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Abstract

We present a feature-free photogrammetric technique

that enables quantitative 3D mesoscopic (mm-scale height

variation) imaging with tens-of-micron accuracy from se-

quences of images acquired by a smartphone at close

range (several cm) under freehand motion without addi-

tional hardware. Our end-to-end, pixel-intensity-based ap-

proach jointly registers and stitches all the images by es-

timating a coaligned height map, which acts as a pixel-

wise radial deformation field that orthorectifies each cam-

era image to allow plane-plus-parallax registration. The

height maps themselves are reparameterized as the out-

put of an untrained encoder-decoder convolutional neu-

ral network (CNN) with the raw camera images as the in-

put, which effectively removes many reconstruction arti-

facts. Our method also jointly estimates both the camera’s

dynamic 6D pose and its distortion using a nonparametric

model, the latter of which is especially important in meso-

scopic applications when using cameras not designed for

imaging at short working distances, such as smartphone

cameras. We also propose strategies for reducing computa-

tion time and memory, applicable to other multi-frame reg-

istration problems. Finally, we demonstrate our method us-

ing sequences of multi-megapixel images captured by an un-

stabilized smartphone on a variety of samples (e.g., painting

brushstrokes, circuit board, seeds).

1. Introduction

The photogrammetric problem of reconstructing 3D rep-

resentations of an object or scene from 2D images taken

from multiple viewpoints is common and well studied, fea-

turing prominently in techniques such as multi-view stereo

(MVS) [15], structure from motion (SfM) [51, 57, 46], and

simultaneous localization and mapping (SLAM) [13]. Im-

plicit in these 3D reconstructions is knowledge of the cam-

era parameters, such as camera position, orientation, and

distortions, which are jointly estimated in SfM and SLAM.

Photogrammetry tools have been developed and applied

Figure 1. Our method jointly stitches multi-megapixel images ac-

quired under freehand motion at close range and reconstructs high-

accuracy height maps without precalibration of camera distortion.

to both long-range, macro-scale applications [41], such as

building-scale reconstructions or aerial topographical map-

ping, and close-range, meter-scale applications [33], such

as industrial metrology. However, comparatively less work

has been done to push photogrammetry to mesoscopic (mm

variation) and microscopic scales, where additional issues

arise, such as more limited depths of field and increased

impact of camera distortion. Existing approaches at smaller

scales typically require very careful camera distortion pre-

calibration, expensive cameras, dedicated setups that allow

well-controlled camera or sample motion (e.g., with a dedi-

cated rig), or attachment of control points to the object [33].

Here, we show that a smartphone is capable of obtain-

ing quantitative 3D mesoscopic images of objects with 100

µm- to mm-scale height variations at tens-of-micron accura-

cies with unstabilized, freehand motion and without precal-

ibration of camera distortion (Fig. 1). To achieve this, we

present a new photogrammetric reconstruction algorithm

that simultaneously stitches the multi-perspective images

after warping to a common reference frame, reconstructs
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sample’s 3D height profile, and estimates the camera’s posi-

tion, orientation, and distortion (via a piecewise linear, non-

parametric model) in an end-to-end fashion without relying

on feature point extraction and matching. Our careful mod-

elling of distortions is especially important for mesoscopic

applications. Our method also features a reparameteriza-

tion of the camera-centric height maps as the outputs of a

single untrained convolutional neural network (CNN) with

the raw camera images at the input (akin to the deep image

prior (DIP) [52]), which is optimized instead of the height

map itself. Since the camera-centric height maps are by de-

sign coaligned with the camera images, they are automati-

cally registered once the camera images are registered. As

we will demonstrate, both the use of an untrained CNN and

careful modeling of distortion substantially reduce recon-

struction artifacts, thus allowing high-accuracy height map

estimation without camera precalibration or stabilization.

2. Related work

The majority of general-purpose implementations of

SfM, MVS, and photogrammetry, as well as for more gen-

eral image registration and stitching problems are centered

around feature points [57, 14, 46, 37, 44]. A typical

multi-step pipeline starts with extraction of feature points,

such as scale-invariant features (SIFT [32]), which are then

matched across multiple images. The pipeline then crudely

estimates the 3D point cloud of the object along with the

cameras’ positions and poses, which are then refined with

bundle adjustment (BA). Our method differs from BA in

that it is based on pixel-wise image registration without re-

quiring inference of point correspondences, and operates on

rasterized 2D height rather than 3D point clouds, making it

more amenable to incorporation of CNNs.

Prior to the development of robust feature point descrip-

tors, pixel-intensity-based techniques for depth estimation

from image sequences were also common [36, 24, 35, 23,

20, 48, 40]. Our method falls in this category. In more re-

cent years, there has been a resurgence of interest in direct

approaches [39, 11, 9, 3, 10], including those incorporating

deep learning. In particular, our work is similar to previ-

ous self-supervised deep learning methods that train a CNN

on consecutive frames of videos to generate camera-centric

depth estimates based on dense pairwise viewpoint warp-

ing [65, 53, 54, 31, 17, 42, 60, 34, 61, 18]. However, they

differ in that we jointly warp each frame to a common, po-

tentially unseen reference (e.g., a world reference frame)

and stitch them together, while these methods consider con-

secutive pairs of frames and stay within camera reference

frames without stitching to form a larger field of view. Al-

though these methods don’t require labels, they still require

datasets for training, unlike our method. Other deep learn-

ing methods have used multiple frames to estimate depth;

however, unlike our method, many of these techniques re-

quire known camera poses [55, 26, 59, 27, 25, 38] or ref-

erence a keyframe [55, 26, 59, 27, 25, 49, 50, 62, 56],

and all of these multi-frame methods require supervision

and ignore camera distortion. More generally, none of the

deep learning approaches mentioned in this paragraph es-

timate or acknowledge camera distortion, with one excep-

tion [18], which uses a quartic polynomial radial distortion

model. However, as we will show, such a model is too lim-

ited for obtaining high-accuracy results in high-resolution

mesoscopic imaging applications.

While our method uses a CNN, it does not require train-

ing on and therefore does not inherit any biases from a

dataset. Rather, the CNN serves as a drop-in, compression-

based regularizer without the need for training or general-

ization beyond the current sample under investigation. As

such, our work is also similar to recent work on using DIP

[52] to fill in gaps in camera-centric depth images based on

warping to nearby view, which requires knowledge of the

camera poses [16]. While our CNN-based regularizer was

inspired by DIP, it differs in that our CNN takes the camera

images as input rather than random noise, thus allowing a

single shared CNN and therefore a fixed number of param-

eters regardless of the number of images in the sequence.

3. Our approach

Our photogrammetric method is an end-to-end, feature-

free, multi-image registration technique formulated as an

inverse problem. It is reminiscent of a technique previ-

ously developed for jointly registering and combining mi-

croscopic images from multiple angles for optical superres-

olution [64], and of other pixel-intensity-based multi-image

alignment techniques developed for a variety of tasks, such

as digital superresolution [43, 2]. Here, our goal is to regis-

ter and stitch the multi-view camera images into a single

composite mosaic using a plane-plus-parallax framework

[29, 45], where the image deformation parameters are the

camera parameters and the sample height map. The key in-

sight of our approach is to use these parameters to co-rectify

the camera images so that they appear to have been taken

from a common perspective, thus allowing joint estimation

of the stitched RGB mosaic and coaligned height map.

In the following subsections, we describe in detail the

camera model employed to accurately account for distor-

tion and smartphone focal plane shift, the perspective rec-

tification models, the multi-image registration framework,

and the CNN-based regularization framework. We also pro-

pose strategies for dealing with large, multi-megapixel im-

age that alleviate time and memory costs to produce larger,

high-resolution RGBH reconstructions (H = height).

3.1. Image deformation model

Pinhole camera and thin lens model. Assuming an ideal

camera, image formation can be described by a pinhole
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Figure 2. Components of the image deformation model. The chief rays of the thin lens model (a) and the pinhole camera model (b) are

equivalent, but have differing definitions of focal length. In general, the scene is not flat (height variation, h(x, y)) and the camera is

tilted (orientation n̂im). The orthorectification model (c) assumes a reference frame whose projection center is at infinity, such that all

projection lines are parallel to ẑ. The radial vector field rrectify(x, y), which converges at the vanishing point (R) and whose magnitudes

are ∝ h(x, y), performs such a per-pixel rectification, so that the resulting image no longer has perspective distortion. Rectifying the ith

image to an arbitrary reference (b) requires a different rrectify. The backprojection procedure of the camera images (e) to facilitate their

stitching/registration requires optimization of the 6D camera pose and distortion, and the height map, which performs orthorectification.

camera model, whereby a 3D scene is projected onto a 2D

image plane along lines that converge at a point, the cen-

ter of projection, with a pinhole camera focal length, fph .

The camera itself, however is governed by an effective focal

length, feff , and is related to fph by the thin lens equation,

1/zobj + 1/fph = 1/feff , (1)

where zobj is the distance of the object being imaged from

the pinhole camera focus, which corresponds to the position

of the thin lens. Thus, the projection lines of the pinhole

camera model correspond to chief rays in the lens model

(Fig. 2a,b). When imaging scenes at very far distances

(zobj ≫ fph ), fph ≈ feff , a good assumption for long-

range but less so for very close-range applications.

These models do not predict the limited depths of field

associated with closer working distances. To avoid this is-

sue, we assume that the user only attempts to manipulate 2

(xy translation) out of the 6 camera pose parameters, which

justifies designating an object plane (xy plane) to which the

sample height variations may be referenced, assumed to be

within the depth of field. In practice, to account for freehand

instability, we still model all 6 degrees of freedom for each

image: let the camera’s 3D orientation be parameterized by

a unit normal vector, n̂im, pointing along the optical axis,

and an in-image-plane rotation angle, θ; let the camera’s 3D

position be designated by the position of its center of pro-

jection location, (X,Y, Z = zobj). In the supplement, we

describe the procedure for homographic rectification of the

camera images in a common 2D world reference (Fig. 2e).

Camera (un)distortion. Camera lenses and sensor place-

ment are not perfect, giving rise to image distortion. This

can pose problems for close-range, mesoscale applica-

tions, as the 3D-information-encoding parallax shifts be-

come more similar in magnitude to image deformation due

to camera distortion. Distortion models commonly separate

radial and tangential components, which are often expanded

as even-order polynomials [6, 12]. In some cases, the dis-

tortion center should also be optimized [21]. However, as

we will show, we found even a 64-order polynomial radial

undistortion model insufficiently expressive for our meso-

scopic application. Instead, we opted for a nonparametric

model, which has been shown to be more flexible in han-

dling general distortions [7, 47]. Specifically, we used a

piecewise linear radial undistortion model, whereby the ra-

dially dependent relative magnification factor is discretized

into nr points, {M̃t}
nr−1

t=0 , spaced by δr with intermediate

points linearly interpolated:

M̃(r)=

(
1+⌊

r

δr
⌋−

r

δr

)
M̃⌊ r

δr
⌋+

(
r

δr
−⌊

r

δr
⌋

)
M̃⌊ r

δr
⌋+1,

(2)

where ⌊·⌋ is the flooring operation, 0 ≤ r < (nr − 1)δr is

the radial distance from the distortion center, which is also

optimized, and M̃(r) = 1 if there’s no distortion. Thus,

for a given point in the image, rim, the distortion correction

operation is given by

rim ← M̃(|rim|)rim, (3)

which is applied before backprojection. A piecewise linear

model, unlike high-order polynomials, also has the advan-

tage of being trivially analytically invertible, allowing easy

computation of both image distortion and undistortion. This

is important because, while BA typically uses a distortion

model, our method requires an undistortion model, as we

first backproject camera images to form the reconstruction.

Orthorectification. To extend our image deformation

model to allow registration of scenes with height variation,

we need to warp each backprojected image to a common
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reference in a pixel-wise fashion. One such option is or-

thorectification (Fig. 2c), which can be interpreted as rec-

tifying to a world reference. As such, the effective camera

origin is at infinity, so that our images are governed by true

length scales, regardless of proximity to the camera (i.e., no

perspective distortion). For each camera image backprojec-

tion, we estimate a radial deformation field,

rrectify(robj) = ∆r(robj −R)|robj −R|−1, (4)

which is a function of position in the object plane, robj =
(xobj , yobj ), and moves each pixel a signed distance of ∆r
towards the vanishing point, R= (X,Y ), the point to which

all lines normal to the object plane appear to converge in

the homographically rectified camera image. ∆r is directly

proportional to the height at the new rectified location,

h(robj + rrectify) = −Z∆r|robj −R|−1. (5)

Each image has its own height map, forming an augmented

RGBH image, which is pixel-wise orthorectified by Eq. 5.

Orthorectification is a limiting case of the more general,

arbitrary reference rectification (Fig. 2d); for details, see

the supplement.

Accounting for focal plane shift. Most smartphones have

an autofocus feature where the sensor or lens position auto-

matically adjusts to sharpen some part of the image. This

feature is only relevant for close-range applications, as can

be seen in Eq.1, and manifests as a dynamically adjusted

fph,i , while for long-range applications, fph,i remains fixed

at feff . This issue is intertwined with the well-known lim-

itation of photogrammetry that inferring absolute scale re-

quires something of known length in the scene. In particu-

lar, Eq. 5 alone is insufficient to obtain quantitative height

maps, because Zi and fph,i are ambiguous up to a scale fac-

tor related to the camera’s magnification for the ith image:

Mi = fph,i/Zi. (6)

Combining Eqs. 1 and 6 and solving for Zi (=zobj,i), we get

Zi = feff (1 +M−1

i ), (7)

which, when combined with Eq. 5, yields the ambiguity-

free, absolute height estimate by the ith image,

hi(robj+rrectify) = −feff∆ri|robj −Ri|
−1
(
1 +M−1

i

)
.

(8)

Note that Mi contains global scale information and thus

must be precalibrated for at least one i. While in princi-

ple one can optimize fph,i or Mi for the remaining values

of i, we used an approximation, Mi ≈M0Z0/Zi, which as-

sumes the camera autofocused once and maintained a simi-

lar fph throughout acquisition. This approximation yields

hi(robj + rrectify) ≈ −feff
∆ri

|robj −Ri|

(
1 +

1

M0

Zi

Z0

)
.

(9)

Ignoring the lens equation (Eq. 1) and thus the focal plane

shift results in biased height estimation (see supplement).

Putting it all together. Homographic rectification using

the pinhole/thin-lens models, camera undistortion, and or-

thorectification (or arbitrary-reference rectification) via the

height map, as described in this section (3.1), together con-

stitute the backprojection step (Fig. 2e, 3). Let these image

deformation parameters be collectively denoted as w.

3.2. Multi­frame image stitching and registration

Given the current estimate of the image deformation pa-

rameters, w, we simultaneously backproject all the images

to form an estimate of the RGBH reconstruction, B, with

the coaligned height map stacked as the fourth channel:

B← 0, B[xw,yw]← DRGBH, (10)

where (xw,yw) are the flattened coordinates corresponding

to the pixels of DRGBH, which are the flattened RGB im-

ages augmented with the camera-centric height maps. If a

pixel of B is visited multiple times, the values are averaged.

To guide the optimization, we next generate forward pre-

dictions of the camera images, D̂RGBH, by using the ex-

act same backprojection coordinates, (xw,yw), to reproject

back into the camera frames of reference and compute the

mean square error (MSE) with the original camera images

(Fig. 3). The idea is that if the backprojected images are

consistent with each other at the pixels where they overlap,

then the forward predictions will be more accurate. We then

use gradient descent to minimize the MSE with respect to

the image deformation parameters, that is

min
w
||D̂RGBH −DRGBH||

2. (11)

To avoid local minima, we adopted a multi-scale strat-

egy, whereby both DRGBH and B were subject to a down-

sampling procedure that was relaxed over time. Further,

we didn’t update the height map until we reached the low-

est downsampling factor. If the scene consisted of non-

repetitive structures and the camera images exhibited a lot

of overlap, initializing each image to the same position was

often a good initial guess. However, if this failed, we ini-

tialized using sequential cross-correlation-based estimates.

3.3. Regularization

Reparameterization with a CNN. We reparameterized the

camera-centric height maps as the output of a CNN with

the respective RGB images as the inputs. Instead of op-

timizing for the per-image height maps, we optimize the

weights of a single untrained CNN as a DIP, whose struc-

ture alone exhibits a bias towards “natural” images, as em-

pirically demonstrated on multiple image-reconstruction-

related tasks [52], including 3D reconstruction [63]. While

the DIP is often an overparameterization, in our case the
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Figure 3. Method overview. A stack of RGB images (only one

shown for clarity) is augmented with their camera-centric height

maps (RBGH), which are reparameterized as outputs of an un-

trained CNN. The camera-centric height maps and camera param-

eters serve as the image deformation parameters, which rectify the

RGBH images so that they can be registered and stitched (RGBH

reconstruction). We use the same warping coordinates to reproject

the images to form a prediction, whose MSE with RGBH is min-

imized with respect to the CNN and camera parameters. Arrows

indicate forward differentiable operations, but only red arrows in-

dicate paths that allow backpropagation (Sec. 3.4).

single CNN has fewer parameters than the total number of

height map pixels that we otherwise would have directly op-

timized, thus offering further means of regularization [22].

Furthermore, we used an encoder-decoder network archi-

tecture without skip connections, forcing the information to

flow through a bottleneck. Thus, the degree of compression

in the CNN is an interpretable regularization hyperparam-

eter, where restricting information flow may force the net-

work to discard artifacts (see supplement for architecture).

Finally, we note that the network doesn’t need to generalize

beyond the current image sequence.

Camera-centric height map consistency. Although we

directly optimize for camera-centric height maps, they ul-

timately follow the same backprojection and reprojection

procedure that the RGB images undergo, as described ear-

lier. However, while the contribution of RGB pixels to the

MSE in Eq. 11 serves as feedback for registration, the con-

tribution of the height values to the MSE is primarily to

make the camera-centric height maps more consistent irre-

spective of the backprojection result. This can be useful,

for example, when filling in height values at the vanishing

points, which are blind spots, as h ∝ rrectify(R) = 0.

Since RGB values and height values are not directly com-

parable, we introduce a regularization hyperparameter that

scales their relative contributions.

3.4. Reducing computation time and memory

To make our method tractable on a GPU, we used gradi-

ent checkpointing [8, 19] and CPU memory swapping [30],

as well as two novel strategies, which we discuss next.

Blocking backpropagation through the reconstruction

Instead of computing the total gradient of the loss with re-

spect to the image deformation parameters, which would

require backpropagation across every path that leads to the

deformation parameters, we compute partial gradients us-

ing only the paths that lead to the deformation parameters

without going through the reconstruction (red arrows in Fig.

3). Writing out the relevant terms in the chain rule expan-

sion of the gradient of the loss with respect to the image

deformation parameters (Sec. 3.1), we have

dL

dw
=

∂L

∂D̂RGBH

(
JD̂RGBH

(w) +
✘
✘
✘
✘

✘
✘

✘
✘
✘✿

0
JD̂RGBH

(B)JB(w)

)
,

(12)

where Jy(x) denotes the Jacobian of y with respect to x

and L is the loss. Doing so ends up saving memory and

time because it avoids computing expensive derivatives as-

sociated with the reconstruction backprojection and repro-

jection steps. An intuitive interpretation is that at each it-

eration the reconstruction serves as a temporarily static ref-

erence to which all the images are being registered, as op-

posed to also explicitly registering the reconstruction to the

images. Note, however, that both registration directions are

governed by the same parameters, and that this “static” ref-

erence still updates at every iteration.

Batching with a running-average reconstruction. At ev-

ery iteration of the optimization, we require an estimate of

the reconstruction, which itself requires joint participation

of all images in the dataset to maximize the available infor-

mation. This can be problematic as it requires both the re-

construction and the entire dataset to be in GPU memory at

the same time. Batching is a standard solution, which at first

glance would only work for the reprojection step, as the pro-

jection step requires all images to form the reconstruction.

A two-step approach to overcome this requirement is to re-

alize that, because of our strategy of blocking backpropaga-

tion paths through the reconstruction, we can simply gener-

ate the reconstruction incrementally in batches without wor-

rying about accumulating gradients. Once the temporarily

static reconstruction is generated given the current estimates

of the image deformation parameters, we could then update

the parameters by registering batches of images to the re-

construction. This approach, however, is inefficient because

it requires two passes through the dataset per epoch, and the

parameters are only updated during one of the passes.

We introduce a more efficient, one-step, end-to-end strat-

egy where each batch updates both the reconstruction and

the parameters by keeping track of a running average of the

reconstruction. In particular, the update rule for the recon-

struction after the (j + 1)th gradient step when presented

with the jth batch as a list of warped coordinates and their

associated RGB values, (xw ,j ,yw ,j ,Dj), is given by

Bj+1 ← Bj

Bj+1[xw ,j ,yw ,j ]← mBj [xw ,j ,yw ,j ] + (1−m)Dj

(13)
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Figure 4. Stitched orthomosaics and height maps for various samples with mm-scale height variation. Height values for the cut cards and

PCB components (red ×’s) are quantified in Tables 1 and 2, respectively. COLMAP consistently underestimates heights. Scale bars, 1 cm.

where 0 < m < 1 is the momentum controlling how rapidly

to update B. The batch is specified very generally in Eq. 13,

and can correspond to any subset of pixels from the dataset,

whether grouped by image or chosen from random spatial

coordinates. Only the spatial positions of the reconstruction

visited by the batch are updated in the backprojection step,

and the loss is computed with the same batch after the re-

projection step. As a result, we only need one pass though

the dataset per epoch. This method is general and can be

applied to other multi-image registration problems.

4. Experiments

Using the rear wide-angle camera of a Samsung Galaxy

S10+ (feff = 4.3 mm) and freehand motion, we collected

multiple image sequence datasets consisting of 21-23 RGB

1512×2016 images (2×-downsampled from 3024×4032).

While our method does not require it, we attempted to keep

the phone approximately parallel and at a constant height

(5-10 cm) from the sample while translating the phone lat-

erally, to keep as much of the sample as possible within

the limited depth of field associated with such close work-

ing distances. To obtain absolute scale, we estimated the

magnification of the first image of each sequence using ref-

erence points of known separation in the background.

We implemented our algorithm in TensorFlow [1] (code

and data at https://github.com/kevinczhou/

mesoscopic-photogrammetry), which we ran on an

Intel Xeon Silver 4116 processor augmented with an 11-GB

GPU (Nvidia RTX 2080 Ti). We used the same CNN archi-

tecture for all experiments, tuned on an independent sample

to balance resolution and artifact reduction (see supplement

for architectures). Gradient descent via Adam [28] was per-

formed for 10,000 iterations (see supplement for discussion

on number of iterations) for each sample with a batch size

of 6. We set nr = 30 (Eq. 2) and m = 0.5 (Eq. 13).

We compare our method to the open-source, feature-

based SfM tool, COLMAP [46], which has been shown

to outperform competing general-purpose SfM tools [5].

We use COLMAP’s full SfM pipeline, with shared cam-

era models and focal lengths, and converted the dense point

cloud reconstructions to height maps for comparisons. See

supplement for detailed hyperparameter settings.

Accuracy and precision characterization. We first cre-

ated a calibrated phantom sample consisting of standard

playing cards (∼0.3-mm thick), cut into six 1-2-cm2 squares

and attached 0-5 layers of tape (50-70 µm thick per layer) to

alter their heights. We measured the thicknesses of the tape-
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Card # Ours CM CM (scaled)

(G. T.) Acc. Prec. Acc. Prec. Acc. Prec.

bkgd (0) 59.4 45.5 235.6 59.6 19.2 157.8

#1 (295) 34.9 37.7 74.9 26.8 41.8 71.0

#2 (350) 2.0 36.5 24.0 24.6 2.4 65.2

#3 (420) 38.5 54.9 6.7 18.4 31.7 48.9

#4 (485) 6.0 26.2 55.6 20.6 9.4 54.7

#5 (555) 32.5 35.5 120.6 15.4 47.3 40.8

#6 (625) 10.5 28.4 151.6 18.1 14.1 47.9

mean 26.3 37.8 95.6 26.2 23.7 69.5
Table 1. Accuracy (abs. error from ground truth (G. T.)) and preci-

sion (st. dev.) of our method vs. COLMAP (CM) vs. CM rescaled

to match G. T. of the cut card sample (Fig. 4). All units are µm.

Figure 5. Visual comparison of height map reconstructions of the

cut cards sample using different undistortion models. Note the ring

artifacts with the polynomial models. Scale bar, 1 cm.

Figure 6. Strong ring artifacts in the painting sample due to un-

compensated distortion in polynomial models. Scale bar, 1 cm.
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Figure 7. Height estimation performance on the 6 cut cards, back-

ground, and whole image for various undistortion models.

backed cut cards using calipers with 20-µm accuracy (Star-

rett EC799A-12/300), and arranged them on a flat, feature-

rich surface [4]. We regarded these measurements as the

ground truths, hgt (column 1 of Table 1).

The stitched orthomosaics and height map reconstruc-

tions by our method and COLMAP are shown in the first

column of Fig. 4, noting that COLMAP underestimates

the card heights. To quantify accuracy and precision of

both methods, we manually segmented the six cut cards

and background based on the RGB orthomosaic, and com-

puted the mean and standard deviation of the height values

of these seven regions (Table 1). Because the height maps

have an arbitrary global shift, we used the shift that mini-

mizes the MSE between the mean height estimates and the

ground truths: ∆h = mean(hgt−hest). While COLMAP

underestimates heights and therefore has low absolute ac-

curacy, we hypothesized that the relative accuracy might

be high. To test this, we additionally scaled COLMAP’s

height estimates by the factor that minimizes MSE be-

tween mean height estimates and ground truths, given by

cov(hgt,hest)/var(hest) ≈ 2.65 (Table 1). Only our

method has simultaneously high accuracy (26.3 µm) and

precision (37.8 µm) and without the need to rescale.

Results on multiple mm-scale samples. Next, we com-

pared our method and COLMAP on a printed circuit board

(PCB), helicopter seeds, and the brush strokes on a paint-

ing (Fig. 4). COLMAP not only consistently underesti-

mates heights, but also exhibits unpredictable surface cur-

vatures, possibly due to our imaging procedure operating

near a degenerate configuration for radial distortion estima-

tion [58]. Our method, however, is robust to this degen-

eracy. We quantified the height accuracy and precision on

16 of the PCB components using caliper estimates as the

ground truth and manual segmentation based on the RGB

orthomosaics (Table 2). We caution that this analysis is less

rigorous than that of the cut cards sample, as some com-

ponents are not completely flat (slight elevations along the

shorter edges), and due to greater difficulty in estimating

height with the calipers (we alleviated this problem statisti-

cally by using the mean of 10 measurements as the ground

truth). These caveats may explain why the accuracy (62.5

µm) and precision estimates (95.8 µm) are inflated com-

pared to those of the cut cards sample. However, it is clear

that our method does not have COLMAP’s underestimation

issue. Further evidence of this is that the optimal rescale

value for our method is 1.028 ≈ 1 (which we did not use).

While we do not have ground truths for the helicopter or

painting samples, the calipers estimated the helicopter seeds

to be∼2.3 mm at their thickest part, qualitatively consistent

with our method; while this is not a rigorous measurement

due to non-rigidity of the sample, it at least suggests that

COLMAP is underestimating heights.

Importance of undistortion. Figs. 5 and 6 show spuri-
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bkgd C120 C121 C126 C142 C147 C181 C182 C203 C57 R135 R144 R175 R184 U70 U71 U72 mean

G.T. 0 1253 1257 1269 618 1282 632 632 1354 677 533 548 476 427 1772 1771 1778 –

O
u

rs Acc. 119.8 41.4 15.8 79.0 60.1 163.6 5.8 56.0 43.5 94.3 122.4 89.3 21.0 52.7 44.3 27.5 31.9 62.9

Prec. – 138.4 123.5 133.2 32.2 175.1 45.3 34.2 86.7 139.2 117.0 61.0 17.6 52.9 101.1 141.6 134.3 95.8

C
M

Acc. 455.7 435.4 557.7 193.9 116.6 90.7 401.6 225.0 456.9 548.0 74.6 173.3 452.5 305.4 502.1 388.9 168.3 326.3

Prec. – 108.0 140.2 83.4 248.1 163.4 118.5 95.5 133.8 51.7 98.7 91.3 105.0 70.4 90.9 95.3 123.6 113.6

Table 2. Quantification of accuracy and precision (in µms) of our method and COLMAP (CM) on PCB components (Fig. 4, red ×’s).

Figure 8. Height map reconstructions of the cut cards and PCB samples using high- and low-compression CNNs (architectures 1 and 4;

see supplement for architectures and additional results) and high and low levels of total variation (TV) regularization. Zoom in to see fine

features. Scale bars, 1 cm.

ous rings when camera distortions are not sufficiently mod-

eled (cf., [47]). In particular, although for conventional

macro-scale applications it is often sufficient to use a low-

order even polynomials (e.g., order-4 [18]), for mesoscopic

applications, even using an order-64 polynomial undistor-

tion model leaves behind noticeable ring artifacts, while our

piecewise linear model (30 segments) effectively eliminates

them. Fig. 7 quantifies the performance of multiple undis-

tortion models via root-MSE (RMSE), precision, and accu-

racy of heights of the cut cards sample. Not only does our

piecewise linear model generally have better precision and

overall RMSE than the polynomial models, but also it does

not exhibit biases caused by the ring artifacts (e.g., card 2),

which cannot be corrected by a global scale or shift. See the

supplement for a full comparison of undistortion models on

all four samples in Fig. 4, as well as the estimated radial

undistortion profiles and distortion centers.

Effectiveness of CNN regularizer. CNN reparameteriza-

tion is crucial to our method. As the CNN is an encoder-

decoder network without skip connections, the degree of

compression can be adjusted by the number of parameters

and downsampling layers. Fig. 8 shows that varying the

degree of compression controls the amount of fine detail

transferred to the height map without affecting the flatness

of the field of view or blurring edges. Thus, the degree of

compression in the CNN is an interpretable means of tun-

ing the regularization. However, if we optimize the camera-

centric height maps directly with total variation (TV) reg-

ularization, we see many artifacts, even when the regular-

ization is strong enough to blur sharp edges. See the sup-

plement for results with more CNN architectures and TV

regularization levels for all four samples in Fig. 4, plus the

hyperparameter-tuning sample. Although CNNs are gener-

ally more computationally complex than TV, CNNs don’t

make as strong assumptions and therefore can express more

complex and general solutions. In particular, while TV

is most effective for samples that have piecewise smooth

height variation, CNNs can in principle be used for samples

with a more diverse set of features.

5. Conclusion

We have presented a feature-free, end-to-end pho-

togrammetric algorithm applied to mesoscopic samples

with tens-of-µm accuracy over cms fields of view. Our

method features a novel use of CNNs/DIPs, which effec-

tively removes many artifacts from the height maps. We

also showed that careful modeling of distortion is important

for obtaining accurate height values. Qualitative and quan-

titative comparisons show that our method outperforms

COLMAP, a feature-based SfM tool. Our work fills the

gap between 3D computer vision and microscopy, pushing

resolution limits of models used in 3D computer vision

with consumer-grade cameras. We expect our method to

find application in industrial metrology, studying historical

artwork, and biomedicine.

Funding. National Science Foundation CBET-1902904.
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