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Abstract

Monocular 3D object detection is an important task in

autonomous driving. It can be easily intractable where

there exists ego-car pose change w.r.t. ground plane. This

is common due to the slight fluctuation of road smoothness

and slope. Due to the lack of insight in industrial appli-

cation, existing methods on open datasets neglect the cam-

era pose information, which inevitably results in the detec-

tor being susceptible to camera extrinsic parameters. The

perturbation of objects is very popular in most autonomous

driving cases for industrial products. To this end, we pro-

pose a novel method to capture camera pose to formulate

the detector free from extrinsic perturbation. Specifically,

the proposed framework predicts camera extrinsic param-

eters by detecting vanishing point and horizon change. A

converter is designed to rectify perturbative features in the

latent space. By doing so, our 3D detector works indepen-

dent of the extrinsic parameter variations and produces ac-

curate results in realistic cases, e.g., potholed and uneven

roads, where almost all existing monocular detectors fail

to handle. Experiments demonstrate our method yields the

best performance compared with the other state-of-the-arts

by a large margin on both KITTI 3D and nuScenes datasets.

1. Introduction

3D object detection plays an important role in a vari-

ety of computer vision tasks, such as automated driving

vehicles, autonomous drones, robotic manipulation, aug-

mented reality applications, etc. Most existing 3D detec-

tors require accurate depth-of-field information. To acquire

such resource, majority of the methods resort to the LiDAR

pipeline [10, 33, 37, 38, 23, 60], some to the radars solu-

tion [27, 54, 18, 20] or others to the multi-camera frame-

work [8, 9, 21, 32, 35, 51]. In this paper, we address this

problem in a monocular camera setting and curate it specif-

ically for automated driving scenarios With the difficulty

in directly acquiring a depth of field information, monocu-

lar 3D detection (Mono3D) is an ill-posed and challenging

task. However, Mono3D approaches have the advantage of
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Figure 1. The effect of extrinsic parameter perturbations on 3D

detection task. When the vehicle undergoes a slight pose change

on an uneven road, the 3D detection results are less accurate (sec-

ond row). This happens often in realistic applications and the de-

tection offset can be viewed more evidently in the bird-eye’s view.

low cost, low power consumption, and easy-to-deployment

in real-world applications. Therefore, monocular 3D de-

tection has received increasing attention over the past few

years [2, 7, 28, 29, 34, 39].

Current Mono3D methods have achieved considerable

high accuracy given a specifically fixed camera coordinate

system. However, in real scenarios, the unevenness (pertur-

bation) of the road surface often causes the camera extrinsic

parameters to be disturbed, which introduces a significant

algorithmic challenge. To the best of our knowledge, there

are no 3D detection datasets that takes into account the cam-

era pose change under perturbation.

As shown in Figure 1, current datasets or detectors as-

sume there is no perturbation, i.e., the extrinsic parameters

are set to be constant. Therefore the accurate 3D results are

obtained (top row). However, as depicted in the bottom per-

turbation case, the object information viewed by the camera

deviates from the real object information. This makes the

detection results unreliable by recovering a large offset in

form of both 3D boxes and bird-eye’s view. Straightfor-

ward methods to address this problem are to design com-

plementary branches or networks to improve the general-

ization ability, and yet this solution yields limited improve-

ment [5, 50, 34, 45, 12]. Some approaches utilize vehicle

CAD models or keypoints to reconstruct vehicle geometry
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[5, 50], while others exploit existing networks to predict

pixel-level or instance-level depth map by mimicking state-

of-the-art (SOTA) LiDAR 3D detection methods, namely

pseudo-LiDAR methods [34, 45, 12].

Our work is inspired by the visual odometry methods

that resolve camera pose change in adjacent frames from

images [16, 22, 36, 46, 56, 58]. Note that this idea dif-

ferentiates from those that focus solely on detecting ob-

jects in the perturbation-prone camera coordinate system

[39, 2, 24, 59, 11, 42, 3]. These approaches focus on some

less critical issues regarding to realistic industrial applica-

tions. For example, the modeling of occlusive objects [11],

depth branches [42], kinematic motion information (object

orientation) [3], etc. Moreover, it is similar to human behav-

ior patterns that one can naturally adapt to changing road

gradients and gradually deduce the accurate position of ob-

jects even on potholes. Formulating our network to encode

such learning patterns is feasible on a biological basis.

In this paper, we propose to leverage the extrinsic param-

eter change implicitly in the image. Our key idea is to esti-

mate camera pose change w.r.t. the ground plane from im-

ages and optimize predicted 3D locations of objects guided

by the camera extrinsic geometry constraint. We abbreviate

the proposed framework as MonoEF (extrinsic parameter

free detector). Specifically, a novel detector is proposed to

extract the vanishing point and horizon information from

the image to estimate the camera extrinsic corresponding to

the image. The model is thus capable of capturing the ex-

trinsic parameter perturbations to which the current image

is subjected in the geometric space. During inference, we

transform latent feature space using extrinsic parameters as

seed to remove the effect of extrinsic perturbations on fea-

tures fed from the input image. Note that the transformation

network is learned in a supervised manner, which allows the

image features to recover from camera perturbation. By do-

ing so, we impose our detector exclusive from the effects

of the extrinsic parameter. The resultant 3D locations are

obtained via the extrinsic parameter-free predictor and pro-

jected back into the real-world coordinate system.

Experiments on both the KITTI 3D benchmark [15] and

nuScenes dataset [4] demonstrate that our method outper-

forms the SOTA methods by a large margin, especially for

perturbative examples with a distinguished improvement.

To sum up, the contributions of our paper are as follows:

• We introduce a novel Mono3D detector by capturing

the perturbative information of the extrinsic parame-

ters from monocular images to make the detector free

from extrinsic fluctuation.

• We design a feature transformation network, using

camera extrinsic parameters as seed, to recover the

non-perturbative image information from the perturba-

tive latent feature space.

• We propose an extrinsic module that complements the

camera’s pose in 3D object detection. Such a plug-and-

play can be applied to existing detectors and pragmatic

for industrial applications, e.g., autonomous driving

scenarios.

The whole suite of the codebase will be released and the ex-

perimental results will be pushed to the public leaderboard.

2. Related Work

Monocular 3D Object Detection. The Monocular cam-

era is in lacks 3D information compared with multi-beam

LiDAR or stereo cameras. To overcome this difficulty and

reconstruct the geometry and position of the object in world

coordinates, most Mono3D methods can be roughly divided

into three categories. In the first category [7, 31, 5], aux-

iliary information is widely used like vehicle Computer-

Aided Design (CAD) models or keypoints. By this means,

extra labeling cost is inevitably required. In the second cat-

egory [26, 28, 49, 51], the prior knowledge like depth map

by LiDAR point cloud, or disparity map by stereo cameras

trained by external data is exploited. Usually, the inference

time would increase significantly due to the prediction of

these dense heat maps.

Unlike the aforementioned work, methods in the third

category only make use of the RGB image as input and re-

move the dependencies on extra labeling or pre-trained net-

works by external data. SMOKE [24] predicts a 3D bound-

ing box by combining a single keypoint estimation with re-

gressed 3D variables based on CenterNet [59]. M3D-RPN

[2] reformulates the monocular 3D detection problem as a

standalone 3D region proposal network. Current SOTA re-

sults for monocular 3D object detection are from MonoPair

[11], Center3D [42], and Kinematic3D [3]. Among them,

MonoPair [11] improves the modeling of occlusive objects

by considering the relationship of paired samples. Cen-

ter3D [42] carefully designs two modules for better depth

prediction called LID and DepJoint. Kinematic3D [3] pro-

poses a novel method for monocular video-based 3D object

detection which leverages kinematic motion to improve the

precision of 3D localization.

However, all the object detectors mentioned above focus

only on the information in the current camera coordinate

system that ignores the effect of camera pose on detection.

These methods do not work well when the camera’s pose re-

ceives a disturbance w.r.t. ground plane due to rough terrain

or acceleration of ego vehicle.

Deep Monocular Odometry. With the success of deep

neural networks, end-to-end learning-based methods [47,

48, 52, 53] have been proposed to tackle the visual odom-

etry problem. Recently, some methods [1, 41, 43, 44,

57] exploit CNNs to predict the scene depth and cam-

era pose jointly, utilizing the geometric connection be-

tween the structure and the motion. This corresponds to

learning Structure-from-Motion (SfM) in a supervised man-
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Figure 2. System overview. The Extrinsic Regression module (blue block) predicts the ground plane as well as vanishing point. The pose

information is thereby obtained and then fed into the Feature Transfer module (yellow block) as guidance for feature enhancement. By

doing so, the original features (in gray color) after the backbone are transferred to a rectified set of features (in yellow color), immune to

the extrinsic parameter perturbation. The Monocular 3D Detection module and coordinate alignment unit follow standard procedures [24].

ner. To mitigate the requirement of data annotations, self-

supervised and un-supervised methods [16, 22, 36, 46, 56,

58] have been proposed to tackle the SfM task. CC [36]

addresses the unsupervised learning of several intercon-

nected problems in low-level vision: single view depth pre-

diction, camera motion estimation, optical flow, and seg-

mentation of a video into the static scene and moving re-

gions. MonoDepth2 [16] proposes a set of improvements,

which together result in both quantitatively and qualita-

tively improved depth maps compared to competing for

self-supervised methods. LTMVO [61] presents a self-

supervised learning method for visual odometry with spe-

cial consideration for consistency over longer sequences.

While these visual odometry methods are relatively good

at detecting camera pose, they all rely on motion informa-

tion on the time series, which will not be available in a typ-

ical Mono3D task based on single-frame images. Conse-

quently, the lack of motion information in the time series

prevents us from directly obtaining accurate camera pose

information. However, We can still use similar ideas to de-

tect changes in the ground plane and vanishing point from

the image compared to the reference frame, and thus indi-

rectly infer changes in the camera extrinsic parameters.

3. An Extrinsic Parameter Free Approach

3.1. Overview

We adopt the one-stage anchor-free architecture as does

in SMOKE [24]. Figure 2 depicts an overview of our frame-

work. It contains a backbone network, an extrinsic regres-

sion network, a feature transfer network, and several task-

specific dense prediction branches. The backbone takes a

monocular image of size (Ws×Hs×3) as input and outputs

a feature map of size (W × H × 64) after down-sampling

with an s-factor. The feature map is utilized for extrinsic

parameter detection (top blue pipeline), and in parallel rec-

tified by the transfer network based on extrinsic parameters

(known as Pose as in the bottom yellow pipeline). For 2D

and 3D detection, we follow standard procedures in this do-

main. There exist seven output branches with each having

size of (W × H × m), where m is the output channel of

each branch. The detection results need to be aligned by

the predicted extrinsic parameters in order to get the final

bounding box and position.

3.2. Preliminary on Monocular Object Detection

The 2D object detection follows the design of Center-

Net [59]. A heatmap of size (W × H × c) is used to

enable keypoint localization(ug, vg) and its classification.

The number of object categories c equals three on KITTI3D

benchmark and ten on nuScenes dataset. The other two

branches of size (W × H × 2) are adopted to regress the

dimensions of the 2D bounding box (wb, hb) and the offset

(δu, δv) from the center of the bounding box (ub, vb) to the

keypoint (ug, vg) correspondingly.

The 3D object detection focuses on the 3D information

of an object in the local camera coordinate system instead

of the global world coordinate system. The object center in

local camera coordinate system can be represented as ho-

mogeneous coordinates cw = (x, y, z); its projection in the

feature map is co = (u, v, 1). Similar to [28, 39], we pre-

dict the offset (∆u,∆v) to the keypoint location (ug, vg)
and depth z in two separate branches. Denote the coordi-

nates in form of congruent concept, we have:

z
[

u v 1
]T

= P ·
[

x y z
]T
, (1)

where P is the projection conversion matrix between the

world coordinate system and the image coordinate system.

The projection matrix can be decomposed as:

P = K ·T, (2)
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Figure 3. Visualization of the extrinsic perturbation. The pose of the ego vehicle varies due to the unevenness of road surfaces, which is

quite common in realistic scenarios. It causes the camera’s viewport i to be inconsistent with ground viewport j . Therefore, the position

of keypoints found from the heat map and depth map are shifted from (ui ; vi ) to (uj ; vj ) by extrinsic perturbation, leading to a confusion

for the 3D prediction and thereby inaccurate results.

where K is referred to as the constant camera intrinsic ma-

trix and T as the inconstancy extrinsic matrix w.r.t ground

plane. Naturally we have co = 1
z
Pcw. The depth z and

size (w, h, l) are regressed according to [13]. As aforemen-

tioned in Section 3.1, in these branches, the regression com-

ponents are trained with the L1 loss. Similar to [29, 59], we

represent the orientation using eight scalars, where the ori-

entation branch is trained using the multi-bin loss [30].

3.3. Theoretical Analysis

Figure 3 depicts a concrete example of how an extrinsic

perturbation can significantly impose poor prediction onto

heat map and depth map.

Given a specific local camera coordinate system called

viewport i, it is normally assumed that the viewport i is con-

sistent with ground plane coordinate system called viewport

j, so do most of Mono3D datasets. Suppose the 3D center

of a selected object in viewport i is cwi = (xi, yi, zi), and

the 3D center on the feature map is coi = (ui, vi, 1), corre-

sponding to the case as depicted in Figure 3. If there is an

extrinsic perturbation from the ground plane variation, the

identical relation between camera viewport i and ground

plane viewport j would no longer exist. We discriminate

this process as perturbation. The perturbation matrix A can

be described as:

A =





sin θr cos θr 0
cos θp sin θr cos θr cos θp sin θp
− sin θp sin θr − sin θp cos θr cos θp



 , (3)

where θp stands for pitch angle and θr for roll angle of

ego vehicle w.r.t. ground plane respectively. Now we are

equipped with the extrinsic perturbation being introduced

spatially, the center of the object cwi of camera viewport i
is transformed to a point cwj in the ground plane viewport

j, where cwj = zjP
� 1
j coj = Acwi . On the feature map,

the keypoint of the object shifts correspondingly from coi to

Figure 4. The training process of the transfer network f t . The

feature target is derived from a feature obtained by the backbone

after a direct extrinsic parameter correction of the image. The pre-

trained loss network � has two branches, one with the style target

for high-dimensional losses computed on three layers and the other

with the content target for low-dimensional losses computed only

on the last layer.

coj . The transfer relationship matrix M of keypoints on the

feature map can be represented by:

coj = Mcoi =
zi
zj

PjAP� 1
i coi . (4)

This shift in image coordinates would cause confusion for

the prediction of 3D position.

Given the example in Figure 3, we use the changes on the

depth hidden map to perform our analysis. If the model can

know the changes that occur in the ground plane coordinate

system, such as LiDAR-based methods, it will assume that

the target has changed in height. However, for the camera,

the height and depth of the target will both affect its position

on the image. The camera assumes that the target vehicle

remains on the ground coordinate system at all times, so it

incorrectly determines that the change in the target on the

image is caused by the depth. The offset of keypoints leads

to large depth prediction errors.

These keypoint positions need to be rectified to compen-

sate for offsets caused by the change of camera extrinsic
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