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Abstract

Supervised learning based object detection frameworks

demand plenty of laborious manual annotations, which may

not be practical in real applications. Semi-supervised ob-

ject detection (SSOD) can effectively leverage unlabeled

data to improve the model performance, which is of great

significance for the application of object detection mod-

els. In this paper, we revisit SSOD and propose Instant-

Teaching, a completely end-to-end and effective SSOD

framework, which uses instant pseudo labeling with ex-

tended weak-strong data augmentations for teaching during

each training iteration. To alleviate the confirmation bias

problem and improve the quality of pseudo annotations,

we further propose a co-rectify scheme based on Instant-

Teaching, denoted as Instant-Teaching∗. Extensive experi-

ments on both MS-COCO and PASCAL VOC datasets sub-

stantiate the superiority of our framework. Specifically, our

method surpasses state-of-the-art methods by 4.2 mAP on

MS-COCO when using 2% labeled data. Even with full su-

pervised information of MS-COCO, the proposed method

still outperforms state-of-the-art methods by about 1.0 mAP.

On PASCAL VOC, we can achieve more than 5 mAP im-

provement by applying VOC07 as labeled data and VOC12

as unlabeled data.

1. Introduction

Deep neural networks [24, 43, 19] have significantly im-

proved the performance of diverse computer vision appli-

cations, e.g., image classification and object detection. In

order to avoid overfitting and achieve better performance, a

large amount of accurate human-annotated data is needed

to train a deep learning model. However, the assumption

of having a sufficient amount of accurate labeled data for

training may not hold, especially for object detection tasks,

which need annotations with accurate class labels and pre-

cise bounding box coordinates. Thus, a natural idea is to

leverage abundant unlabeled data to facilitate learning in the

original task. To relax the dependency of manually labeled

data, a promising approach is called semi-supervised learn-

ing (SSL) [8].

SSL has recently received increasing attention from the

community, since it provides effective methods of using un-

labeled data to facilitate model learning with limited an-

notated data. Most of the existing SSL methods focus

on image classification tasks and there are multiple strate-

gies for semi-supervised learning, e.g., self-training [42, 52]

and co-training [5, 35]. Recently, one popular line of re-

search uses consistency losses for semi-supervised learn-

ing [27, 37, 25, 48, 34, 41, 49, 51, 4, 3, 44]. They either

adopt ensemble learning algorithms to enforce the predic-

tions of the unlabeled data to be consistent across multi-

ple models, or constrain the model predictions to be in-

variant to noise. Another popular line of SSL research fo-

cuses on more effective data augmentations to improve the

generalization and robustness of the model, in which some

learning-based and more complex data augmentation strate-

gies [3, 51, 10, 4, 44] greatly improve the performance of

SSL on image classification tasks.

Although semi-supervised learning has made great

progress in the field of image classification, there is a

paucity of literature focus on semi-supervised object detec-

tion (SSOD). The recently proposed STAC [45] performs

best among existing SSOD methods and outperforms the

supervised model by a large margin, which is of great sig-

nificance to the research of SSOD. However, we find that

STAC still has some problems. First, its training proce-

dure is complicated and inefficient. Before model train-

ing, STAC needs to train a teacher model, and then it uses

the teacher model to pre-generate pseudo annotations of

unlabeled data. Second, during model training, the pre-

generated pseudo annotations will no longer be updated,

and the constant label will limit its performance. In this pa-

per, to address the above two problems, we propose a novel

end-to-end SSOD framework, Instant-Teaching, which uses

instant pseudo labeling with extended weak-strong data

augmentations for teaching during each training iteration.

Specifically, as shown in Fig. 1, during each training iter-
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ation, Instant-Teaching will first generate pseudo annota-

tions of unlabeled data with weak data augmentations in

a mini-batch, and then the predicted annotations will in-

stantly be used as the ground-truth of the same image with

strong data augmentations for training. The advantage of

Instant-Teaching is that as the model converges during train-

ing, the quality of pseudo annotations will be improved in-

stantly. The weak-strong data augmentation scheme is in-

herited from STAC, which has been proven to be effective

in combination with pseudo annotations, and we further ex-

tend the strong data augmentations to include Mixup and

Mosaic. In addition, the confirmation bias [48] is a common

problem in SSL. To alleviate this issue, we further propose

a co-rectify scheme based on Instant-Teaching, denoted as

Instant-Teaching∗. Instant-Teaching∗ simultaneously trains

two models that have the same structure but share differ-

ent weights and these two models help each other to rectify

false predictions. During inference, we still only use a sin-

gle model so that it does not increase inference time.

We test the efficacy of Instant-Teaching∗ on PASCAL

VOC [14] and MS-COCO [31] datasets, and follow the

experimental protocols used in the latest state-of-the-art

SSOD literature STAC [45] to evaluate the performance.

It is worth mentioning that, our Instant-Teaching∗ frame-

work outperforms state-of-the-art methods at all experimen-

tal protocols, and achieves state-of-the-art performance on

semi-supervised object detection learning.

The contributions of this paper are as follows:

• We propose a novel SSOD framework, called Instant-

Teaching, which uses instant pseudo labeling with ex-

tended weak-strong data augmentations for teaching

during each training iteration. Instant-Teaching is an

end-to-end framework and can effectively leverage the

unlabeled data.

• To alleviate the confirmation bias problem and im-

prove the quality of pseudo annotations, we fur-

ther propose a co-rectify scheme based on Instant-

Teaching, denoted as Instant-Teaching∗.

• Our extensive experiments on PASCAL VOC and MS-

COCO datasets demonstrate the significant efficacy of

our Instant-Teaching∗ framework.

2. Related Work

Object detection is an important computer vision task and

has received considerable attention in recent years [17, 16,

39, 18, 29, 7, 20, 32, 38, 30]. One line of research focuses

on strong two-stage object detectors [17, 16, 39, 11, 18, 29,

7, 20], which first generate a sparse set of regions of in-

terest (RoIs) with a Region Proposal Network (RPN), and

then perform classification and bounding box regression.

Another line of research develops fast single-stage object

detectors [32, 38, 30, 26, 13, 50]. However, these methods

train stronger or faster models on a large amount of accu-

rate human-annotated data, which is expensive and time-

consuming to acquire in real applications. In this work,

we follow the popular two-stage object detector (Faster-

RCNN [39]) to develop our framework. Different from

previous methods training models only on labeled data, we

train our object detector on both labeled and unlabeled data

with our proposed semi-supervised learning strategy.

Semi-supervised learning (SSL) exploits the potential of

unlabeled data to facilitate model learning with limited an-

notated data. Most of the existing SSL methods focus on

image classification tasks and most of the works [4, 51, 34,

41, 25, 48, 3, 44] are consistency-based methods, which

constrain the model to be invariant to the noise. Pseudo

labeling based methods [27, 2, 21, 1, 52] improve the per-

formance of SSL by generating high-quality hard labels

(i.e., the argmax of the output class probability) of unla-

beled data with a predefined threshold and retraining the

model. Recently, data augmentations have proven to be a

powerful paradigm for boosting SSL on image classifica-

tion [4, 51, 10, 3, 44]. MixMatch [4] improves SSL by

guessing low-entropy labels for data-augmented unlabeled

data and mixes labeled and unlabeled data using Mixup.

FixMatch [44], UDA [51] and ReMixMatch [3] have shown

that RandAugment [10] and CTAugment [3] can signifi-

cantly facilitate learning of SSL.

Semi-supervised object detection (SSOD) applies semi-

supervised learning to object detection. Recently, a few

existing works [33, 47, 15, 22, 46, 28, 45, 23] propose to

train object detectors on both labeled data and unlabeled

data by incorporating SSL into object detection. The meth-

ods in [33, 47] depend on additional context (e.g., temporal

information from video). The method in [36] proposes data

distillation to automatically generate new training annota-

tions by ensembling predictions of multiple transformations

of unlabeled data. NOTE-RCNN [15] proposes to itera-

tively perform bounding box mining and detector retraining.

S4OD [28] proposes a selective net as a heuristic for select-

ing bounding boxes to improve object detection with unla-

beled web images. CSD [22] proposes a consistency-based

SSL method for object detection, which uses flip augmen-

tation and consistency constraints to enhance detection per-

formance. Based on CSD, ISD [23] proposes to use inter-

polation regularization to further improve the performance

of SSL for object detection. Recently, STAC [45] develops

a SSL framework for object detection that combines self-

training and consistency regularization based on strong data

augmentations, which achieves state-of-the-art results.

Inspired by these methods, this paper exploits the effec-

tive usage of pseudo annotations as well as data augmenta-

tions and co-rectify scheme to further improve the perfor-
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Figure 1. The proposed semi-supervised object detection framework. Instant-Teaching includes instant pseudo labeling with extended

weak-strong data augmentations. Instant-Teaching∗ represents Instant-Teaching combined with our co-rectify scheme.

mance of SSL for object detection in a more efficient and

simpler way.

3. Method

In this section, we first give the problem definition of

our semi-supervised object detection task (see Section 3.1).

Then, we show an overview of our Instant-Teaching∗ frame-

work (see Section 3.2), which consists of instant pseudo la-

beling with extended weak-strong data augmentations and

co-rectify scheme (see Section 3.3).

3.1. Problem definition

In semi-supervised object detection (SSOD), we are

given a set of labeled data Dl = {(xl
i, y

l
i)}nl

i=1
and a set of

unlabeled data Du = {xu
j }nu

j=1
, where x and y denote im-

age and ground-truth annotations (class labels and bounding

box coordinates) respectively. The goal of SSOD is to train

object detectors on both labeled and unlabeled data.

3.2. The overview framework

As shown in Fig. 1, our Instant-Teaching∗ framework is

mainly composed of two modules, namely, instant pseudo

labeling with weak-strong data augmentations and co-

rectify. It is worth mentioning that, the first module of

instant pseudo labeling with weak-strong data augmenta-

tions already forms a complete SSOD framework, denoted

as Instant-Teaching, which also outperforms state-of-the-art

methods.

These two modules have their own focus, among which

instant pseudo labeling with weak-strong data augmenta-

tions enables our method to be trained end-to-end, and the

quality of pseudo annotations is instantly improved as the

model converges. Moreover, weak-strong data augmenta-

tions enforce the model to maintain consistent predictions

between the weakly augmented and the strongly augmented

unlabeled data. In this way, the model can learn useful

information from the pseudo annotations generated by it-

self. The co-rectify scheme trains two models with the same

structure simultaneously and these two models help each

other to rectify false predictions, thus alleviating the com-

mon confirmation bias problem and further improving the

model performance.

Please note that although our Instant-Teaching∗ trains

two models at the same time, we only use a single model

(Model-a) during inference, which does not increase infer-

ence time.

3.3. Instant­Teaching∗

Instant pseudo labeling. It is beneficial to update the

pseudo annotations with a more precise model during the

training process, which motivates us to propose instant

pseudo labeling. Instant pseudo labeling performs model

training and pseudo-label generation at the same time,

which is end-to-end and different from the latest STAC [45]

framework. STAC needs to train a teacher model in advance

to generate pseudo annotations of unlabeled data. More-

over, STAC does not update the generated pseudo annota-

tions during training, which limits its performance.

To be more specific, we decompose each training iter-

ation into two steps. In the first step, we use the current

model to generate pseudo annotations of unlabeled data in a

mini-batch. Note that in this step, we apply weak augmen-

tations α(·) to unlabeled data (unless otherwise specified,

we only use random flip as weak augmentation in all exper-

iments). In the second step, we apply strong augmentations

A(·) to the same unlabeled data with pseudo annotations

generated in the first step, and update the model parame-

ters with a entire training objective, which consists of a su-

pervised loss and an unsupervised loss. Note that in this
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step, to get a fair comparison with STAC, we only apply

strong data augmentations to unlabeled data, while still ap-

plying weak augmentations to labeled data. In fact, the per-

formance of the model will be relatively poor in the initial

training phase. In order to guarantee the quality of the gen-

erated pseudo annotations, we always apply non-maximum

suppression (NMS) and confidence-based box filtering with

a high threshold τ in the first step (unless otherwise speci-

fied, we use τ = 0.9 in all experiments).

Overall, the model is trained by jointly minimizing the

supervised loss and unsupervised loss as follows:

ℓ = ℓs + λuℓu, (1)

where we use λu to balance the supervised loss ℓs and the

unsupervised loss ℓu.

The supervised loss ℓs consists of a classification loss

Lcls (a standard cross-entropy loss), and a bounding box

regression loss Lreg (a L1 loss). ℓs can be computed as:

ℓs =
∑

l

[
1

Ncls

∑

i

Lcls(p(ci | α(xl)), c
∗
i )

+
λ

Nreg

∑

i

c∗iLreg(p(ti | α(xl)), t
∗
i )].

(2)

In the above equation, l is the index of labeled images in

a mini-batch, i is the index of an anchor in a single im-

age, p(ci | x) is the predicted probability of anchor i be-

ing an object in image x, p(ti | x) is the 4-dimensional

coordinates of an predicted bounding box, c∗i and t
∗
i are

the human-annotated ground-truth class label and bounding

box coordinates respectively.

When computing the unsupervised loss ℓu, we first com-

pute the model’s predicted class probability distribution and

box coordinates based on weakly augmented unlabeled data

in a mini-batch: (cu, tu) = p(c, t | α(xu)). Then we use

the hard label ĉu = argmax(cu) as the final class label of

pseudo annotations. In addition, the unsupervised loss is

computed on strongly augmented unlabeled data and can be

written as:

ℓu =
∑

u

[
1

Ncls

∑

i

Lcls(p(ci | A(xu)), ĉ
u
i )

+
λ

Nreg

∑

i

(max(cui ) ≥ τ)Lreg(p(ti | A(xu)), t
u
i )],

(3)

where u is the index of unlabeled images in a mini-batch, ĉui
and t

u
i are pseudo annotations of unlabeled data generated

by the model itself, and τ is the confidence threshold.

Weak-strong data augmentations. How to encourage

the model to learn useful information from the pseudo an-

notations generated by the model itself is essential to all

Unlabeled image Labeled image

Mixup Mosaic

Figure 2. Mixup and Mosaic data augmentations for semi-

supervised object detection learning.

self-training based SSL methods. Weak-strong data aug-

mentation scheme is a promising practice, which has been

proven in semi-supervised image classification [44] and

semi-supervised object detection [45]. Weak-strong data

augmentations enforce the model to maintain consistent

predictions between the weakly augmented and the strongly

augmented unlabeled data, and thus encourage the model to

learn useful information from the pseudo annotations.

Intuitively, the key of weak-strong data augmentation

scheme lies in the difference between weak augmentations

and strong augmentations. When the weak augmentations

remain unchanged, the more complex and appropriate the

strong augmentations, the more information the model can

learn from the pseudo annotations. Based on this hypothe-

sis, we extend the strong data augmentations of STAC and

introduce more complex augmentations for unlabeled data,

including Mixup [53] and Mosaic [6]. The experimental

results also reveal that our extended weak-strong data aug-

mentations can further improve the performance of semi-

supervised object detection.

Specifically, as shown in Fig. 2 (Mixup), given an unla-

beled image xu and its pseudo annotations (bu, cu), where

bu are the 4-dimensional box coordinates and cu are the

one-hot class labels of these pseudo boxes (note that we

use hard label when the confidence score is larger than the

confidence threshold τ ). We first randomly choose one la-

beled image xl with ground-truth annotations (bl, cl) from

the mini-batch. Next, we mix these two images and their

one-hot labels and bounding box coordinates with a mixing

coefficient λm drawn from the Beta(αm, αm) distribution,

where αm = 1.0. Finally, we use the mixed image and

soft class labels and bounding box coordinates to substitute

the image content and pseudo annotations of the unlabeled
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image xu, which can be computed as:














λm ∼ Beta(αm, αm),
xu = λmxu + (1− λm)xl,

cu = λmcu ∪ (1− λm)cl,
bu = bu ∪ bl.

(4)

As for Mosaic, as shown in Fig. 2 (Mosaic), given an un-

labeled image xu and a labeled image xl in a mini-batch,

we randomly perform two kinds of mixing styles (horizon-

tal mixing and vertical mixing) and mix their corresponding

annotations accordingly. By applying Mixup and Mosaic

data augmentations to unlabeled data, we can improve the

model robustness to pseudo annotation noise and alleviate

the overfitting problem in model training.

Note that, for a fair comparison, we only perform Mixup

and Mosaic data augmentations on unlabeled data and keep

labeled data with weak data augmentation unchanged in all

our experiments, which is the same as STAC [45].

Co-rectify. Confirmation bias [48] is a common problem

in semi-supervised learning. When the model generates

incorrect predictions with high confidence, these incorrect

predictions will be further strengthened through incorrect

pseudo annotations. In other words, the model itself is dif-

ficult to rectify these false predictions.

To alleviate this problem, we propose a co-rectify

scheme, which trains two models fa(·) (Model-a) and fb(·)
(Model-b) simultaneously. These two models help each

other to rectify the false predictions, as shown in Fig. 1.

The key to the success of co-rectify is that the two models

will not converge to the same model. We take two mea-

sures to ensure that the two models converge independently.

First, although the two models have the same structure, they

use different initialization parameters. Second, although the

two models share the same data in each mini-batch, their

data augmentations and pseudo annotations are also differ-

ent.

We take model fa(·) as an example and the rectified

pseudo annotations of model fb(·) are constructed in a sim-

ilar way. When generating pseudo annotations during each

training iteration, model fa(·) first predicts class probabili-

ties ci and bounding box coordinates ti on the weakly aug-

mented unlabeled image xu. Then, we use the detection

head in model fb(·) to refine the class probabilities cri and

bounding box coordinates tri by taking the predicted boxes

ti as proposals. Finally, the rectified class probabilities c∗i
are averaged from ci and cri , and the rectified bounding box

coordinates t
∗
i are the weighted average of ti and t

r
i . The

co-rectify process can be computed as:














(ci, ti) = fa(xu),
(cri , t

r
i ) = fb(xu; ti),

c∗i = 1

2
(ci + cri ),

t
∗
i = 1

ci+cr
i

(tici + t
r
i c

r
i ).

(5)

4. Experiments

We test our proposed semi-supervised object detec-

tion framework Instant-Teaching∗ on the large-scale dataset

MS-COCO [31] and report the mAP over 80 object cate-

gories. For a fair comparison, we use the same SSL ex-

perimental settings as STAC. When performing SSL exper-

iments on the MS-COCO dataset, two experimental settings

are used. In the first setting, only a small amount of data in

the 118k labeled images is selected as the labeled set. The

remainder is used as the unlabeled set. Under this setting,

we are able to verify the performance of the SSL algorithm

when there is only a small amount of labeled data. In the

second setting, the entire 118k images are used as the la-

beled set and the additional 123k unlabeled images are used

as the unlabeled set, which enables us to verify whether SSL

algorithm can further improve the performance of the de-

tector when large-scale labeled images already exist. In the

first experimental setting, we randomly selected 1%, 2%,

5%, and 10% from the 118k labeled images as the labeled

set.

In addition, we also test on PASCAL VOC [14] follow-

ing [22] and report the mAP over 20 object categories. We

use the trainval set of VOC07 as labeled data, which con-

sists of ∼5k images, and the unlabeled data contains the

trainval set of VOC12 (∼11k images) and the subset of

MS-COCO with the same classes as PASCAL VOC (∼95k

images). We evaluate the performance on the test set of

VOC07 and report the mAPs at IoU=0.5, IoU=0.75, and

IoU=0.5:0.95.

4.1. Implementation details

We implement our Instant-Teaching∗ framework based

on the MMDetection toolbox [9]. To get a fair comparison,

we follow STAC to use Faster-RCNN [40] with FPN [29] as

our object detector and use ResNet-50 [19] as the feature ex-

tractor. The feature weights are initialized by the ImageNet-

pretrained model. Instant-Teaching∗ mainly contains three

hyperparameters: λ, λu and τ , we set λ = 1.0, λu = 1.0
and τ = 0.9 unless otherwise specified.

All our experiments maintain the same training param-

eters as STAC. Specifically, we train the model using an

SGD optimizer on 8 GPUs, with an initial learning rate of

0.01, a momentum of 0.9, a weight decay of 1e−4 and a

total training step of 180k. The learning rate decays by 10×
at 120k and 165k respectively. Moreover, we fix the mini-

batch size to 16, in which the ratio between labeled images

and unlabeled images is 1:1. Following STAC, for 1%, 2%,

5% and 10% MS-COCO protocols, we use the quick learn-

ing schedule. For the 100% protocol, we use the standard

learning schedule. The quick schedule adopts multi-scale

training and the standard schedule adopts single-scale train-

ing, which is depicted in the Appendix A of STAC [45] and

our supplementary materials.
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Methods Backbone 1% COCO 2% COCO 5% COCO 10% COCO 100% COCO

Supervised R50-FPN 9.05±0.16 12.70±0.15 18.47±0.22 23.86±0.81 37.63

CSD† [22] R50-FPN 10.20±0.15 (+1.15) 13.60±0.10 (+0.90) 18.90±0.10 (+0.43) 24.50±0.15 (+0.64) 38.87 (+1.24)

STAC[45] R50-FPN 13.97±0.35 (+4.92) 18.25±0.25 (+5.55) 24.38±0.12 (+5.91) 28.64±0.21 (+4.78) 39.21 (+1.58)

Instant-Teaching (ours) R50-FPN 16.00±0.20 (+6.95) 20.70±0.30 (+8.00) 25.50±0.05 (+7.03) 29.45±0.15 (+5.59) 39.60 (+1.97)

Instant-Teaching∗ (ours) R50-FPN 18.05±0.15 (+9.00) 22.45±0.15 (+9.75) 26.75±0.05 (+8.28) 30.40±0.05 (+6.54) 40.20 (+2.57)

Table 1. Comparison of mAP for different semi-supervised methods on MS-COCO. CSD† is our implementation of the CSD method based

on the Faster-RCNN detector. Instant-Teaching∗ represents our Instant-Teaching framework with co-rectify scheme. The value in brackets

represents the mAP improvement compared to the supervised model.

Methods Backbone Unlabeled AP0.5:0.95 AP0.5 AP0.75

Supervised (Ours) R50-FPN 43.60 76.70 44.50

CSD [22] R101-R-FCN

VOC12

- 74.70 -

STAC [45] R50-FPN 44.64 (+1.04) 77.45 -

Instant-Teaching R50-FPN 48.70 (+5.10) 78.30 52.00 (+7.50)

Instant-Teaching∗ R50-FPN 50.00 (+6.40) 79.20 54.00 (+9.50)

CSD [22] R101-R-FCN VOC12 - 75.10 -

STAC [45] R50-FPN
&

46.01 (+2.41) 79.08 -

Instant-Teaching R50-FPN 49.70 (+6.10) 79.00 54.10 (+9.60)

Instant-Teaching∗ R50-FPN COCO 50.80 (+7.20) 79.90 55.70 (+11.20)

Table 2. Comparison of mAP for different semi-supervised meth-

ods on VOC07. We report the mAP at IoU=0.50:0.95 (AP0.5:0.95),

IoU=0.5 (AP0.5) and IoU=0.75 (AP0.75), which are the standard

metrics for object detection [31, 7].

4.2. Results

We will make a detailed comparison with the super-

vised baseline and state-of-the-art SSOD methods, includ-

ing CSD [22] and STAC [45]. The detailed results are sum-

marized in Table 1 and Table 2.

As depicted in Table 1, our Instant-Teaching∗ outper-

forms state-of-the-art methods by a large margin under all

experimental settings of the MS-COCO dataset. Specifi-

cally, for the 1% protocol, Instant-Teaching∗ improves mAP

from STAC’s 13.97 to 18.05, which achieves 4.08 mAP

improvement; for the 2% protocol, Instant-Teaching∗ im-

proves mAP from STAC’s 18.25 to 22.45, which achieves

4.2 mAP improvement. Instant-Teaching∗ also brings sig-

nificant improvement in mAP when there are more labeled

data: 24.38 to 26.75 on the 5% protocol, 28.64 to 30.40

on the 10% protocol. For the 100% protocol, our Instant-

Teaching∗ still achieves about 1.0 mAP improvement under

the high benchmark of 39.21 mAP.

We also observe a similar trend on PASCAL VOC ex-

periments. As depicted in Table 2, when compared with

STAC, with VOC07 as labeled data and VOC12 as un-

labeled data, our Instant-Teaching∗ improves mAP from

44.64 to 50.00, which demonstrates 5.36 absolute mAP im-

provement. When there are more unlabeled data introduced

(the subset of MS-COCO), Instant-Teaching∗ can further

improve mAP from STAC’s 46.01 to 50.80. We also ob-

serve that the improvement of AP0.75 of Instant-Teaching∗

is more prominent compared to that of AP0.5. In other

words, the improvement of mAP (AP0.5:0.95) mainly comes

from the improvement of predicted high-quality bounding

boxes. We also perform ablation studies on our Instant-

0 30000 60000 90000 120000 150000 180000

Training iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e
ra
g
e
in
s
ta
n
c
e
p
e
r
im

a
g
e

N1

N2

Figure 3. Changes in the number of annotations per image during

training. N1 refers human-annotated instances and N2 refers total

instances including human-annotated and model generated.

Teaching∗ with different backbones in the Appendix of our

arxiv version, demonstrating the scalability of our method.

5. Ablation Study

5.1. Instant pseudo labeling

As shown in Fig. 3, we report the average number of an-

notated instances per image during each training iteration,

in which N1 denotes the number of only human-annotated

instances and N2 denotes the number of total instances in-

cluding human-annotated and model generated (pseudo an-

notations). It can be observed that the number of high-

quality pseudo annotations (N2 − N1) gradually increases

during the training process. Namely, as the model con-

verges, the quantity of high-quality pseudo annotations can

be instantly improved.

From Table 3, we can also observe that at the protocol of

5% MS-COCO with 8× unlabeled data, Instant-Teaching

improves mAP from STAC’s 23.14 to 24.70 using only

color jittering and Cutout [12] as the strong data augmen-

tations. Without using more strong data augmentations,

our Instant-Teaching already outperforms the state-of-the-

art STAC method. These results prove that our instant

pseudo labeling can finally achieve higher performance by

continuously improving the pseudo annotations.
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Methods
Strong data augmentations

mAP
Color+Cutout Geometric Mixup Mosaic

STAC[45]
√ √

23.14

Instant-Teaching

√⋆
21.60 (-1.54)√
24.70 (+1.56)√ √
25.40 (+2.26)√ √
25.00 (+1.86)√ √ √
25.60 (+2.46)

Table 3. Comparison of mAP of Instant-Teaching trained with var-

ious data augmentation methods at the protocol of 5% MS-COCO

and 8× unlabeled data.
√

⋆

denotes that we also apply strong aug-

mentations “Color+Cutout” to unlabeled data in the first step dur-

ing instant pseudo labeling.

Methods Labeled Size
Unlabeled Size

1× 2× 4× 8× Full

STAC[45]
5% COCO

19.81 20.79 22.09 23.14 24.38±0.12

Instant-Teaching 23.60 24.30 25.30 25.60 25.60±0.14

STAC[45]
10% COCO

25.38 26.52 27.33 27.95 28.64±0.21

Instant-Teaching 28.80 29.00 29.20 29.50 29.53±0.17

Table 4. Comparison of mAP of Instant-Teaching trained with var-

ious scales of unlabeled data on MS-COCO. [n]× denotes the

scale of unlabeled data is [n] times larger than that of labeled data.

5.2. Strong data augmentation

In weak-strong data augmentation scheme, the choice

of strong augmentations directly affects the performance of

the final SSOD model. We extend the strong augmenta-

tions of STAC from color jittering, geometric transforma-

tion and Cutout to include Mixup and Mosaic. Note that,

we do not apply geometric transformation, mainly because

the online geometric transformation of pseudo annotations

is more complicated, and we leave it for future work.

As shown in Table 3, we first also apply strong augmen-

tations (Color+Cutout) to unlabeled data in the first step

during the pseudo labeling phase. This method gives us

1.54 mAP drop compared with STAC. The observation ver-

ifies our hypothesis, i.e., the key of weak-strong data aug-

mentation scheme lies in the difference between weak aug-

mentations and strong augmentations. Furthermore, we find

that using either Mixup or Mosaic can improve the perfor-

mance of Instant-Teaching. Instant-Teaching can obtain the

best performance by using Mixup and Mosaic data augmen-

tations together, increasing mAP from 23.14 of STAC to

25.60. These observations indicate that our extended weak-

strong data augmentations can further improve the perfor-

mance of SSOD.

Note that we only use Mixup and Mosaic data augmen-

tations for unlabeled data for a fair comparison with STAC.

5.3. Size of unlabeled data

In the field of semi-supervised object detection, the im-

portance of the size of unlabeled data should not be ig-

nored. Therefore in this section, we evaluate our method

with 5% and 10% labeled data of MS-COCO while vary-
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10% MS-COCO, Self-Teaching

Figure 4. Comparison of mAP w.r.t. the size of unlabeled data.

τ 0.3 0.5 0.7 0.9

mAP (%) 26.30 27.70 28.70 29.80

Table 5. Comparison of mAP with various values of confidence

threshold τ .

ing the size of unlabeled data from 1, 2, 4, and 8 times to

that of the labeled data. The results are given in Table 4.

We can observe that our method outperforms the state-of-

the-art method STAC on all scales of unlabeled data. It is

worth mentioning that, for both 5% and 10% labeled data,

our Instant-Teaching method trained on 1× unlabeled data

achieves 23.60 and 28.80 mAP respectively, which are even

higher than STAC trained on 8× unlabeled data (23.14 and

27.95). This demonstrates that Instant-Teaching can effi-

ciently leverage the unlabeled data.

From Fig. 4 we can observe that our Instant-Teaching

(without co-rectify) outperforms the supervised model and

the state-of-the-art method STAC by a large margin. We

also find that as the size of unlabeled data increases, both

STAC and Instant-Teaching suffer a “ceiling effect”: as the

performance gets closer to the ceiling, the improvement be-

comes smaller.

5.4. Analysis of τ and λu

We analyze the effect of the confidence threshold τ and

the unsupervised loss weight λu in this section. Our Instant-

Teaching method is tested with 10% MS-COCO as labeled

data and the remainder as unlabeled data. We first ana-

lyze the effect of τ . As shown in Table 5, we test Instant-

Teaching with λu = 1.0 and τ ∈ {0.3, 0.5, 0.7, 0.9}. The

result shows that the model can achieve better performance

by varying the threshold value τ from 0.3 to 0.9, which indi-

cates τ = 0.9 is a better choice to select high-quality pseudo

annotations for unlabeled data.

When analyzing the effect of unsupervised loss weight

λu, we fix τ = 0.9 and vary the value of λu from 1/4 to 4.

As can be seen in Fig. 5, Instant-Teaching achieves the best

performance when λu = 1.0 and the mAP only slightly

drop when λu becomes larger or smaller, which indicates
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Figure 5. Comparison of mAP with various values of λu along

training iterations.
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Figure 6. Comparison of mAP of generated pseudo annotations

with different training iterations. The model is trained based on

Instant-Teaching with and without co-rectify respectively.

that Instant-Teaching is relatively robust to λu.

We can also observe that Instant-Teaching achieves a

higher mAP with a smaller value of λu (e.g., 1/4, 1/2) dur-

ing the early training iterations. In other words, in the early

stages of training, the quality (quantity) of pseudo annota-

tions is low, and the model should pay more attention to the

labeled data. In this paper, we use a constant λu, and take

the dynamic adjustment of λu as future work.

5.5. Analysis of co­rectify

We further propose a co-rectify scheme based on Instant-

Teaching to alleviate the confirmation bias problem in SSL,

which is shown in Fig. 1 (Instant-Teaching∗). We analyze

the effect of co-rectify using 1% labeled data and the re-

maining 99% as unlabeled data (1% MS-COCO protocol).

The model is trained based on Instant-Teaching with and

without our co-rectify scheme respectively. For evaluation,

we test on 5k labeled data, which is randomly selected from

the 99% unlabeled data of MS-COCO.

Note that, to verify whether the co-rectify scheme is able

to generate more high-quality pseudo annotations, we com-

pare the mAP of predicted pseudo annotations with score

larger than 0.9 (same as τ during training). As shown in

Figure 7. Visualization of predicted pseudo annotations whose

confidence scores are larger than 0.9 for unlabeled data. The first

row denotes the results of Instant-Teaching (without co-rectify)

and the second row denotes the results of Instant-Teaching∗.

Fig. 6, we can directly observe that the model trained with

co-rectify scheme obtains better performance faster, and is

able to consistently improve the performance of our Instant-

Teaching along the training iterations.

In addition, we visualize the pseudo annotations for

some unlabeled data in Fig. 7. The results are gener-

ated at the same training iteration (120k) with and with-

out the co-rectify scheme respectively. We can observe

that Instant-Teaching cooperated with co-rectify scheme

can filter out some false predictions and generate more

high-quality pseudo annotations at the same time. In sum-

mary, the co-rectify scheme is able to alleviate the confir-

mation bias problem and further improve the performance

of Instant-Teaching.

6. Conclusion

In this paper, we revisit semi-supervised object detec-

tion (SSOD) and propose a simple and effective end-to-end

SSOD framework — Instant-Teaching, which uses instant

pseudo labeling with extended weak-strong data augmenta-

tions for teaching during each training iteration. Based on

Instant-Teaching, we further propose a co-rectify scheme to

alleviate the confirmation bias problem and further improve

the performance. Extensive experiments on MS-COCO and

PASCAL VOC demonstrate the significant superiority of

our method. Although we evaluate with the two-stage de-

tector Faster-RCNN [40], our proposed Instant-Teaching∗

is a general SSOD framework and is not restricted to the

object detection models. This means Instant-Teaching∗ can

be directly applied to other detectors, e.g., one-stage detec-

tors [32, 50], which we will leave for future work.

4088



References

[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor,

and Kevin McGuinness. Pseudo-labeling and confirmation

bias in deep semi-supervised learning. In International Joint

Conference on Neural Networks (IJCNN), pages 1–8. IEEE,

2020. 2

[2] Philip Bachman, Ouais Alsharif, and Doina Precup. Learn-

ing with pseudo-ensembles. In Advances in neural informa-

tion processing systems (NIPS), pages 3365–3373, 2014. 2

[3] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-

rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-

match: Semi-supervised learning with distribution matching

and augmentation anchoring. In International Conference on

Learning Representations (ICLR), 2019. 1, 2

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas

Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A

holistic approach to semi-supervised learning. In Advances

in Neural Information Processing Systems (NeurIPS), pages

5049–5059, 2019. 1, 2

[5] Avrim Blum and Tom Mitchell. Combining labeled and un-

labeled data with co-training. In Proceedings of the eleventh

annual conference on computational learning theory, pages

92–100, 1998. 1

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020. 4

[7] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 6154–6162, 2018. 2, 6

[8] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien.

Semi-supervised learning. adaptive computation and ma-

chine learning. MIT Press, Cambridge, MA, USA. Cited in

page (s), 21(1):2, 2010. 1

[9] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-

heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,

Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,

Chen Change Loy, and Dahua Lin. MMDetection: Open

mmlab detection toolbox and benchmark. arXiv preprint

arXiv:1906.07155, 2019. 5

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical data augmentation with no sep-

arate search. arXiv preprint arXiv:1909.13719, 2(4):7, 2019.

1, 2

[11] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 379–387, 2016. 2

[12] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv

preprint arXiv:1708.04552, 2017. 6

[13] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-

ming Huang, and Qi Tian. Centernet: Keypoint triplets for

object detection. In International Conference on Computer

Vision (ICCV), pages 6569–6578, 2019. 2

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International Journal of Computer

Vision (IJCV), 88(2):303–338, 2010. 2, 5

[15] Jiyang Gao, Jiang Wang, Shengyang Dai, Li-Jia Li, and Ram

Nevatia. Note-rcnn: Noise tolerant ensemble rcnn for semi-

supervised object detection. In Proceedings of the IEEE In-

ternational Conference on Computer Vision (ICCV), pages

9508–9517, 2019. 2

[16] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE In-

ternational Conference on Computer Vision (ICCV), pages

1440–1448, 2015. 2

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detec-

tion and semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 580–587, 2014. 2

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 2961–2969,

2017. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016. 1, 5

[20] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3588–3597, 2018. 2

[21] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej

Chum. Label propagation for deep semi-supervised learning.

In Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), pages 5070–5079, 2019. 2

[22] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak.

Consistency-based semi-supervised learning for object de-

tection. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 10759–10768, 2019. 2, 5, 6

[23] Jisoo Jeong, Vikas Verma, Minsung Hyun, Juho Kan-

nala, and Nojun Kwak. Interpolation-based semi-

supervised learning for object detection. arXiv preprint

arXiv:2006.02158, 2020. 2

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 1097–1105, 2012. 1

[25] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. International Conference on Learning

Representations (ICLR), 2017. 1, 2

[26] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 734–750, 2018. 2

[27] Dong-Hyun Lee. Pseudo-label: The simple and effi-

cient semi-supervised learning method for deep neural net-

works. In Workshop on challenges in representation learn-

ing, ICML, volume 3, 2013. 1, 2

[28] Yandong Li, Di Huang, Danfeng Qin, Liqiang Wang, and

Boqing Gong. Improving object detection with selective

4089



self-supervised self-training. In Proceedings of the European

Conference on Computer Vision (ECCV), 2020. 2

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2117–2125, 2017. 2, 5

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In In-

ternational Conference on Computer Vision (ICCV), pages

2980–2988, 2017. 2

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In Eu-

ropean conference on computer vision (ECCV), pages 740–

755. Springer, 2014. 2, 5, 6

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European Con-

ference on Computer Vision (ECCV), pages 21–37. Springer,

2016. 2, 8

[33] Ishan Misra, Abhinav Shrivastava, and Martial Hebert.

Watch and learn: Semi-supervised learning for object de-

tectors from video. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3593–3602, 2015. 2

[34] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and

Shin Ishii. Virtual adversarial training: a regularization

method for supervised and semi-supervised learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 41(8):1979–1993, 2018. 1, 2

[35] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan

Yuille. Deep co-training for semi-supervised image recogni-

tion. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 135–152, 2018. 1

[36] Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia

Gkioxari, and Kaiming He. Data distillation: Towards omni-

supervised learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4119–4128, 2018. 2

[37] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri

Valpola, and Tapani Raiko. Semi-supervised learning with

ladder networks. In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 3546–3554, 2015. 1

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 779–

788, 2016. 2

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 91–99, 2015. 2

[40] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 39(6):1137–1149, 2017. 5, 8

[41] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.

Regularization with stochastic transformations and pertur-

bations for deep semi-supervised learning. In Advances in

Neural Information Processing Systems (NIPS), pages 1163–

1171, 2016. 1, 2

[42] H Scudder. Probability of error of some adaptive pattern-

recognition machines. IEEE Transactions on Information

Theory, 11(3):363–371, 1965. 1

[43] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations (ICLR),

2015. 1

[44] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao

Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han

Zhang, and Colin Raffel. Fixmatch: Simplifying semi-

supervised learning with consistency and confidence. Inter-

national Conference on Neural Information Processing Sys-

tems (NeurIPS), 2020. 1, 2, 4

[45] Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang,

Chen-Yu Lee, and Tomas Pfister. A simple semi-supervised

learning framework for object detection. arXiv preprint

arXiv:2005.04757, 2020. 1, 2, 3, 4, 5, 6, 7

[46] Peng Tang, Chetan Ramaiah, Ran Xu, and Caiming Xiong.

Proposal learning for semi-supervised object detection.

arXiv preprint arXiv:2001.05086, 2020. 2

[47] Yuxing Tang, Josiah Wang, Boyang Gao, Emmanuel Del-
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