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Abstract

The new trend of full-screen devices encourages us to

position a camera behind a screen. Removing the bezel

and centralizing the camera under the screen brings larger

display-to-body ratio and enhances eye contact in video

chat, but also causes image degradation. In this paper, we

focus on a newly-defined Under-Display Camera (UDC),

as a novel real-world single image restoration problem.

First, we take a 4k Transparent OLED (T-OLED) and a

phone Pentile OLED (P-OLED) and analyze their optical

systems to understand the degradation. Second, we design

a Monitor-Camera Imaging System (MCIS) for easier real

pair data acquisition, and a model-based data synthesiz-

ing pipeline to generate Point Spread Function (PSF) and

UDC data only from display pattern and camera measure-

ments. Finally, we resolve the complicated degradation us-

ing deconvolution-based pipeline and learning-based meth-

ods. Our model demonstrates a real-time high-quality

restoration. The presented methods and results reveal the

promising research values and directions of UDC.

1. Introduction

Under-display Camera (UDC) is a new imaging system

that mounts display screen on top of a traditional digital

camera lens, as shown in Figure 1. Such a system has

mainly two advantages. First, it brings a new product trend

of full-screen devices [11] with larger screen-to-body ratio,

which can provide better user perceptive and intelligent ex-

perience [12]. Without seeing the bezel and extra buttons,

users can easily access more functions by directly touching

the screen. Second, it provides better human computer in-

teraction. By putting the camera in the center of the display,

it enhances teleconferencing experiences with perfect gaze

tracking, and it is increasingly relevant for larger display

devices such as laptops and TVs.

Unlike pressure or fingerprint sensors that can be eas-

ily integrated into a display, it is relatively difficult to re-

tain full functionality of an imaging sensor after mounting

it behind a display. The imaging quality of a camera will

be severely degraded due to lower light transmission rate
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Figure 1: The newly proposed imaging system named

Under-Display Camera (UDC). We mount display screen on

top of a traditional digital camera lens. The design brings

new trend of full-screen devices.

and diffraction effects. As a result, images captured will

be noisy and blurry. Therefore, while bringing better user

experience and interaction, UDC may sacrifice the quality

of photography, face processing [35] and other downstream

vision tasks. Restoring and enhancing the images captured

by UDC system will be desired.

Traditional image restoration approaches form the task

as an inverse problem or an optimization problem like

Maximum-a-Posterior (MAP). For the UDC problem, for

practical purposes, the proposed image restoration algo-

rithm and system are expected to work in real-time. There-

fore, deconvolutional-based methods like Wiener Filter [14]

should be preferred. Deconvolution is the inverse process of

convolution and recovers the original signal from the point-

spread-function (PSF)-convolved image. The fidelity of the

deconvolution process is dependent on the space-invariance

of the PSF over the image field of-view (FOV) and on

a low condition number for the inverse of the PSF [19].

For strongly non-delta-function-like PSFs such as those en-

countered when imaging through a display, the value of con-

dition number can be large. For such PSFs an additional

denoising step may be essential.

Another option is the emerging discriminative learning-

based image restoration model. Data-driven discrimina-

tive learning-based image restoration models usually out-

perform traditional methods in specific tasks like image de-

noising [3, 26, 42, 43, 47, 48], de-bluring [21, 28],de-raining

[39, 40], de-hazing [13, 33], super-resolution [22, 37], and
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light-enhancement [9]. However, working on synthesis

data with single degradation type, existing models can be

hardly utilized to enhance real-world low-quality images

with complicated or combined degradation types. To ad-

dress complicated real degradation like the UDC prob-

lem, directly collecting real paired data or synthesizing

near-realistic data after fully understanding the degradation

model is necessary.

In this paper, we present the first study to define and an-

alyze the novel Under-Display Camera (UDC) system from

both optics and image restoration viewpoints. For optics,

we parse the optical system of the UDC pipeline and ana-

lyze the characteristics of light transmission. Then we re-

late the obtained intuitions and measurements to an image

restoration pipeline, and propose two ways of resolving the

single-image restoration: A deconvolution-based Wiener

Filter [29] pipeline (DeP) and a data-driven learning-based

approach. Specifically, we regard UDC restoration as a

combination of tasks such as low-light enhancement, de-

blurring, and de-noising.

Without loss of generality, our analysis focuses on two

types of displays, a 4K Transparent Organic Light-Emitting

Diode (T-OLED) and a phone Pentile OLED (P-OLED),

and a single camera type, a 2K FLIR RGB Point Grey re-

search camera. To obtain the real imaging data and measure

the optical factors of the system, we also propose a data ac-

quisition system using the above optical elements.

In summary, the main contributions of our paper are: (1)

A brand new imaging system named Under-Display Cam-

era (UDC) is defined, measured and analyzed. Extensive

experiments reveal the image degradation process of the

system, inspiring better approaches for restoring the cap-

tured images. (2) As a baseline, two practical and potential

solutions are proposed, including conventional Wiener Fil-

ter and the recent learning-based method. (3) Adopting the

newly-assembled image acquisition system, we collect the

first Under-Display Camera (UDC) dataset which will be

released and evaluated by the public.

2. Related Work

Real-world Image Reconstruction and Restoration

Image restoration for UDC [23, 24, 46, 49] can be catego-

rized into the problem of Real-world restoration [3, 45]. It

is becoming a new concept in low-level vision. In the past

decades, low-level vision works on synthetic data (denois-

ing on AWGN and SR on Bicubic), but the models are not

efficient for images with real degradation such as real noises

or blur kernels. Making models perform better on real-

world inputs usually requires new problem analysis and a

more challenging data collection. Recently, researchers also

worked on challenging cases like lensless imaging prob-

lems [20, 27, 30], or integrating optics theory with High

Dynamic Range imaging [34]. Previously, there has been

two common ways to prepare adaptive training data for real-

world problems: real data collection and near-realistic data

synthesis.

Recently, more real noise datasets such as DND [31],

SIDD [2, 28], and RENOIR [5], have been introduced to

address practical denoising problems. Abdelrahman et al.

[3] proposed to estimate ground truth from captured smart-

phone noise images, and utilized the paired data to train and

evaluate the real denoising algorithms. In addition to noise,

Chen et al. first introduced the SID dataset [9] to resolve

extreme low-light imaging. In the area of Single Image

Super Resolution (SISR), researchers considered collect-

ing optical zoom data [10, 45] to learn better computational

zoom. Other restoration problems including reflection re-

moval [32,36] also follow the trend of real data acquisition.

Collecting real data suffers from limitation of scene variety

since most previous models acquire images of postcards,

static objects or color boards. In this paper, we propose a

novel monitor-camera imaging system, to add real degrada-

tion to the existing natural image datasets like DIV2K [4].

A realistic dataset can be synthesized if the degradation

model is fully understood and resolved. One good practice

of data synthesis is generating real noises on raw sensors or

RGB images. CBDNet [17] and Tim et al. [8] synthesized

realistic noise by unfolding the in-camera pipeline, and Ab-

delhamed et al. [1] better fitted the real noise distribution

with flow-based generative models. Zhou et al. [48] adapted

the AWGN-RVIN noise into real RGB noise by analyzing

the demosacing process. Other physics-based synthesis was

also explored in blur [7] or hazing [6]. For the UDC prob-

lem in this paper, we either collected real paired data, or

synthesized near-realistic data from model simulation. In

particular, we applied the theory of Fourier optics to simu-

late the diffraction effects, and further adjusted the data with

other camera measurements. Our data synthesizing pipeline

demonstrates a promising performance for addressing real

complicated degradation problem.

3. Formulation

In this section, we discuss the optical system and im-

age formation process of the proposed UDC imaging sys-

tem. We analyze the degradation type, light transmission

rate and visualize the Point Spread Function (PSF). More-

over, we formulate the image formation pipeline to compute

simulated PSF from measurements.

3.1. Optical System Analysis

Optical Elements. In our experiments, we focus on

the Organic Light-Emitting Diode (OLED) displays [38] as

they have superior optical properties compared to the tra-

ditional LCDs (Liquid Crystal Display). Due to confiden-

tiality reasons it is often difficult to obtain the sample ma-

terials used for demos from commercial companies. In this
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Figure 2: Image formation pipeline of under-display camera (UDC) problem. (a) Image Formation Pipeline. (b)Optics

characteristics of UDC. The structure of the 4K T-OLED has a grating-like pixel layout. P-OLED differs from T-OLED in

sub-pixel design. From left to right: Micrography of display patterns, PSFs (red light only) and MTFs (red, green, and blue).

Table 1: Comparison of two displays in terms of light trans-

mission rate and physical pixel layout and open areas.
Metrics T-OLED P-OLED

Pixel Layout Type Stripe Pentile

Open Area 21% 23%

Transmission Rate 20% 2.9%

Major Degradation Blur, Noise Low-light, Color Shift, Noise

case, we select the displays with different transparencies to

improve the generalization. Note that all the displays are

non-active in our experiments, since in real scenario, the

display can be turned off locally by setting black pixels on

local regions of the OLED display when the camera is in

operation to 1) reduce unnecessary difficulty from display

contents while not affecting user experience and 2) provide

users with the status of the device and thus ensure privacy.

Owing to transparent materials being used in OLED dis-

play panels, visible lights can be better transmitted through

the OLEDs than LCDs. In the meantime, pixels are also

arranged such that open area is maximized. In particular,

we focus on 4k Transparent OLED (T-OLED) and a phone

Pentile OLED (P-OLED). Figure 2 is a micrograph illustra-

tion of the pixel layout in the two types of OLED displays.

The structure of the 4K T-OLED has a grating-like pixel

layout. P-OLED differs from T-OLED in sub-pixel design.

It follows the basic structure of RGBG matrix.

Light Transmission Rate. We measure the transmission

efficiency of the OLEDs by using a spectrophotometer and

white light source. Table 1 compares the light transmission

rate of the two displays. For T-OLED, the open area oc-

cupies about 21%, and the light transmission rate is around

20%. For P-OLED, although the open area can be as large

as 23%, the light transmission rate is only 2.9%.

The loss of photons can be attributed mainly to the struc-

ture of P-OLED. First, the P-OLED has a finer pixel pitch,

so photos are scattered to higher angles comparing to the

T-OLED. As a result, high angle photons are not collected

by the lens. Second, P-OLED is a flexible/bendable dis-

play, which has a poly-amide substrate on which the OLED

is formed. Such a substrate has relatively low transmis-

sion efficiency, causing photons to be absorbed. The ab-

sorbed light with certain wavelengths may make the images

captured through a polyamide-containing display panel by

a UDC appear yellow. As a result, imaging through a P-

OLED results in lower signal-to-noise ratio (SNR) compar-

ing to using a T-OLED, and has a color shift issue. One real

imaging example is shown in Figure 4.

Diffraction Pattern and Point Spread Function (PSF).

Light diffracts as it propagates through obstacles with sizes

that are similar to its wavelength. Unfortunately, the size

of the openings in the pixel layout is on the order of wave-

length of visible light, and images formed will be degraded

due to diffraction.

Here we characterize our system by measuring the point

spread function (PSF). We do so by pointing a collimated

red laser beam (λ = 650nm) at the display panel and record-

ing the image formed on the sensor, as demonstrated in

Figure 1 and 2. An ideal PSF shall resemble a delta func-

tion, which then forms a perfect image of the scene. How-

ever, light greatly spreads out in UDC. For T-OLED, light

spreads mostly across the horizontal direction due to its

nearly one dimensional structure in the pixel layout, while

for P-OLED, light is more equally distributed as the pixel

layout is complex. Therefore, images captured by UDC are

either blurry (T-OLED) or hazy (P-OLED).

Modulation Transfer Function (MTF) Modulation

Transfer Function (MTF) is another important metric for

an imaging system, as it considers the effect of finite lens

aperture, lens performance, finite pixel size, noise, non-

linearities, quantization (spatial and bit depth), and diffrac-

tion in our systems. We characterize the MTF of our sys-

tems by recording sinusoidal patterns with increasing fre-

quency in both lateral dimensions, and we report them in
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Figure 2. For T-OLED, contrasts along the horizontal di-

rection are mostly lost in the mid-band frequency due to

diffraction. This phenomenon is due to the nearly one-

dimensional pixel layout of the T-OLED. Figure 4 shows

severe smearing horizontally when putting T-OLED in front

of the camera. While for P-OLED, the MTF is almost iden-

tical to that of display-free camera, except with severe con-

trast loss. Fortunately, however, nulls have not been ob-

served in any particular frequencies.

3.2. Image Formation Pipeline

In this section, we derive the image formation process of

UDC based on the analysis in the previous sections. Given

a calibrated pixel layout and measurements using a specific

camera, degraded images can be simulated from a scene.

From the forward model, we can compute the ideal PSF and

consequently synthesize datasets from ground truth images.

Given an object in the scene x, the degraded observation

y can be modeled by a convolution process,

y = (γx)⊗ k+ n, (1)

where γ is the intensity scaling factor under the current gain

setting and display type, k is the PSF, and n is the zero-

mean signal-dependent noise. Notice that this is a simple

noise model that approximately resembles the combination

of shot noise and readout noise of the camera sensor, and it

will be discussed in a later section.

Intensity Scaling Factor (γ) The intensity scaling fac-

tor measures the changing ratio of the average pixel values

after covering the camera with a display. It simultaneously

relates to the physical light transmission rate of the display,

as well as the digital gain δ setting of the camera. γ can be

computed from the ratio of δ-gain amplified average inten-

sity values Id(δ, s) at position s captured by UDC, to the

0-gain average intensity values Ind(0, s) by naked camera

within an enclosed region S. It is represented by,

γ =

∫

S
Id(δ, s)ds

∫

S
Ind(0, s)ds

(2)

Diffraction Model We approximate the blur kernel k,

which is the Point Spread Function (PSF) of the UDC. As

shown in Figure 1, in our model, we assume the display

panel is at the principle plane of the lens. We also as-

sume the input light is monochromatic plane wave with

wavelength λ (i.e. perfectly coherent), or equivalently light

from a distance object with unit amplitude. Let the display

pattern represented by transparency with complex ampli-

tude transmittance be g(m,n) at the Cartesian co-ordinate

(m,n), and let the camera aperture/pupil function p(m,n)
be 1 if (m,n) lies inside the lens aperture region and 0 oth-

erwise, then the display pattern inside the aperture range

gp(m,n) becomes,

gp(m,n) = g(m,n)p(m,n). (3)

At the focal plane of the lens (i.e. 1 focal length away

from the principle plane), the image measured is the inten-

sity distribution of the complex field, which is proportional

to the Fourier transform of the electric field at the principle

plane [16]:

I(u, v) ∝

∣

∣

∣

∣

∫∫ ∞

−∞

gp(m,n) exp

[

−j
2π

λf
(mu+ nv)

]

dmdn

∣

∣

∣

∣

2

.

(4)

Suppose Gp(vm, vn) = F (gp(m,n)), where F (·) is the

Fourier transform operator, then

I(u, v) ∝ |Gp(vm, vn)|
2
=

∣

∣

∣

∣

Gp(
u

λf
,
v

λf
)

∣

∣

∣

∣

2

, (5)

which performs proper scaling on the Fourier transform of

the display pattern on the focal plane.

Therefore, to compute the PSF k for image x, we start

from computing Discrete Fourier Transform (DFT) with

squared magnitude M(a, b) = |Ĝp(a, b)|
2 of the N × N

microscope transmission images ĝp of the display pattern

and re-scaling it. Then, the spatial down-sampling factor r
(denoted by ↓ r) becomes,

r =
1

λf
· δNN · ρ, (6)

where δN is the pixel size of the ĝp images, and ρ is the

pixel size of the sensor. Finally, k can be represented as

k(i, j) =
M↓r(i, j)

∑

(̂i,ĵ) M↓r (̂i, ĵ)
. (7)

k is a normalized form since we want to guarantee that

it represents the density distribution of the intensity with

diffraction effect. Note that only PSF for a single wave-

length is computed for simplicity. However, scenes in the

real-world are by no means monochromatic. Therefore, in

order to calculate an accurate color image from such UDC

systems, PSF for multiple wavelengths shall be computed.

More details will be shown in Section 4.2.

Adding Noises We follow the commonly used shot-

read noise model [8, 18, 25] to represent the real noise

on the imaging sensor. Given the dark and blur signal

w = (γx) ⊗ k, the shot and readout noise can be modeled

by a heteroscedastic Gaussian,

n ∼ N (µ = 0, σ2 = λread + λshotw), (8)

where the variance σ is signal-dependent, and λread , λshot

are determined by camera sensor and gain values.

4. Data Acquisition and Synthesis

We propose an image acquisition system called Monitor-

Camera Imaging System (MCIS). In particular, we display
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Figure 3: Monitor-Camera Imaging System (MCIS). MCIS

consists of a 4K LCD monitor, the 2K FLIR RGB Point-

Grey research camera, and a panel that is either T-OLED,

P-OLED or Glass(i.e. no display). The camera is mounted

on the center line of the 4K monitor, and adjusted to cover

the full monitor range.

(a) Display-free (b) TOLED (c) POLED

Figure 4: Real samples collected by the proposed MCIS.

Images captured by T-OLED are blur and noisy, while those

captured by P-OLED are low-light, color-shifted and hazy.

natural images with rich textures on high-resolution monitor

and capture them with a static camera. The method is more

controllable, efficient, and automatic to capture a variety of

scene contents than using mobile set-ups to capture limited

static objects or real scenes.

4.1. Monitor­Camera Imaging System

The system architecture is shown in Figure 3. MCIS

consists of a 4K LCD monitor, the 2K FLIR RGB Point-

Grey research camera, and a panel that is either T-OLED,

P-OLED or Glass(i.e. no display). The camera is mounted

on the center line of the 4K monitor, and adjusted to cover

the full monitor range. We calibrate the camera gain by

measuring a 256 × 256 white square shown on the moni-

tor and matching the RGB histogram. For fair comparison

and simplicity, we adjust the focus and fix the aperture to

f/1.8. It guarantees a reasonable pixel intensity range avoid-

ing saturation while collecting data with no gain. Suppose

we develop a real-time video system, the frame rate has to

be higher than 8 fps. So the lowest shutter speed is 125 ms

for the better image quality and the higher Signal-to-Noise

Ratio (SNR).

We split 300 images from DIV2K dataset [4], and take

turns displaying them on a 4K LCD in full screen mode.

We either rotate or resize the images to maintain the Aspect

Ratio. For training purposes, we capture two sets of images,

Table 2: Camera Settings for different set of collected data
Parameteres No-Display T-OLED P-OLED

Aperture f/1.8

FPS/Shutter 8/125ms

Brightness 0

Gamma 1

Gain 1 6 25(Full)

White-balance Yes None None

Table 3: Measured parameters for data synthesis
Parameteres T-OLED P-OLED

R G B R G B

γ 0.97 0.97 0.97 0.34 0.34 0.20

λ (nm) 640 520 450 640 520 450

r 2.41 2.98 3.44 2.41 2.98 3.44

which are the degraded images {yi}, and the degradation-

free set {xi}.

To capture {xi}, we first cover the camera with a thin

glass panel which has the same thickness as a display panel.

This process allows us to avoid the pixel misalignment is-

sues caused by light refraction inside the panel. To elimi-

nate the image noises in {xi}, we average the 16 repeated

captured frames. Then we replace the glass with a dis-

play panel (T-OLED or P-OLED), calibrate the specific gain

value avoiding saturation, and capture {yi}. For each set,

we record both the 16-bit 1-channel linear RAW CMOS

sensor data as well as the 8-bit 3-channel linear RGB data

after in-camera pipeline that includes demosaicing. The

collected pairs are naturally well spatially-aligned in pixel-

level. They can be directly used for deep model training

without further transformations.

Due to the yellow substrate inside the P-OLED, certain

light colors, especially blue, are filtered out and changes

the white balance significantly. We therefore did not further

alter the white balance. The light transmission ratio of P-

OLED is extremely low, so we set up the gain value to be

the maximum (25) for higher signal values. All the detailed

camera settings for the two display types are shown in Table

2. One real data sample is shown in Figure 4. As discussed

and analyzed in Section 3.1, images captured by T-OLED

are blur and noisy, while those captured by P-OLED are

low-light, color-shifted and hazy.

4.2. Realistic Data Synthesis Pipeline

We follow the image formation pipeline to simulate the

degradation on the collected {xi}. A model-based data syn-

thesis method will benefit concept understanding and fur-

ther generalization. Note that all the camera settings are

the same as the one while collecting real data. We first

transform the 16-bit raw sensor data {xi} into four bayer

channels xr, xgr, xgl, and xb. Then, we multiply the mea-

sured intensity scaling factor γ, compute the normalized

and scaled PSF k, and add noises to the synthesize degraded

data.

Measuring γ: To measure γ for each channel using the

MCIS, we select the region of interest S to be a square re-
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Figure 5: Network structure of the proposed UNet. It takes

a 4-channel RAW sensor data observation y, and outputs the

restored 3-channel RGB image x.

gion of size 256×256, and display the intensity value input

from 0 to 255 with stride 10 on the monitor. We then record

the average intensity both with and without the display for

each discrete intensity value, and plot the relationship be-

tween display-covered values and no-display-covered ones.

Using linear regression, we obtain the ratios of lines for

different RGGB channel. For T-OLED, the measured γ is

0.97, same for all the channels. For P-OLED, γ = 0.20 for

the blue channel, and γ = 0.34 for the other three channels.

Computing PSF: Following equation 3, we acquire the

transmission microscope images of the display pattern and

crop them with the approximated circular aperture shape

with diameter 3333µm, the size of the camera aperture. In

equation 6, the δNN is 3333µm. ρ equals to 1.55µm/pixel
in Sony sensor. However, after re-arranging the raw image

into four RGGB channels, ρ becomes 3.1 for each channel.

The focal length is 6000µm. λ = (640, 520, 450) for R,

G, B channel, which are the approximated center peaks of

the R, G, B filters respectively on the sensor. It yields the

down-sampling ratio r = (2.41, 2.98, 3.44) for the R, G,

and B channels.

Adding Noises: We measure λread and λshot to estimate

the noise statistics. We display random patterns within the

256× 256 window on the monitor, collect the paired noisy

and noise-free RAW data, and compute their differences.

For each of the RGGB channel, we linearly regress the func-

tion of noise variance to the intensity value, and obtain the

ratio as the shot noise variance, and the y-intersection as

the readout noise variance. We then repeat the process 100

times and collect pairs of data points. Finally, we estimate

the distribution and randomly sample λread and λshot. All

the measurements are listed in Table 3.

5. Image Restoration Baselines

We use the collected real paired data, synthetic paired

data, simulated PSF, and all the necessary measurements to

perform image restoration. We split the 300 pairs of images

in the UDC dataset into 200 for training, 40 for validation

and 60 images in the testing partition. All the images have

a resolution of 1024× 2048.

5.1. Deconvolution Pipeline (DeP)

The DeP is a general-purpose conventional pipeline con-

catenating denoising and deconvolution (Wiener Filter),

which is an inverse process of the analyzed image forma-

tion. To better utilize the unsupervised Wiener Filter (WF)

[29], we first apply the BM3D denoiser to each RAW chan-

nel separately, afterwards we linearly divide the measured

γ with the outputs for intensity scaling. After that, WF is

applied to each channel given the pre-computed PSF k. Fi-

nally, RAW images with bayer pattern are demosaiced by

linear interpolation. The restored results are evaluated on

the testing partition of the UDC dataset.

5.2. Learning­based Methods

UNet. We propose a learning-based restoration network

baseline as shown in Figure 5. The proposed model takes a

4-channel RAW sensor data observation y, and outputs the

restored 3-channel RGB image x. The model conducts de-

noising, debluring, white-balancing, intensity scaling, and

demosaicing in a single network, whose structure is basi-

cally a UNet. We split the encoder into two sub-encoders,

one of which is for computing residual details to add, and

the other one learns content encoding from degraded im-

ages. By splitting the encoder, compared with doubling the

width of each layer, we will have fewer parameters, and

make the inference and learning more efficient. To train

the model from paired images, we apply the L1 loss, which

will at large guarantee the temporal stability compared with

adversarial loss [15]. Besides, we also apply SSIM and

Perception Loss (VGG Loss) for ablation study.

We crop patches of 256× 256, and augment the training

data using the raw image augmentation [26] while preserv-

ing the RGGB bayer pattern. We train the model for 400

epochs using Adam optimizer (β1 = 0.9, β2 = 0.999 and

ǫ = 10−8) with learning rate 10−4 and decay factor 0.5

after 200 epoches. We also train the same structure using

the synthetic data (denoted as UNet(Syn)) generated by the

pipeline proposed in section 4.2.

ResNet. Additionally, a data-driven ResNet trained with

the same data is utilized for evaluation. To our knowl-

edge, UNet and ResNet-based structures are two widely-

used deep models for image restoration. We use 16 residual

blocks with a feature width of 64 for our ResNet architec-

ture, just as Lim et al. do for EDSR [22]. The model also

takes 4-channel RAW data, and outputs 3-channel RGB im-

ages. The data-driven models cannot be directly adaptive to

UDC inputs if only trained with bi-cubic degradation. We

did not compare with their model structures because model

novelty is not our main claim, and the presented two meth-

ods are the most general ways which can achieve real-time

inference as the baselines. Other model variants can be fur-

ther explored in future work.
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(a) T-OLED (b) DeP (c) UNet(Syn) (d) UNet (e) GT

Figure 6: Restoration Results Comparison for T-OLED. GT: Ground Truth.

(a) P-OLED (b) DeP (c) UNet(Syn) (d) UNet (e) GT

Figure 7: Restoration Results Comparison for P-OLED. GT: Ground Truth.

6. Experimental Results

6.1. Qualitative and Quantitative Comparisons

The qualitative restoration results are shown in Figure 6

and 7. As shown, image Deconvolution Pipeline (DeP) suc-

cessfully recovers image details but still introduces some

artifacts, and suffers from the inaccuracy of the computed

ideal PSF. The UNet-based model achieves better visual

quality and denoising performance. The results of UNet

trained with the synthetic data are visually better than DeP.

The quantitative results are listed in Table 4. We re-

port the performance in PSNR, SSIM, a perceptual metric

LPIPS [44], inference time T (ms/MPixels) and GFLOPs.

The inference time is tested with one single Titan X, and

the GFLOPs is computed by input size of 512 × 1024 × 4.

ResNet achieves a comparable performance to UNet, but it

requires more computation operations and longer inference

time. The proposed UNet-based structure is efficient and

effective, which can therefore be deployed for real-time in-

ference for high-resolution inputs with a single GPU. In Ta-

ble 4, we demonstrate that synthetic data still has gaps with

the real data, though it has already greatly out-performed

the DeP for the two display types. The domain gap mainly

comes from the following aspects. First, due to the existing

distances between display and lens, in real data there ap-

pears visible patterns of the display on the image plane. We

recall in the assumption of the diffraction model, the display

panel is exactly at the principle plane of the lens system.

The cause of the visible bands are illustrated in the supple-

mentary material. Second, the approximated light transmis-
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Table 4: Pipeline Comparison
.

4K T-OLED P-OLED

Pipeline Structure #P ↓ GFLOPs ↓ T ↓ PSNR/SSIM ↑ LPIPS ↓ PSNR/SSIM ↑ LPIPS ↓

DeP - - - 28.50/0.9117 0.4219 16.97/0.7084 0.6306

ResNet 1.37M 721.76 92.92 36.26/0.9703 0.1214 27.42/0.9176 0.2500

UNet(Syn) 8.93M 124.36 21.37 32.42/0.9343 0.1739 25.88/0.9006 0.3089

UNet 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219

Table 5: Ablation Study on UNet alternatives.
Alternatives 4K T-OLED P-OLED

#P ↓ GFLOPs ↓ T ↓ PSNR/SSIM ↑ LPIPS ↓ PSNR/SSIM ↑ LPIPS ↓

UNet Basseline 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219

Double Width 31.03M 386.37 40.42 37.00/0.9730 0.1171 30.37/0.9425 0.2044

Single Encoder 7.76M 97.09 15.85 36.47/0.9704 0.1288 30.26/0.9387 0.2318

L1 → L1 + SSIM 8.93M 124.36 21.37 36.69/0.9714 0.1246 30.37/0.9403 0.2131

L1 → L1 + V GG 8.93M 124.36 21.37 36.31/0.9711 0.1130 30.37/0.9403 0.2130

Figure 8: Face detection performance before and after ap-

plying restoration. Without display, the original face recall

rate is 60%. Covering the camera with T-OLED or P-OLED

will decrease the recall rate to 8% and 0%. After image

restoration, the recall rates recovered back to 56% and 39%.

sion rate may not be accurate, the measured values may be

influenced by other environment light sources. Third, im-

pulse noise caused by dead pixels or over-exposure in the

camera sensors widely exist in the real dataset. Those fac-

tors provide more improvement space for this work.

6.2. Ablation Study

For the best-performed UNet structure, we compare dif-

ferent UNet alternatives in Table 5. We increase the pa-

rameter size by splitting the original encoders into two sub-

encoders, so the performance is also increased. The in-

crement parameter size and inference time is far less than

doubling the width of each layer of UNet, but the perfor-

mance improvement is comparable (T-OLED), even better

(P-OLED). We claim that the proposed UNet structure will

both maintain a small number of parameters and operations,

and achieve a real-time high-quality inference. To try alter-

native loss functions, we add SSIM or V GG loss in addi-

tional to L1 loss with 1:1 ratio. However, the performance

gains on either SSIM or perceptual metric LPIPS are not

significant enough, and are not visually distinctive. Adver-

sarial loss is not implemented due to its temporal instability

of GAN-based training.

6.3. Downstream Applications

The proposed image restoration also enhances the per-

formance of downstream applications including face detec-

tion. Figure 8 shows an example of detecting faces using

MTCNN [41]. Without display, the original face recall rate

is 60%. Covering the camera with T-OLED or P-OLED will

decrease the recall rate to 8% and 0%. After image restora-

tion, the recall rates are recovered to 56% and 39%.

7. Conclusion and Limitations

This paper defined and presented a novel imaging system

named Under-Display-Camera (UDC). Deploying UDC to

full-screen devices improves the user interaction as well

as teleconferencing experience, but does harm to imaging

quality and other downstream vision applications. We sys-

tematically analyzed the optical systems and modelled the

image formation pipeline of UDC, and both collected real

data using a novel acquisition system and synthesized real-

istic data and the PSF of the system using optical model. We

then proposed to address the image restoration of UDC us-

ing a Deconvolution-based Pipeline (DeP) and data-driven

learning-based methods. Our experiments showed that the

former achieved basic restoration and the latter demon-

strated an efficient high-quality restoration. The model

trained with synthetic data also achieved a remarkable per-

formance indicating the potential generalization ability.

UDC problem has its promising research values in com-

plicated degradation analysis. In real-world applications,

other factors like an active display, reflection, lens flare etc.

are still very challenging and complicated. Future work can

be exploring UDC-specific restoration models and working

with aperture and display researchers to analyze the influen-

tial factors of image degradation. It will make the restora-

tion model generalized better for mass production, or help-

ful for down-stream tasks, as an ultimate goal.
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