]

≤ E
xn∼Pn

[

∣

∣

∣
∇θn

k
l
T · δθnk

∣

∣

∣
+

1

2

∣

∣

∣
(δθnk )

T ·H · δθnk

∣

∣

∣

]

≤ E
xn∼Pn

[

∣

∣∇θn
k
l
∣

∣

T
· |δθnk |+

1

2
|δθnk |

T · |H| · |δθnk |

]

= E
xn∼Pn

[

∣

∣∇θn
k
l
∣

∣

T
]

· |δθnk |+
1

2
|δθnk |

T · E [|H|] · |δθnk | ,

(10)

where |·| denotes element-wise absolute value. It is appar-

ent that the last term of (10) greatly relieves the entangle-

ment of the previous Task n in the regularization term of

Task n+ 1 greatly accelerating the calculation of total loss.

Then the problem we have to tackle with is the huge stor-

age requirement of Hessian matrices. Motivated by Gauss-

Newton method [38], when conventional loss is SSE (Sum
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Square Error), we take an approximation H ≈ 2JTJ for

Hessian matrix, where J is Jacobian matrix. Meanwhile, we

take the approximation that:

E
xn∼Pn

[∣

∣JTJ
∣

∣

]

≈ E
xn∼Pn

[|J |]
T

E
xn∼Pn

[|J |] . (11)

In implementation, J , whose storage requirement is (h ×
w × c) × (o × i × k × k) for a weight parameter of

one convolutional layer , where h,w, c denotes the height,

width and channel number of output image of network,

is further reduced to ∇θn

k
l whose storage requirement is

1 × (o × i × k × k) for the same parameter. So, instead

of calculating and saving Exn∼Pn [|H|], We need only to

calculate and store Exn∼Pn

[∣

∣∇θn

k
l
∣

∣

]

, which provides us a

storage-saving approach to get approximate Hessian matri-

ces. So, we get the ultimate regularization term g(θnk , θ
n+1
k )

whose form is:

g(θnk , θ
n+1
k ) = E

xn∼Pn

[∣

∣∇θn

k
l
∣

∣

]T
|δθnk |

+ |δθnk |
T

E
xn∼Pn

[|J |]
T

E
xn∼Pn

[|J |] |δθnk | .

(12)

From (12), first and second-order parameter importance de-

noted as I1(θ
n
k ), I2(θ

n
k ) are defined by

I1(θ
n
k ) = E

xn∼Pn

[∣

∣∇θn

k
l
∣

∣

]

, (13)

I2(θ
n
k ) = E

xn∼Pn

[|J |]
T

E
xn∼Pn

[|J |] . (14)

In summary, the total loss on Task n+1 is a composite loss,

which is of the form:

l′ = l +
λ

2

∑

(θn

k
,θ

n+1

k
)

g(θnk , θ
n+1
k )

= l +
λ

2

∑

(θn

k
,θ

n+1

k
)

[

I1(θ
n
k )

T |δθnk |+ |δθ
n
k |

k
I2(θ

n
k ) |δθ

n
k |
]

.

(15)

3.2. Parameter Importance Guided Modification

To balance the continual tasks, the latter is trained un-

der the constrict of maintaining the performance on previ-

ous task. The proposed PIGWM is capable of obtaining fa-

vorable performance on new task while maintaining that on

previous task. The pseudo of our proposed parameter im-

portance guided continual image rain removal is illustrated

in Algorithm 1.

4. Experiments

To verify the effectiveness of proposed continual learn-

ing scheme, we integrate the proposed parameter impor-

tance guided modification algorithm with six state-of-the-

art single image rain removal methods: ID-CGAN [48],

Algorithm 1 Continual Learning for Image De-raining with

PIGWM

Input: continual learning task Tn, Tn+1; conventional

train loss l

Output: single tight model for continual task.

for Task Tn do

Training Task Tn using conventional loss l

if last training epoch then

for Parameter θnk do

I(θnk )←
∣

∣∇θn

k
l
∣

∣

θnk ← θnk
end for

end if

end for

for Task Tn+1 do

get conventional loss ls through forward propagation

using l

for Parameter θn+1
k do

δθnk ← θn+1
k − θnk

J ← I(θnk )
ls ← ls +

λ
2 (I(θ

n
k )

T |δθnk |+ |δθ
n
k |

TJTJ |δθnk |)
end for

Back propagation using the composite loss l and up-

date network

end for

Return continually trained model.

PreNet [29], PRN [29], NLEDN [22], REHEN [42] as well

as SASI [36]. With the consideration that it is very time-

consuming [22] to train NLEDN, we abandon non-local op-

erations in NLEDN resulting in the architecture mainly con-

sisting of dense blocks [16] and skip connections [14].

4.1. Dataset and Performance Metrics

We evaluate our proposed continual learning scheme

on three widely-used rain removal datasets, including

Rain100H [40], Rain100L [40] and Rain800 [48] in this

work. In detail, PreNet, PRN, NLEDN, REHEN and SASI

are trained on Rain100H (Task 0) and Rain100L (Task

1) sequentially. In addition to continual task sequence

Rain100H-Rain100L, we further experiment on continual

task sequences Rain800-Rain100L, Rain800-Rain100H us-

ing ID-CGAN [48], which first introduces Rain800 dataset.

Both Rain100H and Rain100L consist of 1800 rainy/clean

image pairs for training and 100 pairs for testing while

Rain800 possesses 600 training samples and 200 testing im-

ages. Moreover, peak-signal-to-noise ratio (PSNR) [17] and

structure similarity (SSIM) [46] are employed for evaluat-

ing the model performance.
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Model Methods
Rain100H Rain100L Promotion on Rain100H

PSNR SSIM PSNR SSIM PSNR SSIM

NLEDN [22]

Baseline 15.84 0.532 34.53 0.958
5.12 0.204

PIGWM 20.96 0.736 34.93 0.961

Reference 27.11 0.835 35.26 0.963

PreNet [29]

Baseline 18.97 0.639 38.29 0.981
9.11 0.251

PIGWM 28.08 0.890 36.95 0.975

Reference 29.46 0.899 37.48 0.979

PRN [29]

Baseline 18.29 0.619 37.34 0.978
9.59 0.261

PIGWM 27.88 0.880 35.64 0.967

Reference 28.07 0.884 36.99 0.977

SASI [36]

Baseline 19.42 0.673 37.40 0.980
10.34 0.206

PIGWM 29.76 0.879 36.73 0.968

Reference 30.33 0.909 38.80 0.984

REHEN [42]

Baseline 14.31 0.423 37.34 0.974
12.45 0.433

PIGWM 26.76 0.856 35.68 0.961

Reference 27.97 0.864 37.41 0.980

Table 1: Comparison of quantitative results in terms of PSNR and SSIM. The models are trained sequentially on task sequence

Rain100H-Rain100L using schemes of baseline and PIGWM respectively. Reference rows refer to the results of the model

trained on each dataset individually from scratch. The results shown in this table are the performance of the ultimate model

on test datasets of all trained tasks. It clearly indicates that our proposed PIGWM can greatly mitigate catastrophic forgetting.

Model Methods
Rain800 Rain100L Promotion on Rain800

PSNR SSIM PSNR SSIM PSNR SSIM

ID-cgan [48]

Baseline 20.57 0.645 25.56 0.876
2.79 0.177

PIGWM 23.36 0.822 24.13 0.856

Reference 24.34 0.843 25.88 0.891

Table 2: Comparison of quantitative results in terms of PSNR and SSIM. The model is trained sequentially on task sequence

Rain800-Rain100L using schemes of baseline and PIGWM respectively.

Model Methods
Rain800 Rain100H Promotion on Rain800

PSNR SSIM PSNR SSIM PSNR SSIM

ID-cgan [48]
Baseline 19.89 0.641 13.25 0.598

3.19 0.174
PIGWM 23.08 0.815 11.16 0.532

Reference 24.34 0.843 14.16 0.607

Table 3: Comparison of quantitative results in terms of PSNR and SSIM. The model is trained sequentially on task sequence

Rain800-Rain100H using schemes of baseline and PIGWM respectively.

4.2. Training Details

For fair comparison, all the parameters setting and train-

ing techniques keep consistent with experiments in original

papers. The coefficient λ varying with model is key to keep

trade-off between learning new task and ensuring perfor-

mance on previous task, which will be verified in ablation

studies. The important thing is significant improvements

of performance on previous task can be achieved with only

slight sacrifice of that on new task. Further, all the experi-

ments are implemented on NVIDIA GTX 1080Ti GPUs.

4.3. Results on Benchmark Datasets

To revisit the catastrophic forgetting problem on im-

age de-raining and testify the effectiveness of proposed

continual learning algorithm, we conduct both qualitative

and quantitative experiments on above datasets and perfor-

mance metrics.

Baseline Setup. The baseline is organized as sequentially

and independently feeding rain datasets into a model for

training. In the setting of baseline, due to the catastrophic

forgetting, the weights well-trained on the previous dataset

are covered and updated by the new rain dataset neglecting

the previous dataset. After training on the new rain dataset,

we evaluate the ultimate model on all the test datasets.

Quantitative Comparison. Tables 1, 2 and 3 report the

comprehensive comparison between the baselines and the

parameter importance equipped versions which indicate

that our method can greatly mitigate catastrophic forgetting
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Figure 4: Visual comparison of rain-streaks removal results generated from the continual learning process using model

PreNet. (a) Input: rainy image from Rain100H; (b) Task 0: train and test on Rain100H; (c) Task 1: train model (b) on

Rain100L and test on Rain100H; (d) Ground Truth: clean image of (a); (e) Input: rainy image from Rain100L; (f) Task 1:

train model (b) on Rain100L and test on Rain100L; (g) Ground Truth: clean image of (e).

Figure 5: Visual comparison of rain-streaks removal results generated from the continual learning process using model

NLEDN.

λ 0 0.01 0.1 1 10

Rain100H 18.97 / 0.639 20.68 / 0.707 25.38 / 0.847 28.29 / 0.892 29.08 / 0.896

Rain100L 38.29 / 0.981 38.02 / 0.980 37.49 / 0.977 36.83 / 0.974 36.23 / 0.972

Table 4: Quantitative results about coefficient λ to keep trade-off between learning on new task and maintaining the perfor-

mance on previous task.

Figure 6: Visual effect about coefficient λ to keep trade-off between learning on new task and maintaining the performance

on previous task. The first row is from test dataset of Rain100H, and the second one is from test dataset of Rain100L.
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on all models and multiple task sequences. Reference rows

refer to the results of the model trained on each dataset indi-

vidually from scratch. We adopt the results that reported by

the authors expect NLEDN. Since non-local operations are

abandoned in NLEDN, we re-train the modified de-raining

network and evaluate the well-trained model. As shown

in these tables, great improvements are achieved across all

the models and task sequences we have experimented with.

These tables verify the effectiveness of our proposed con-

tinual learning scheme. The proposed parameter impor-

tance guided modification is capable of obtaining satisfac-

tory results on new task while maintaining outstanding per-

formance on the previous one.

Qualitative Comparison. To clearly illustrate the catas-

trophic forgetting of continual de-raining and the effective-

ness of proposed scheme, we delve into the process of con-

tinual learning on the task sequence. We train the selected

models sequentially with scheme of PIGWM and baseline

respectively. Each time a task is completed, we evaluate

the performance of the model on the test dataset of the first

task in the task sequence. Furthermore, we also present re-

sults of the ultimate model on Rain100L to testify that our

PIGWM can learn new task while keeping previous knowl-

edge. Specifically, we take the promising PreNet (Figure 4)

and NLEDN (Figure 5) for example. The first and third row

represent the results of the baseline of continually learning

rain datasets. The second and last row indicate results of

the model equipped with the proposed PIGWM. As shown

in both figures, when Task 0 is completed, both baseline and

PIGWM are capable of obtaining visually pleasing images

on test dataset of Rain100H. However, after Task 1, base-

line suffers from the catastrophic forgetting so that obvious

rain streaks can be found in its output images while high-

quality de-raining results can be maintained after Task 1 by

our PIGWM. It can be clearly found that our proposed algo-

rithm is able to relieve the catastrophic forgetting problem

of previous task significantly while achieving outstanding

performance on new task. In addition, since the use of our

method can make the deep model remember the knowledge

of multiple data sets, it can help improve the generalization

ability of the model when facing complex and changeable

real-world rainy scenes.

4.4. Ablation Studies

In this section, we first conduct ablation studies to verify

the coefficient λ of balancing the two loss terms: the regu-

lar loss for well training the new dataset and the regulariza-

tion term for maintaining the performance on the previous

dataset. We take the state-of-the-art PreNet for example and

the detail experiments are illustrated in Table 4 and Figure

6. It can be seen clearly that the coefficient is key for over-

coming catastrophic forgetting. When it is larger, the model

will pay more attention on the previous task performance

and make the new task training unsteadily with worse re-

sults. On the contrary, the model will forget the knowl-

edge of previous task and be trapped into catastrophic for-

getting which degrades the model performance on previous

task abruptly.

4.5. Extension to Multiple Datasets

Based on the research of 2 tasks, we can easily extend

our method to multiple tasks using steps similar with Dy-

namic Programming. For the sequence of n tasks, the first

n − 1 tasks are regarded as a task and continue training

task n, which is similar with 2 tasks. Taking 3 tasks as an

example, the first 2 tasks (task1 and task2) is sequentially

trained by using our proposed scheme. Then, this trained

model covering task1 and task2 can be regraded as a sin-

gle model (task1−2). Later, the task3 continue to be trained

based on the model (task1−2). In Table 5, we show one re-

sult on Rain100H-Rain100L-Rain1400 based on PreNet to

validate the effectivess of our method.

Test set Rain100H Rain100L Rain1400

Baseline 15.31 / 0.424 28.88 / 0.892 31.90 / 0.927

PIGWM 28.18 / 0.891 36.85 / 0.975 28.06 / 0.864

Reference 29.46 / 0.899 37.48 / 0.979 32.60 / 0.946

Table 5: PSNR/SSIM results of PreNet trained on the task

list Rain100H-Rain100L-Rain1400.

5. Conclusion

In this work, we first pay attention to the catastrophic

forgetting problem of image rain removal and attempt to in-

troduce the continual learning scheme to handle different

types of rain streaks in a single model. Specifically, we pro-

pose a parameter importance guided weights modification

approach, named PIGWM to overcome catastrophic forget-

ting for the image de-raining community. This scheme is

capable of obtaining satisfactory performance while main-

taining that on the previous rain dataset. Extensive exper-

iments on multiple type of rain streak benchmarks demon-

strate the superior performance of our proposed scheme of

overcoming catastrophic forgetting. Moreover, this may be

easily extended to other computer vision tasks in a plug-

and-play manner.
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