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Abstract

Monocular 3D object detection is an important task in

autonomous driving. It can be easily intractable where

there exists ego-car pose change w.r.t. ground plane. This

is common due to the slight fluctuation of road smoothness

and slope. Due to the lack of insight in industrial appli-

cation, existing methods on open datasets neglect the cam-

era pose information, which inevitably results in the detec-

tor being susceptible to camera extrinsic parameters. The

perturbation of objects is very popular in most autonomous

driving cases for industrial products. To this end, we pro-

pose a novel method to capture camera pose to formulate

the detector free from extrinsic perturbation. Specifically,

the proposed framework predicts camera extrinsic param-

eters by detecting vanishing point and horizon change. A

converter is designed to rectify perturbative features in the

latent space. By doing so, our 3D detector works indepen-

dent of the extrinsic parameter variations and produces ac-

curate results in realistic cases, e.g., potholed and uneven

roads, where almost all existing monocular detectors fail

to handle. Experiments demonstrate our method yields the

best performance compared with the other state-of-the-arts

by a large margin on both KITTI 3D and nuScenes datasets.

1. Introduction

3D object detection plays an important role in a vari-

ety of computer vision tasks, such as automated driving

vehicles, autonomous drones, robotic manipulation, aug-

mented reality applications, etc. Most existing 3D detec-

tors require accurate depth-of-field information. To acquire

such resource, majority of the methods resort to the LiDAR

pipeline [10, 33, 37, 38, 23, 60], some to the radars solu-

tion [27, 54, 18, 20] or others to the multi-camera frame-

work [8, 9, 21, 32, 35, 51]. In this paper, we address this

problem in a monocular camera setting and curate it specif-

ically for automated driving scenarios With the difficulty

in directly acquiring a depth of field information, monocu-

lar 3D detection (Mono3D) is an ill-posed and challenging

task. However, Mono3D approaches have the advantage of

*Co-corresponding authors

Figure 1. The effect of extrinsic parameter perturbations on 3D

detection task. When the vehicle undergoes a slight pose change

on an uneven road, the 3D detection results are less accurate (sec-

ond row). This happens often in realistic applications and the de-

tection offset can be viewed more evidently in the bird-eye’s view.

low cost, low power consumption, and easy-to-deployment

in real-world applications. Therefore, monocular 3D de-

tection has received increasing attention over the past few

years [2, 7, 28, 29, 34, 39].

Current Mono3D methods have achieved considerable

high accuracy given a specifically fixed camera coordinate

system. However, in real scenarios, the unevenness (pertur-

bation) of the road surface often causes the camera extrinsic

parameters to be disturbed, which introduces a significant

algorithmic challenge. To the best of our knowledge, there

are no 3D detection datasets that takes into account the cam-

era pose change under perturbation.

As shown in Figure 1, current datasets or detectors as-

sume there is no perturbation, i.e., the extrinsic parameters

are set to be constant. Therefore the accurate 3D results are

obtained (top row). However, as depicted in the bottom per-

turbation case, the object information viewed by the camera

deviates from the real object information. This makes the

detection results unreliable by recovering a large offset in

form of both 3D boxes and bird-eye’s view. Straightfor-

ward methods to address this problem are to design com-

plementary branches or networks to improve the general-

ization ability, and yet this solution yields limited improve-

ment [5, 50, 34, 45, 12]. Some approaches utilize vehicle

CAD models or keypoints to reconstruct vehicle geometry
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[5, 50], while others exploit existing networks to predict

pixel-level or instance-level depth map by mimicking state-

of-the-art (SOTA) LiDAR 3D detection methods, namely

pseudo-LiDAR methods [34, 45, 12].

Our work is inspired by the visual odometry methods

that resolve camera pose change in adjacent frames from

images [16, 22, 36, 46, 56, 58]. Note that this idea dif-

ferentiates from those that focus solely on detecting ob-

jects in the perturbation-prone camera coordinate system

[39, 2, 24, 59, 11, 42, 3]. These approaches focus on some

less critical issues regarding to realistic industrial applica-

tions. For example, the modeling of occlusive objects [11],

depth branches [42], kinematic motion information (object

orientation) [3], etc. Moreover, it is similar to human behav-

ior patterns that one can naturally adapt to changing road

gradients and gradually deduce the accurate position of ob-

jects even on potholes. Formulating our network to encode

such learning patterns is feasible on a biological basis.

In this paper, we propose to leverage the extrinsic param-

eter change implicitly in the image. Our key idea is to esti-

mate camera pose change w.r.t. the ground plane from im-

ages and optimize predicted 3D locations of objects guided

by the camera extrinsic geometry constraint. We abbreviate

the proposed framework as MonoEF (extrinsic parameter

free detector). Specifically, a novel detector is proposed to

extract the vanishing point and horizon information from

the image to estimate the camera extrinsic corresponding to

the image. The model is thus capable of capturing the ex-

trinsic parameter perturbations to which the current image

is subjected in the geometric space. During inference, we

transform latent feature space using extrinsic parameters as

seed to remove the effect of extrinsic perturbations on fea-

tures fed from the input image. Note that the transformation

network is learned in a supervised manner, which allows the

image features to recover from camera perturbation. By do-

ing so, we impose our detector exclusive from the effects

of the extrinsic parameter. The resultant 3D locations are

obtained via the extrinsic parameter-free predictor and pro-

jected back into the real-world coordinate system.

Experiments on both the KITTI 3D benchmark [15] and

nuScenes dataset [4] demonstrate that our method outper-

forms the SOTA methods by a large margin, especially for

perturbative examples with a distinguished improvement.

To sum up, the contributions of our paper are as follows:

• We introduce a novel Mono3D detector by capturing

the perturbative information of the extrinsic parame-

ters from monocular images to make the detector free

from extrinsic fluctuation.

• We design a feature transformation network, using

camera extrinsic parameters as seed, to recover the

non-perturbative image information from the perturba-

tive latent feature space.

• We propose an extrinsic module that complements the

camera’s pose in 3D object detection. Such a plug-and-

play can be applied to existing detectors and pragmatic

for industrial applications, e.g., autonomous driving

scenarios.

The whole suite of the codebase will be released and the ex-

perimental results will be pushed to the public leaderboard.

2. Related Work

Monocular 3D Object Detection. The Monocular cam-

era is in lacks 3D information compared with multi-beam

LiDAR or stereo cameras. To overcome this difficulty and

reconstruct the geometry and position of the object in world

coordinates, most Mono3D methods can be roughly divided

into three categories. In the first category [7, 31, 5], aux-

iliary information is widely used like vehicle Computer-

Aided Design (CAD) models or keypoints. By this means,

extra labeling cost is inevitably required. In the second cat-

egory [26, 28, 49, 51], the prior knowledge like depth map

by LiDAR point cloud, or disparity map by stereo cameras

trained by external data is exploited. Usually, the inference

time would increase significantly due to the prediction of

these dense heat maps.

Unlike the aforementioned work, methods in the third

category only make use of the RGB image as input and re-

move the dependencies on extra labeling or pre-trained net-

works by external data. SMOKE [24] predicts a 3D bound-

ing box by combining a single keypoint estimation with re-

gressed 3D variables based on CenterNet [59]. M3D-RPN

[2] reformulates the monocular 3D detection problem as a

standalone 3D region proposal network. Current SOTA re-

sults for monocular 3D object detection are from MonoPair

[11], Center3D [42], and Kinematic3D [3]. Among them,

MonoPair [11] improves the modeling of occlusive objects

by considering the relationship of paired samples. Cen-

ter3D [42] carefully designs two modules for better depth

prediction called LID and DepJoint. Kinematic3D [3] pro-

poses a novel method for monocular video-based 3D object

detection which leverages kinematic motion to improve the

precision of 3D localization.

However, all the object detectors mentioned above focus

only on the information in the current camera coordinate

system that ignores the effect of camera pose on detection.

These methods do not work well when the camera’s pose re-

ceives a disturbance w.r.t. ground plane due to rough terrain

or acceleration of ego vehicle.

Deep Monocular Odometry. With the success of deep

neural networks, end-to-end learning-based methods [47,

48, 52, 53] have been proposed to tackle the visual odom-

etry problem. Recently, some methods [1, 41, 43, 44,

57] exploit CNNs to predict the scene depth and cam-

era pose jointly, utilizing the geometric connection be-

tween the structure and the motion. This corresponds to

learning Structure-from-Motion (SfM) in a supervised man-

7557



Figure 2. System overview. The Extrinsic Regression module (blue block) predicts the ground plane as well as vanishing point. The pose

information is thereby obtained and then fed into the Feature Transfer module (yellow block) as guidance for feature enhancement. By

doing so, the original features (in gray color) after the backbone are transferred to a rectified set of features (in yellow color), immune to

the extrinsic parameter perturbation. The Monocular 3D Detection module and coordinate alignment unit follow standard procedures [24].

ner. To mitigate the requirement of data annotations, self-

supervised and un-supervised methods [16, 22, 36, 46, 56,

58] have been proposed to tackle the SfM task. CC [36]

addresses the unsupervised learning of several intercon-

nected problems in low-level vision: single view depth pre-

diction, camera motion estimation, optical flow, and seg-

mentation of a video into the static scene and moving re-

gions. MonoDepth2 [16] proposes a set of improvements,

which together result in both quantitatively and qualita-

tively improved depth maps compared to competing for

self-supervised methods. LTMVO [61] presents a self-

supervised learning method for visual odometry with spe-

cial consideration for consistency over longer sequences.

While these visual odometry methods are relatively good

at detecting camera pose, they all rely on motion informa-

tion on the time series, which will not be available in a typ-

ical Mono3D task based on single-frame images. Conse-

quently, the lack of motion information in the time series

prevents us from directly obtaining accurate camera pose

information. However, We can still use similar ideas to de-

tect changes in the ground plane and vanishing point from

the image compared to the reference frame, and thus indi-

rectly infer changes in the camera extrinsic parameters.

3. An Extrinsic Parameter Free Approach

3.1. Overview

We adopt the one-stage anchor-free architecture as does

in SMOKE [24]. Figure 2 depicts an overview of our frame-

work. It contains a backbone network, an extrinsic regres-

sion network, a feature transfer network, and several task-

specific dense prediction branches. The backbone takes a

monocular image of size (Ws×Hs×3) as input and outputs

a feature map of size (W × H × 64) after down-sampling

with an s-factor. The feature map is utilized for extrinsic

parameter detection (top blue pipeline), and in parallel rec-

tified by the transfer network based on extrinsic parameters

(known as Pose as in the bottom yellow pipeline). For 2D

and 3D detection, we follow standard procedures in this do-

main. There exist seven output branches with each having

size of (W × H × m), where m is the output channel of

each branch. The detection results need to be aligned by

the predicted extrinsic parameters in order to get the final

bounding box and position.

3.2. Preliminary on Monocular Object Detection

The 2D object detection follows the design of Center-

Net [59]. A heatmap of size (W × H × c) is used to

enable keypoint localization(ug, vg) and its classification.

The number of object categories c equals three on KITTI3D

benchmark and ten on nuScenes dataset. The other two

branches of size (W × H × 2) are adopted to regress the

dimensions of the 2D bounding box (wb, hb) and the offset

(δu, δv) from the center of the bounding box (ub, vb) to the

keypoint (ug, vg) correspondingly.

The 3D object detection focuses on the 3D information

of an object in the local camera coordinate system instead

of the global world coordinate system. The object center in

local camera coordinate system can be represented as ho-

mogeneous coordinates cw = (x, y, z); its projection in the

feature map is co = (u, v, 1). Similar to [28, 39], we pre-

dict the offset (∆u,∆v) to the keypoint location (ug, vg)
and depth z in two separate branches. Denote the coordi-

nates in form of congruent concept, we have:

z
[

u v 1
]T

= P ·
[

x y z
]T
, (1)

where P is the projection conversion matrix between the

world coordinate system and the image coordinate system.

The projection matrix can be decomposed as:

P = K ·T, (2)
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Figure 3. Visualization of the extrinsic perturbation. The pose of the ego vehicle varies due to the unevenness of road surfaces, which is

quite common in realistic scenarios. It causes the camera’s viewport i to be inconsistent with ground viewport j. Therefore, the position

of keypoints found from the heat map and depth map are shifted from (ui, vi) to (uj , vj) by extrinsic perturbation, leading to a confusion

for the 3D prediction and thereby inaccurate results.

where K is referred to as the constant camera intrinsic ma-

trix and T as the inconstancy extrinsic matrix w.r.t ground

plane. Naturally we have co = 1
z
Pcw. The depth z and

size (w, h, l) are regressed according to [13]. As aforemen-

tioned in Section 3.1, in these branches, the regression com-

ponents are trained with the L1 loss. Similar to [29, 59], we

represent the orientation using eight scalars, where the ori-

entation branch is trained using the multi-bin loss [30].

3.3. Theoretical Analysis

Figure 3 depicts a concrete example of how an extrinsic

perturbation can significantly impose poor prediction onto

heat map and depth map.

Given a specific local camera coordinate system called

viewport i, it is normally assumed that the viewport i is con-

sistent with ground plane coordinate system called viewport

j, so do most of Mono3D datasets. Suppose the 3D center

of a selected object in viewport i is cwi = (xi, yi, zi), and

the 3D center on the feature map is coi = (ui, vi, 1), corre-

sponding to the case as depicted in Figure 3. If there is an

extrinsic perturbation from the ground plane variation, the

identical relation between camera viewport i and ground

plane viewport j would no longer exist. We discriminate

this process as perturbation. The perturbation matrix A can

be described as:

A =





sin θr cos θr 0
cos θp sin θr cos θr cos θp sin θp
− sin θp sin θr − sin θp cos θr cos θp



 , (3)

where θp stands for pitch angle and θr for roll angle of

ego vehicle w.r.t. ground plane respectively. Now we are

equipped with the extrinsic perturbation being introduced

spatially, the center of the object cwi of camera viewport i
is transformed to a point cwj in the ground plane viewport

j, where cwj = zjP
−1
j coj = Acwi . On the feature map,

the keypoint of the object shifts correspondingly from coi to

Figure 4. The training process of the transfer network f t. The

feature target is derived from a feature obtained by the backbone

after a direct extrinsic parameter correction of the image. The pre-

trained loss network Φ has two branches, one with the style target

for high-dimensional losses computed on three layers and the other

with the content target for low-dimensional losses computed only

on the last layer.

coj . The transfer relationship matrix M of keypoints on the

feature map can be represented by:

coj = Mcoi =
zi
zj

PjAP−1
i coi . (4)

This shift in image coordinates would cause confusion for

the prediction of 3D position.

Given the example in Figure 3, we use the changes on the

depth hidden map to perform our analysis. If the model can

know the changes that occur in the ground plane coordinate

system, such as LiDAR-based methods, it will assume that

the target has changed in height. However, for the camera,

the height and depth of the target will both affect its position

on the image. The camera assumes that the target vehicle

remains on the ground coordinate system at all times, so it

incorrectly determines that the change in the target on the

image is caused by the depth. The offset of keypoints leads

to large depth prediction errors.

These keypoint positions need to be rectified to compen-

sate for offsets caused by the change of camera extrinsic
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parameter. For training, A in Equation (3) can be collected

through the ground truth vehicle ego-pose information. The

image feature w.r.t. viewport Hj and labels cwj need to be

first adjusted using matrices M−1 and A−1 separately in

order to eliminate the effect of extrinsic perturbations A.

The label obtained by 3D detector fθi established at cam-

era viewport i can be recorded as ĉwi . The L1 loss function

under external parameter perturbation is changed to

ĉwi = fθi(f t(M−1,Hj)) = fθi(Hi),

L(θj) =
∥

∥A−1cwj − ĉwi
∥

∥ = ‖cwi − ĉwi ‖ ,
(5)

where f t(·, ·) is the transfer network on the feature implicit

space which maps the change on camera extrinsic parame-

ters to the feature map.

During inference, we first estimate camera extrinsic pa-

rameters Â from input image Xj and recover the unper-

turbed feature hidden space Ĥi from the perturbed feature

hidden space Hj using M̂. The predicted 3D center ĉwj is

derived from the 3D detector fθi which is independent of

varying camera extrinsic parameters Â:

ĉwj = Âfθi(f t(M̂−1, Ĥj)) = Âfθi(Ĥi)). (6)

For camera extrinsic parameters A and M, we propose

the extrinsic regression network, which is introduced in

Section 3.4. For feature transfer network f t, the design

methodology and training process is described in Section

3.5. These modules are utilized to detect extrinsic pertur-

bations of the image in viewport j, and further adopt the

extrinsic information to rectify the feature map. In this way,

the image features can be restored back to camera viewport

i, and the 3D detection model no longer receives the nega-

tive impact from extrinsic perturbations.

3.4. Camera Extrinsic Parameters Regression

In addition to the regular regression task, we also intro-

duce a module of extrinsic parameter regression in Mono3D

branches, which is shown in Figure 2.

Owing to the fact that extrinsic parameters are too im-

plicit for a model to regress, we choose to predict intuitive

and explicit features from the image at first. The horizon

and vanishing point in the image are often used to help

determine the vehicle’s ego-pose information w.r.t ground

plane in the deep visual odometry tasks. Specifically, the tilt

of the horizon can indicate the change of roll angle, while

the vertical movement of the vanishing point can indicate

the change of pitch angle.

Following the SOTA odometry framework in [6], we rep-

resent a regression task with L1 loss as:

[ŷgp, ŷvp] = fvo(Hj),

Lvo = ‖A− g(ŷgp, ŷvp)‖ .
(7)

Here, fvo is the CNN architecture used for horizon and van-

ishing point detection, we follow [19] and make modifica-

tions to the filters for the fully connected layers. ŷgp and

ŷvp are the predicted ground plane and vanishing point re-

sults at viewport j. The mapping function g : (R2,R2) 7→
A4×4 is a mathematical calculation function from the hori-

zon and vanishing point to the camera extrinsic matrix. The

function fvo ensures that the model can give sufficiently ac-

curate information about the extrinsic parameters. Finally,

the regression loss Lvo can be trained jointly with 2D and

3D detection branches.

3.5. Feature Transfer by Extrinsic Parameters

To overcome the pose variation of ego vehicle w.r.t

ground plane and improve 3D detection performance, we

propose a transfer network applying camera extrinsic cor-

rections on the feature latent layers. Generally speaking, as

shown in Figure 3, the design intention of the transfer net-

work is to rectify the perturbed feature space Hj in camera

view j, so that the discrepancy between Hj and the unper-

turbed one Hi under camera view i is as small as possible.

For example, we fix the shift of keypoints caused by extrin-

sic parameter perturbations. Suppose that in one image with

unknown perturbation, the network predicts camera extrin-

sic parameters Â = g(fvo(Hj)) based on the strategy in

Section 3.4.

After carefully analyzing the influence of perturbation

on the image characteristics of low-dimensional features

and high-dimensional features, we find out that their chang-

ing patterns are quite different. On the one hand, low-

dimensional features like the position of corresponding

edges and geometries are closely related to the camera’s ex-

trinsic parameters, specifically in terms of content informa-

tion. On the other hand, high-dimensional features like the

textures and illuminations remain unchanged, specifically

in terms of style information. Inspired by the image style

transfer method [17], we propose a feature transfer module

working on the feature latent space.

As shown in Figure 4, this module is divided into two

parts. One is the transfer network f t, and the other is a

pre-trained loss network Φ using [40].

The transfer network. The input feature map Hin

for transfer network is provided by the previous backbone,

which is equal to Hj . The predicted pose M̂ acts as a

guidance information for transfer network, which provides

structural information for feature maps in low dimensions.

The output of transfer network Hout will be input into loss

network with content target Hcontent = f b(M̂−1Xj) and

style target Hstyle = Hj to calculate final features, where

Xj stands for disturbed image input, and f b stands for back-

bone network.

The loss network. The transfer network f t mainly con-

siders content loss lcontent and style loss lstyle. Let φm be

the activation of the m-th layer of the network Φ with the
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Methods
AP3D APBV AOS AP2D

Time
E M H E M H E M H E M H

M3D-RPN [2] 14.76 9.71 7.42 21.02 13.67 10.23 88.38 82.81 67.08 89.04 85.08 69.26 0.16

SMOKE [24] 14.03 9.76 7.84 20.83 14.49 12.75 92.94 87.02 77.12 93.21 87.51 77.66 0.03

MonoPair [11] 13.04 9.99 8.65 19.28 14.83 12.89 91.65 86.11 76.45 96.61 93.55 83.55 0.06

PatchNet [25] 15.68 11.12 10.17 22.97 16.86 14.97 - - - 93.82 90.87 79.62 0.40

D4LCN [12] 16.65 11.72 9.51 22.51 16.02 12.55 90.01 82.08 63.98 90.34 83.67 65.33 0.20

Kinematic3D [3] 19.07 12.72 9.17 26.69 17.52 13.1 58.33 45.5 34.81 89.67 71.73 54.97 0.12

MonoEF 21.29 13.87 11.71 29.03 19.7 17.26 96.19 90.65 82.95 96.32 90.88 83.27 0.03

Table 1. AP40 scores(%) and runtime(s) on KITTI3D test set for car at 0.7 IoU threshold referred from the KITTI benchmark website. E,

M and H represent Easy , Moderate and Hard samples. Our model not only ranks first on the 3D evaluation metrics but also keeps the run

time fairly low and comparable as a simple one-stage detection. Corner information might be cropped and padded by feature transferring

and correction so that the performance of 2D detection is slightly affected.

feature map of shape (cm × hm × wm). The content fea-

ture reconstruction loss is the squared Euclidean distance

between feature representations:

lφ,mcontent(Hout,Hcontent) =
‖φm(Hout)− φm(Hcontent)‖

2

2

cmhmwm

.

(8)

Following [14], we define the Gram matrix Gφ
m to be the

cm × cm matrix whose elements are given by:

Gφ
m(H)c,c′ =

∑hm

h=1

∑wm

w=1 φm(H)h,w,cφm(H)h,w,c′

cmhmwm

.

(9)

The Gram matrix can be computed by reshaping φm(H)
into a matrix ψ, then Gφ

m(H) = ψψT /cmhmwm. The style

reconstruction loss is then the squared Frobenius norm of

the difference between the Gram matrices of the output and

target feature maps:

lφ,mstyle(Hin,Hstyle) =
∥

∥Gφ
m(Hin)−Gφ

m(Hstyle)
∥

∥

2

F
. (10)

The lcontent penalizes the output feature map when it de-

viates in content from the target and lstyle penalizes differ-

ences in style. The joint total loss is defined as:

Ltotal = γ1lcontent + γ2lstyle, (11)

where γ1 and γ2 are hyper-parameters for tuning content

loss and style loss.

4. Experimental Results

4.1. Implementation Setup

We conduct experiments on the KITTI3D object detec-

tion dataset, KITTI odometry dataset and nuScenes dataset.

The KITTI3D dataset does not collect camera extrinsic in-

formation, which means its T matrix is an identity matrix.

We can only find vehicle ego-pose information from the

KITTI odometry and nuScenes datasets.

For the evaluation and ablation study, we show experi-

mental results from two different setups. Baseline is de-

rived from SMOKE [24] with an additional output branch

for camera extrinsic parameters. MonoEF is the final pro-

posed method integrating seven prediction branches, cam-

era extrinsic parameter regression branch, and camera ex-

trinsic amendment network.

For the rest of the detailed dataset statistics, training and

inference structure, learning rules, evaluation metrics, etc.,

please refer to the supplementary.

4.2. Quantitative and Qualitative Results

We first show the performance of our proposed MonoEF

on KITTI3D object detection benchmark* for car. Com-

parison results with other state-of-the-art (SOTA) monoc-

ular 3D detectors including M3D-RPN [2], SMOKE [24],

MonoPair [11], PathNet [25], D4LCN [12] and Kine-

matic3D [3] are shown in Table 1. AP2D and AOS are

metrics for 2D object detection and orientation estimations

following the benchmark. We achieve the highest score for

all kinds of samples and rank in first place among those 3D

monocular object detectors on other metrics, regardless our

model is only comparable or a bit worse than SOTA de-

tector MonoPair [11] on AP2D. Our method outperforms

Kinematic3D for a large margin in AP3D and APBV , espe-

cially for Hard samples. The comparison of results fully

proves the effectiveness of the proposed camera extrinsic

amendment for images with unknown perturbations.

Table 2 shows the performance on KITTI3D validation

set for the car with and without camera extrinsic perturba-

tion. Since the KITTI3D dataset is initially without per-

turbation information of the camera pose, we simulate the

camera extrinsic parameter perturbation in the real world

using an artificially set Gaussian function (pitch, roll ∼
N(0, 1)). We evaluate the related values of SOTA monoc-

ular detectors through their published detection models. It

can be noticed that the detection performance of all mod-

*http://www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d
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Methods Test Data
AP3D APBV AP2D

E M H E M H E M H

M3D-RPN [2]

original 64.91 50.53 41.73 69.28 53.64 45.12 91.88 93.11 77.24

disturbed 39.72 31.08 25.73 48.37 38.55 32.22 92.20 93.14 77.13

decrease -25.19 -19.45 -16.00 -20.91 -15.09 -12.9 0.32 0.03 -0.11

SMOKE [24]

original 77.89 72.80 65.37 83.30 82.92 75.76 99.50 99.05 90.55

disturbed 42.58 35.09 30.74 53.01 44.15 39.41 98.66 98.12 89.84

decrease -35.31 -37.71 -34.63 -30.29 -38.77 -36.35 -0.85 -0.92 -0.71

D4LCN [12]

original 61.54 45.60 37.77 68.32 51.68 39.31 97.35 89.1 71.51

disturbed 41.77 29.22 25.78 59.9 43.45 36.06 85.38 76.64 60.03

decrease -19.77 -16.38 -11.99 -8.42 -8.23 -3.25 -11.97 -12.46 -11.48

Kinematic3D [3]

original 55.45 39.47 31.29 61.72 44.65 34.58 98.61 86.3 71.39

disturbed 27.30 16.95 13.79 47.78 36.70 29.24 90.84 55.13 44.80

decrease -28.15 -22.52 -17.50 -13.94 -7.95 -5.34 -7.77 -31.17 -26.59

MonoEF

original 77.55 72.83 72.01 82.33 82.80 75.61 99.56 99.19 90.62

disturbed 76.87 70.86 63.86 81.64 74.76 73.92 99.65 99.15 90.62

decrease -0.68 -1.97 -8.16 -0.68 -8.04 -1.70 0.09 -0.04 -0.01

Table 2. AP40 scores(%) on KITTI3D validation set for car at 0.5 IoU threshold before and after camera extrinsic disturbance. The lower

the decreased value, the better the performance. The original target coordinates are transformed according to the pitch and roll angle set by

the artificial extrinsic perturbation. The input image is also processed using the projection transformation according to these angles.

Figure 5. Qualitative results on KITTI odometry dataset. The prediction 3D bounding boxes of SMOKE (the one above) and our model

(the one below) are shown under camera extrinsic perturbation in the images. Green boxes and orange boxes in bird view mean ground

truth and predictions of cars. A more pronounced difference in the predictions appears where the dashed line is circled. It can be seen from

the figure that our model is effective against the perturbation of the external participants, especially for depth prediction.

Class Methods ATE ↓ ASE ↓ AOE ↓

car
baseline 0.73 0.16 0.09

MonoEF 0.56 0.15 0.09

pedestrian
baseline 0.85 0.32 1.48

MonoEF 0.71 0.31 0.99

motorcycle
baseline 0.84 0.23 0.86

MonoEF 0.70 0.23 0.79

overall
baseline 0.87 0.57 0.75

MonoEF 0.77 0.37 0.65

Table 3. Evaluation errors on the nuScenes test dataset. Our errors

are lower on the three representative categories selected. In overall

classes, our error is much lower than baseline.

els is degraded more or less after the addition of the ex-

trinsic perturbation. The other models are quite sensitive

to extrinsic perturbations, with very severe performance

degradation, while our model only has a slight performance

drop. This demonstrates the effectiveness of our model in

handling camera extrinsic perturbations. Figure 5 shows

the qualitative results on KITTI odometry dataset. In this

dataset we can get the vehicle pose information, so we know

the real-world extrinsic parameter perturbations to which

the vehicle is subjected. The parts drawn with dashed lines

indicate that our model has good performance against per-

turbations, especially in depth estimation.

Since there is no open source code the more challenging

nuScenes dataset by time, we only evaluate our model on

it, which is shown in Table 3. From this dataset, we can

get ego car pose information. The table shows smoke of the
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Category Methods Angular Error ↓

Multiple frames

CC [36] 0.0320

MonoDepth2 [16] 0.0312

LTMVO [61] 0.0142

Single frame MonoEF 0.0287

Table 4. Angular Error(deg/m) on KITTI Odometry validation se-

quence 08. Methods designed specifically for the odometry task

use information from consecutive frames to detect pose, and we

have achieved comparable detection accuracy by doing the detec-

tion only on a single frame.

more representative categories in the dataset, and we can see

that our model’s prediction errors on these categories have

decreased compared to the baseline. Across all categories,

our model reduced the overall ATE and ASE quite a lot.

This demonstrates the enhancement of our model for the

3D detection task on the nuScenes dataset.

4.3. Ablation Study

We conduct several ablation studies for different evalu-

ation items and data settings. We only show results from

Moderate samples here.

Time expense analysis. Other Mono3D models may

require some additional operations to assist the prediction

during inference, such as generating pseudo-lidar [3], gen-

erating pairs [11], etc. Compared to these methods, Mo-

noEF is based on the SMOKE [24] with modified extrinsic

parameters and only needs to go through a backbone net-

work during the inference process. We can see from Figure

1 that our method also has a great advantage in time ex-

pense.

Camera pose detection. For camera extrinsic parame-

ters regression study, we evaluate the angular errors of the

MonoEF on the KITTI odometry verification sequence 08,

comparing with SOTA monocular visual odometry methods

including CC [36], MonoDepth2 [16] and LTMVO [61].

The evaluation results shown in Table 4 indicate that al-

though our model is not specifically designed to implement

visual odometry functionality, it is also possible to predict

accurate camera poses and achieve SOTA performance on

the KITTI odometry dataset. This ensures the accuracy of

the camera extrinsic parameters regression.

Camera extrinsic amendment. In terms of the camera

extrinsic amendment study, we perform performance com-

parison experiments on sequences of the KITTI odometry

dataset shown in Table 5. Because the odometry dataset

does not contain a 3D detection label, we used the point

cloud detection model 3DSSD [55] to formulate the ground

truth. For the detection task training on the single se-

quence and multi sequences, our model shows a substan-

tial improvement on performance with the camera extrinsic

amendment compared to the baseline. The improvement

Data Methods AP3D APBV AP2D

Single Seq.
baseline 34.98 43.29 80.51

MonoEF 41.78 52.78 79.33

Multiple Seq.
baseline 23.46 26.51 75.41

MonoEF 26.06 32.43 80.21

Table 5. AP40 scores(%) evaluated on KITTI Odometry sequecnce

00 (trained on single sequence 00) and sequecnce 08 (trained on

sequence 00-07 & 09-10) for car.

Methods AP3D APBV AP2D

M3D-RPN [2] 36.13 42.88 67.49

M3D-RPN [2] + E.F. 41.36 43.41 67.57

Kinematic3D [3] 41.44 43.51 65.70

Kinematic3D [3] + E.F. 48.92 51.39 66.92

SMOKE [24] 34.98 43.29 80.51

SMOKE [24] + E.F. (MonoEF) 41.78 52.78 79.33

Table 6. AP40 scores(%) evaluated on KITTI Odometry sequec-

nce 00 for SOTA methods, including M3D-RPN [2], Kinematic3D

[24] and SMOKE [3]. +E.F. indicates that we apply the trans-

fer network to feature maps by extrinsic regression network to the

original method.

is more pronounced on a single sequence since the initial

frame of different sequences in KITTI odometry dataset

can not assure a consistent camera pose w.r.t. ground

plane, which would confuse the extrinsic regression net-

work. We apply our MonoEF to other SOTA detection mod-

els [2, 24, 3] and achieve similar significant improvements,

which is shown in Table 6.

5. Conclusion

We propose a novel method for monocular 3D object de-

tection with two camera-extrinsic-aware modules, namely

the extrinsic regression net and the feature transfer net. By

capturing the camera pose change from image w.r.t ground

plane and performing a corresponding amendment for the

naturally ill-posed Mono3D detection, our method is robust

against camera extrinsic perturbation and helps model pre-

dict much more accurate depth results. Our model achieves

the state-of-the-art performance on KITTI3D object detec-

tion benchmark using a monocular camera and proves its

efficiency on KITTI odometry and nuScenes dataset.
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