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Abstract

The classical matching pipeline used for visual localiza-

tion typically involves three steps: (i) local feature detec-

tion and description, (ii) feature matching, and (iii) outlier

rejection. Recently emerged correspondence networks pro-

pose to perform those steps inside a single network but suf-

fer from low matching resolution due to the memory bottle-

neck. In this work, we propose a new perspective to esti-

mate correspondences in a detect-to-refine manner, where

we first predict patch-level match proposals and then re-

fine them. We present Patch2Pix, a novel refinement net-

work that refines match proposals by regressing pixel-level

matches from the local regions defined by those propos-

als and jointly rejecting outlier matches with confidence

scores. Patch2Pix is weakly supervised to learn correspon-

dences that are consistent with the epipolar geometry of

an input image pair. We show that our refinement net-

work significantly improves the performance of correspon-

dence networks on image matching, homography estima-

tion, and localization tasks. In addition, we show that our

learned refinement generalizes to fully-supervised methods

without re-training, which leads us to state-of-the-art lo-

calization performance. The code is available at https:

//github.com/GrumpyZhou/patch2pix.

1. Introduction

Finding image correspondences is a fundamental step

in several computer vision tasks such as Structure-from-

Motion (SfM) [36, 41] and Simultaneous Localization and

Mapping (SLAM) [8, 24]. Given a pair of images, pixel-

level correspondences are commonly established through a

local feature matching pipeline, which involves the follow-

ing three steps: i) detecting and describing local features,

ii) matching the nearest neighbors using the feature descrip-

tors, and iii) rejecting outlier matches.

Traditional hand-crafted local features such as SIFT [15]
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Figure 1. An example of Patch2Pix correspondences. In the top

figure, the matches refined by Patch2Pix are coloured according

to the predicted confidence scores. The less confident matches (in

blue) appear mostly on the road or the blank wall. In the bottom

figure, we show that the inlier matches can well handle the large

viewpoint change. We show more quantitative results for handling

various challenging conditions in the supp. mat (c.f . Sec. D).

or SURF [2] are vulnerable to extreme illumination

changes, motion blur and repetitive and weakly textured

scenes. Therefore, recent works [5–7, 16, 17, 28, 40] pro-

pose to learn to detect and describe local features using neu-

ral networks, showing that learned features can be robustly

matched under challenging conditions [6, 17, 28, 40]. In-

stead of focusing on improving local features, [3,22,38,42]

suggest to learn a filtering function from sets of correspon-

dences to reject outlier matches. A recent method [33] fur-

ther proposes to jointly learn the matching function and out-

lier rejection via graph neural networks and the Sinkhorn

algorithm [4, 37]. Combining a learned feature [5] and

learned matcher [33] has set the state-of-the-art results on

several geometry tasks, showing a promising direction to-

wards a full learnable matching pipeline.

Learning the whole matching pipeline has already been

investigated in several works [13, 30, 31], where a single

network directly outputs correspondences from an input

image pair. The main challenge faced with those corre-

spondence networks is how to efficiently perform matching

while reaching pixel-level accuracy. In order to keep com-

putation speed and memory footprint manageable, [29] has
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to match at a rather low resolution, which is shown to be

less accurate in relative pose estimation [43]. While sparse

convolutions have been applied in [30] to match at higher

resolution, they still do not achieve pixel-level matching.

One advantage of the correspondences networks [30, 31] is

that they are weakly supervised to maximize the average

matching score for a matching pair and minimize it for a

non-matching pair, however, they learn less effectively in

pixel-level matching. This is in contrast to methods that

require full supervision from ground truth (GT) correspon-

dences [5, 6, 10, 17, 28, 33]. While the GT correspondences

provide very precise signals for training, they might also

add bias to the learning process. For example, using the

sparse keypoints generated by an SfM pipeline with a spe-

cific detector as supervision, a keypoint detector might sim-

ply learn to replicate these detections rather than learning

more general features [26]. To avoid such type of bias in

the supervision, a recent work [40] proposes to use relative

camera poses as weak supervision to learn local feature de-

scriptors. Compared to the mean matching score loss used

in [30,31], they are more precise by containing the geomet-

rical relations between the images pairs.

In this paper, we propose Patch2Pix, a new view for the

design of correspondence networks. Inspired by the suc-

cessful detect-to-refine practice in the object detection com-

munity [27], our network first obtains patch-level match

proposals and then refines them to pixel-level matches. See

an example of our matches in Fig. 1. Our novel refine-

ment network is weakly supervised by epipolar geometry

computed from relative camera poses, which are used to

regress geometrically consistent pixel-wise matches within

the patch proposal. Compared to [40], we optimize di-

rectly on match locations to learn matching, while they op-

timize through matching scores to learn feature descriptors.

Our method is extensively evaluated on a set of geometry

tasks, showing state-of-the-art results. We summarize our

contributions as: i) We present a novel view for finding

correspondences, where we first obtain patch-level match

proposals and then refine them to pixel-level matches. ii)

We develop a novel match refinement network that jointly

refines the matches via regression and rejects outlier pro-

posals. It is trained without the need for pixel-wise GT cor-

respondences. iii) We show that our model consistently im-

proves match accuracy of correspondence networks for im-

age matching, homography estimation and visual localiza-

tion. iv) Our model generalizes to fully supervised methods

without the need for retraining, and achieves state-of-the-art

results on indoor and outdoor long-term localization.

2. Related Work

Researchers have recently opted for leveraging deep

learning to detect robust and discriminative local features

[5–7, 17, 28, 40]. D2Net [6] detects keypoints by finding

local maxima on CNN features at a 4-times lower resolu-

tion w.r.t. the input images, resulting in less accurate de-

tections. Based on D2Net, ASLFeat [17] uses deformable

convolutional networks and extracts feature maps at multi-

ple levels to obtain pixel-level matches. R2D2 [28] uses di-

lated convolutions to preserve image resolution and predicts

per-pixel keypoints and descriptors, which gains accuracy at

the cost of computation and memory usage. Given the key-

points, CAPS [40] fuses features at several resolutions and

obtains per-pixel descriptors by interpolation. The above

methods are designed to learn local features and require a

further matching step to predict the correspondences.

Matching and Outlier Rejection. Once local features are

detected and described, correspondences can be obtained

using Nearest Neighbor (NN) search [23] based on the Eu-

clidean distance between the two feature representations.

Outliers are normally filtered based on mutual consistency

or matching scores. From a set of correspondences obtained

by NN search, recent works [3, 22, 38, 42] learn networks

to predict binary labels to identify outliers [22, 38, 42], or

probabilities that can be used by RANSAC [9] to weight

the input matches [3]. Notice, those methods do not learn

the local features for matching and the matching function

itself, thus they can only improve within the given set of

correspondences. Recent works further propose to learn

the whole matching function [10, 33]. SuperGlue [33]

learns to improve SuperPoint [5] descriptors for matching

using a graph neural network with attention and computes

the correspondences using the Sinkhorn algorithm [4, 37].

S2DNet [10] extracts sparse features at SuperPoint keypoint

locations for one image and matches them exhaustively to

the dense features extracted for the other image to compute

correspondences based on the peakness of similarity scores.

While those methods optimize feature descriptors at key-

point locations specifically for the matching process, they

do not solve the keypoint detection problem.

End-to-End Matching. Instead of solving feature detec-

tion, feature matching, and outlier rejection separately, re-

cently correspondences networks [13, 30, 31] have emerged

to accomplish all steps inside a single forward pass. NC-

Net uses a correlation layer [29] to perform the match-

ing operation inside a network and further improves the

matching scores by leveraging a neighborhood consistency

score, which is obtained by a 4D convolution layer. Limited

by the available memory, NCNet computes the correlation

scores on feature maps with 16-times downscaled resolu-

tion, which has been proven not accurate enough for cam-

era pose estimation [43]. SparseNCNet [30] uses a sparse

representation of the correlation tensor by storing the top-

10 similarity scores and replace dense 4D convolution with

sparse convolutions. This allows SparseNCNet to obtain

matches at 4-times downscaled resolution w.r.t. the origi-
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nal image. DualRC-Net [13], developed concurrently with

our approach, outperforms SparseNCNet by combining the

matching scores obtained from coarse-resolution and fine-

resolution feature maps. Instead of refining the matching

scores as in [13, 30], we use regression layers to refine the

match locations at image resolution.

Full versus Weak Supervision. We consider methods that

require information about exact correspondences to com-

pute their loss function as fully supervised and those that do

not need GT correspondences as weakly supervised. Most

local feature detectors and descriptors are trained on ex-

act correspondences either calculated using camera poses

and depth maps [6, 10, 17] or using synthetic homogra-

phy transformations [5, 28], except for CAPS [40] using

epipolar geometry as weak supervision. Both S2DNet [10]

and SuperGlue [33] requires GT correspondences to learn

feature description and matching. Outlier filtering meth-

ods [3,22,38,42] are normally weakly supervised by the ge-

ometry transformations between the pair. DualRC-Net [13]

is also fully supervised on exact correspondences, while the

other two correspondence networks [30, 31] are weakly-

supervised to optimize the mean matching score on the

level of image pairs instead of individual matches. We use

epipolar geometry as weak supervision to learn geometri-

cally consistent correspondences where the coordinates of

matches are directly regressed and optimize. In contrast,

CAPS [40] uses the same level of supervision to learn fea-

ture descriptors and their loss optimizes through the match-

ing scores whose indices give the match locations. We pro-

pose our two-stage matching network, based on the concept

of learned correspondences [30,31], which learns to predict

geometrically consistent matches at image resolution.

3. Patch2Pix: Match Refinement Network

A benefit of correspondence networks is the potential to

optimize the network directly for the feature matching ob-

jective without the need for explicitly defining keypoints.

The feature detection and description are implicitly per-

formed by the network and reflected in the found correspon-

dences. However, there are two main issues causing the in-

accuracy of the existing correspondence networks [30, 31]:

i) the use of downscaled feature maps due to the memory

bottleneck constrained by the size of the correlation map.

This leads to every match being uncertain within two local

patches. ii) Both NCNet [31] and SparseNCNet [30] have

been trained with a weakly supervised loss which simply

gives low scores for all matches of a non-matching pair and

high scores for matches of a matching pair. This does not

help identify good or bad matches, making the method un-

suitable to locate pixel-accurate correspondences.

In order to fix those two sources of inaccuracies, we pro-

pose to perform matching in a two-stage detect-to-refine

manner, which is inspired by two-step object detectors such

as Faster R-CNN [27]. In the first correspondence detec-

tion stage, we adopt a correspondence network, e.g., NC-

Net, to predict a set of patch-level match proposals. As in

Faster R-CNN, our second stage refines a match proposal

in two ways: (i) using classification to identify whether a

proposal is confident or not, and (ii) using regression to de-

tect a match at pixel resolution within the local patches cen-

tered by the proposed match. Our intuition is that the cor-

respondence network uses the high-level features to predict

semantic matches at a patch-level, while our refinement net-

work can focus on the details of the local structure to define

more accurate locations for the correspondences. Finally,

our network is trained with our weakly-supervised epipo-

lar loss which enforces our matches to fulfill this geometric

constraint defined by the relative camera pose. We name

our network Patch2Pix since it predicts pixel-level matches

from local patches, and the overview of the network archi-

tecture is depicted in Fig. 2. In the following, we take NC-

Net as our baseline to obtain match proposals, yet we are not

limited to correspondence networks to perform the match

detection. We show later in our experiments that our refine-

ment network also generalizes to other types of matching

methods (c.f . Sec. 5.3 & 5.4). The following sections de-

tail its architecture and training losses.

3.1. Refinement: Pixel­level Matching

Feature Extraction. Given a pair of images (IA, IB), a

CNN backbone with L layers extracts the feature maps from

each image. We consider {fA
1 }Ll=0

and {fB
l }Ll=0

to be the

activation maps at layer l for images IA and IB , respec-

tively. At the layer index l = 0, the feature map is the

input image itself, i.e., fA
0 = IA and fB

0 = IB . For an

image with spatial resolution H×W , the spatial dimension

of feature map fl is H/2l × W/2l for l ∈ [0, L − 1]. For

the last layer, we set the convolution stride as 1 to prevent

losing too much resolution. The feature maps are extracted

once and used in both the correspondence detection and re-

finement stages. The detection stage uses only the last layer

features which contain more high-level information, while

the refinement stage uses the features before the last layer,

which contain more low-level details.

From match proposals to patches. Given a match pro-

posal mi = (pAi , p
B
i ) = (xA

i , y
A
i , x

B
i , y

B
i ), the goal of our

refinement stage is to find accurate matches on the pixel

level by searching for a pixel-wise match inside local re-

gions. As the proposals were matched on a downscaled fea-

ture map, an error by one pixel in the feature map leads to

inaccuracy of 2L−1 pixels in the images. Therefore, we de-

fine the search region as the S×S local patches centered at

pAi and pBi , where we consider S > 2L−1 to cover a larger

region than the original 2L−1 × 2L−1 local patches. Once
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Figure 2. Correspondence Refinement with Patch2Pix. Top: For a pair of images, features are first extracted using our adapted ResNet34

backbone and fed into a correspondence network, e.g., NC matching layer [31], to detect match proposals. Those proposals are then

refined by Patch2Pix, which re-uses the extracted feature maps. Bottom: We design two levels of regressors with the same architecture

to progressively refine the match proposals at image resolution. For a pair of S × S local patches centered at a match proposal mi, the

features of the patches are collected as the input to our mid-level regressor to output (i) a confidence score ĉi which indicates the quality of

the match proposal and (ii) a pixel-level local match δ̂i found within the local patches. The updated match proposal m̂i updates the search

space accordingly through a new pair of local patches. The fine-level regressor outputs the final confidence score c̃i and δ̃i to obtained the

final pixel-accurate match m̃i. The whole network is trained under weak supervision without the need for explicit GT correspondences.

Figure 3. Patch Expansion. Given a match proposal pAi =
(xA

i , y
A

i ) and pBi = (xB

i , y
B

i ), we move pAi towards its four cor-

ners by moving along the x- and y-axes by d pixels, which are

matched to pBi to compose 4 new match proposals. Repeating it

also from pBi to pAi , leads to 8 match proposals in total, which al-

lows us to search in two 2S × 2S local regions, compared to the

original S × S patches.

we obtain a set of local patch pairs for all match proposals,

the pixel-level matches are regressed by our network from

the feature maps of the local patch pairs. We describe each

component in detail below.

Local Patch Expansion. We further propose a patch ex-

pansion mechanism to expand the search region by includ-

ing the neighboring regions, as illustrated in Fig. 3. We first

move pAi towards its four corners along the x- and y-axes,

each by d pixels. This gives us four anchor points for pAi
that we match to pBi to compose four new match proposals.

Similarly, we also expand pBi to get its four corner anchors

and match them to pAi , giving us another four new match

proposals. In the end, the expanded eight proposals iden-

tify eight pairs of S × S local patches. We set d = S/2
pixels so that the expanded search region defined by the ex-

panded patches has size 2S × 2S and still covers the orig-

inal S × S searching space. The patch expansion to the

patch proposals Mpatch is especially useful during training

since the network is forced to identify the correct proposal

among spatially close and similar features.We show in the

supp. mat (Sec. B) that our expansion mechanism can speed

up the learning process and also improves the model perfor-

mance. While one can also apply it during the inference to

increase the search region, it will lead to a higher computa-

tion overhead. We thus refrain from using it during testing.

Progressive Match Regression. In order to locate pixel-

level matches, we define the refinement task as finding a

good match inside the pair of local patches. We achieve

this using two regressors with the same architecture, i.e.,

the mid-level and the fine-level regressor, to progressively

identify the final match, which is shown in the lower part of

Fig. 2. Given a pair of S×S patches, we first collect the cor-

responding feature information from previously extracted

activation maps, i.e., {fA
l }, {fB

l }. For every point loca-

tion (x, y) on the patch, its corresponding location on the

l-layer feature map is (x/2l, y/2l). We select all features

from the layers {0, . . . , L − 1} and concatenate them into

a single feature vector. The two gathered feature patches

PFA
i and PFB

i are concatenated along the feature dimen-

sion and fed into our mid-level regressor. The regressor

first aggregates the input features with two convolutional

layers into a compact feature vector, which is then pro-
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cessed by two fully connected (fc) layers, and finally out-

puts our network predictions from two heads implemented

as two fc layers. The first head is a regression head, which

outputs a set of local matches M̂∆ := {δ̂i}
N
i=1

⊂ R4

inside the S × S local patches w.r.t. their center pixels,

where δ̂i = (δ̂xA
i , δ̂y

A
i , δ̂x

B
i , δ̂y

B
i ). In the second head,

i.e., the classification head, we apply a sigmoid function to

the outputs of the fc layer to obtain the confidence scores

Ĉpixel = (ĉ1, . . . , ĉN ) ∈ RN , which express the validity

of the detected matches. This allows us to detect and dis-

card bad match proposals that cannot deliver a good pixel-

wise match. We obtain the mid-level matches M̂pixel :=
{m̂i}

N
i=1

by adding the local matches to patch matches, i.e.,

m̂i = mi + δ̂i. Features are collected again for the new

set of local S × S patch pairs centered by the mid-level

matches and fed into the fine-level regressor, which follows

the same procedure as the mid-level regression to output the

final pixel-level matches M̃pixel := {m̃i}
N
i=1

and the confi-

dence scores C̃pixel = (c̃1, . . . , c̃N ) ∈ RN .

3.2. Losses

Our pixel-level matching loss Lpixel involves two terms:

(i) a classification loss Lcls for the confidence scores,

trained to predict whether a match proposal contains a true

match or not, and (ii) a geometric loss Lgeo to judge the ac-

curacy of the regressed matches. The final loss is defined as

Lpixel = αLcls + Lgeo, where α is a weighting parameter

to balance the two losses. We empirically set α = 10 based

on the magnitude of the two losses during training.

Sampson distance. To identify pixel-level matches, we su-

pervise the network to find correspondences that agree with

the epipolar geometry between an image pair. It defines that

the two correctly matched points should lie on their corre-

sponding epipolar lines when being projected to the other

image using the relative camera pose transformation. How

much a match prediction fulfills the epipolar geometry can

be precisely measured by the Sampson distance. Given a

match mi and the fundamental matrix F ∈ R3×3 computed

by the relative camera pose of the image pair, its Sampson

distance φi measures the geometric error of the match w.r.t.

the fundamental matrix [11], which is defined as:

φi =
((PB

i )TFPA
i )2

(FPA
i )2

1
+ (FPA

i )2
2
+ (FTPB

i )2
1
+ (FTPB

i )2
2

, (1)

where PA
i = (xA

i , y
A
i , 1)

T , PB
i = (xB

i , y
B
i , 1)T and

(FPA
i )2k, (FPB

i )2k represent the square of the k-th entry of

the vector FPA
i , FPB

i .

Classification loss. Given a pair of patches obtained from

a match proposal mi = (xA
i , y

A
i , x

B
i , y

B
i ), we label the pair

as positive, hence define its classification label as c∗i = 1,

if φi < θcls. Here, θcls is our geometric distance threshold

for classification. All the others pairs are labeled as nega-

tive. Given the set of predicted confidence scores C and the

binary labels C∗, we use the weighted binary cross entropy

to measure the classification loss as

B(C, C∗) = −
1

N

N∑

i=1

wc∗i log ci+(1−c∗i ) log (1−ci) , (2)

where the weight w = |{c∗i |c
∗

i = 0}|/|{c∗i |c
∗

i = 1}| is the

factor to balance the amount of positive and negative patch

pairs. We have separate thresholds θ̂cls and θ̃cls used in the

mid-level and the fine-level classification loss, which are

summed to get the total classification loss Lcls.

Geometric loss. To avoid training our regressors to refine

matches within match proposals which are going to be clas-

sified as non-valid, for every refined match, we optimize its

geometric loss only if the Sampson distance of its parent

match proposal is within a certain threshold θgeo. Our geo-

metric loss is the average Sampson distance of the set of re-

fined matches that we want to optimize. We use thresholds

θ̂geo and θ̃geo for the mid-level and the fine-level geomet-

ric loss accordingly and the sum of the two losses gives the

total geometric loss Lgeo.

4. Implementation Details

We train Patch2Pix with match proposals detected by

our adapted NCNet, i.e., the pre-trained NC matching layer

from [31], to match features extracted from our backbone.

Our refinement network is trained on the large-scale out-

door dataset MegaDepth [14], where we construct 60661

matching pairs. We set the distance thresholds to compute

the training losses (c.f . Sec. 3.2) as θ̂cls = θ̂geo = 50 for

the mid-level regression and θ̃cls = θ̃geo = 5 for the fine-

level regression. We constantly set the local patch size to

S = 16 pixels at image resolution. The pixel-level match-

ing is optimized using Adam [12] with an initial learning

rate of 5e−4 for 5 epochs and then 1e−4 until it converges.

A mini-batch input contains 4 pairs of images with resolu-

tion 480 × 320. We present architecture details about our

regressor and our adapted NCNet [31], training data pro-

cessing, hyper-parameter ablation, and qualitatively results

of our matches in the supp. mat. (c.f . Sec. A & B).

5. Evaluation on Geometrical Tasks

5.1. Image Matching

As our first experiment, we evaluate Patch2Pix on the

HPatches [1] sequences under the image matching task,

where a method is supposed to detect correspondences

between an input image pair. We follow the setup pro-

posed in D2Net [6] and report the mean matching accuracy

(MMA) [19] under thresholds varying from 1 to 10 pixels,

together with the numbers of matches and features.
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Illumination

1 2 3 4 5 6 7 8 9 10

Viewpoint
Methods #Features / Matches

HesAff [18] + RootSIFT + NN 6.7K / 2.8K

HAN [21] + HN++ [20] + NN 3.9K / 2.0K

SuperPoint [5] + NN 2.0K / 1.1K

D2Net [6] + NN 6.0K / 2.5K

R2D2 [28] + NN 5.0K / 1.6K

ASLFeat [17] + NN 4.0K / 2.0K

SuperPoint + SuperGlue [33] (c=0.2) 0.5K

SuperPoint + SuperGlue [33] (c=0.9) 0.4K

SuperPoint + CAPS [40] + NN 2.0K / 1.1K

SIFT [15] + CAPS + NN 4.4K / 1.5K

DELF [25] + NN 4.6K / 1.9K

SparseNCNet [30] (im3200, top2k) 2.0K

NCNet( [31] (Our Adapted) 1.5K

Patch2Pix(c=0.5) 1.1K

Patch2Pix(c=0.9) 0.7K

Figure 4. Image Matching on HPatches [1]. We denote weakly-supervised methods with dashed lines and methods based on full super-

vision with solid lines.

Experimental setup. We use the confidence scores pro-

duced by the fine-level regressor to filter out outliers and

study its performance under two settings, i.e., c = 0.5/0.9,

which present a trade-off between quantity and quality of

the matches. To show the effectiveness of our refinement

concept, we compare to our NCNet baseline, which pro-

vides our match proposals. For NCNet and Patch2Pix, we

resize images to have a larger side of 1024 to reduce run-

time. We also compare to SparseNCNet [30], which is the

most similar one to ours among related works, since it also

builds upon NCNet and aims to improve the accuracy of

its matches through a re-localization mechanism. Besides

comparing to several local feature methods that use NN

Search for matching, we further consider SuperPoint [5]

features matched with SuperGlue [33] and study its perfor-

mance under their default threshold c = 0.2 and a higher

threshold c = 0.9 for outlier rejection.

Results. As shown in Fig. 4, NCNet performs competi-

tively for illumination sequences with constant viewpoints,

which is a special case for NCNet since it uses fixed up-

sampling to bring patch matches to pixel correspondences.

While its performance under illumination changes reveals

its efficiency in patch-level matching, its accuracy under

viewpoint changes reveals its insufficient pixel-level match-

ing performance. Our refinement network brings patch-

level matches predicted by NCNet to pixel-level correspon-

dences, which drastically improves the matching accuracy

under viewpoint changes and further improves under illumi-

nation changes. When comparing Patch2Pix to all weakly

supervised methods, our model is the best at both thresh-

olds under illumination changes. For viewpoint changes,

our model with threshold c = 0.9 is the best and SparseNC-

Net performs similar to our model under threshold c = 0.5.

Compared to the methods trained with full supervision, our

model with threshold c = 0.9 outperforms all of them under

illumination variations. For viewpoint changes, we are less

accurate than SuperPoint + SuperGlue but still, we outper-

form all the other fully-supervised methods. Looking at the

curves and the table in Fig. 4 together, both SuperPoint +

SuperGlue and our method improve performance when us-

ing a higher threshold to remove less confident predictions.

5.2. Homography Estimation

Having accurate matches does not necessarily mean ac-

curate geometry relations can be estimated from them since

the distribution and number of matches are also important

when estimating geometric relations. Therefore, we next

evaluate Patch2Pix on the same HPatches [1] sequences for

homography estimation.

Experimental setup. We follow the corner correctness

metric used in [5, 33, 40] and report the percentage of cor-

rectly estimated homographies whose average corner error

distance is below 1/3/5 pixels. In the following experiments,

where geometrics relations are estimated using RANSAC-

based solvers, we use c = 0.25 as our default confidence

threshold, which overall gives us good performance across

tasks. The intuition of setting a lower threshold is to filter

out some very bad matches but leave as much information

as possible for RANSAC to do its own outlier rejection. We

compare to methods that are more competitive in the match-

ing task which are categorized based on their supervision

types: fully supervised (Full), weakly supervised (Weak),

and mixed (Mix) if both types are used. We run all methods

under our environment and measure the matching time from

the input images to the output matches. We provide more

experimental setup details in our supp. mat (c.f . Sec. C).

Results. From the results shown in Tab. 1, we ob-

serve again that NCNet performs extremely well under

illumination changes due to their fixed upsampling (c.f .

Sec. 5.2). Here, we verify that the improvement of matches

by Patch2Pix under viewpoint changes is also reflected in

the quality of the estimated homographies. Both SparseNC-

Net and our method are based on the concept of improv-

ing match accuracy by searching inside the matched local

patches to progressively re-locate a more accurate match in

higher resolution feature maps. While our method predicts

matches at the original resolution and is fully learnable,

their non-learning approach produces matches at a 4-times

downscaled resolution. As we show in Tab. 1, our refine-

ment network is more powerful than their re-localization
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Method
Overall Illumination Viewpoint

Supervision #Matches Time (s)
Accuracy (%, ǫ < 1/3/5 px)

SuperPoint [5] + NN 0.46 / 0.78 / 0.85 0.57 / 0.92 / 0.97 0.35 / 0.65 / 0.74 Full 1.1K 0.12

D2Net [6] + NN 0.38 / 0.72 / 0.81 0.65 / 0.95 / 0.98 0.13 / 0.51 / 0.65 Full 2.5K 1.61

R2D2 [28] + NN 0.47 / 0.78 / 0.83 0.63 / 0.93 / 0.98 0.33 / 0.64 / 0.70 Full 1.6K 2.34

ASLFeat [17] + NN 0.48 / 0.81 / 0.88 0.63 / 0.94 / 0.98 0.34 / 0.69 / 0.78 Full 2.0K 0.66

SuperPoint + SuperGlue [33] 0.51 / 0.83 / 0.89 0.62 / 0.93 / 0.98 0.41/ 0.73/ 0.81 Full 0.5K 0.14

SuperPoint + CAPS [40] + NN 0.49 / 0.79 / 0.86 0.62 / 0.93 / 0.98 0.36 / 0.65 / 0.75 Mix 1.1K 0.36

SIFT + CAPS [40] + NN 0.36 / 0.76 / 0.85 0.48 / 0.89 / 0.95 0.26 / 0.65 / 0.76 Weak 1.5K 0.73

SparseNCNet [30] (im3200, top2k) 0.36 / 0.66 / 0.76 0.62 / 0.92 / 0.97 0.13 / 0.41 / 0.57 Weak 2.0K 5.83

NCNet [31] (Our Adapted) 0.48 / 0.61 / 0.71 0.98 / 0.98 / 0.98 0.02 / 0.28 / 0.46 Weak 1.5K 0.83

Patch2Pix 0.51 / 0.79 / 0.86 0.72 / 0.95 / 0.98 0.32 / 0.64 / 0.75 Weak 1.3K 1.24

Oracle 0.00 / 0.15 / 0.54 0.00 / 0.23 / 0.7 0.00 / 0.07 / 0.39 - 2.5K 0.04

Patch2Pix (w.Oracle) 0.55 / 0.85 / 0.92 0.68 / 0.95 / 0.99 0.43 / 0.76 / 0.82 Weak 2.5K 0.76

Table 1. Homography Estimation on Hpatches [1]. We report the percentage of correctly estimated homographies whose average corner

error distance is below 1/3/5 pixels. We denote the supervision type with ’Full’ for fully-supervised methods, ’Weak’ for weakly-supervised

ones, and ’Mix’ for those used both types. We mark the best accuracy in bold.

mechanism, improving the overall accuracy within 1 pixel

by 15 percent. For illumination changes, we are the second-

best after NCNet, but we are better than all fully super-

vised methods. Under viewpoint variations, we are the best

at 1-pixel error among weakly-supervised methods and we

achieve very close overall accuracy to the best fully super-

vised method SuperPoint + SuperGlue.

Oracle Investigation. Since our method can filter out bad

proposals but not generate new ones, our performance will

suffer if NCNet fails to produce enough valid proposals,

which might be the reason for our relatively lower perfor-

mance on viewpoint changes. In order to test our hypoth-

esis, we replace NCNet with an Oracle matcher to predict

match proposals. Given a pair of images, our Oracle first

random selects 2.5K matches from the GT correspondences

computed using the GT homography and then randomly

moves each point involved in a match within the 12 × 12
local patch centered at the GT location. In this way, we

obtain our synthetic match proposals where we know there

exists at least one GT correspondence inside the 16 × 16
local patches centered by those match proposals, which al-

lows us to measure the performance of our true contribu-

tion, the refinement network. As shown in Tab. 1, the low

accuracy of matches produced by our Oracle evidently veri-

fies that the matching task left for our refinement network is

still challenging. Our results are largely improved by using

the Oracle proposals, which means our current refinement

network is heavily limited by the performance of NCNet.

Therefore, in the following localization experiments, to see

the potential of our refinement network, we will also inves-

tigate the performance when using SuperPoint + SuperGlue

to generate match proposals.

5.3. Outdoor Localization on Aachen Day­Night

We further show the potential of our approach by eval-

uating Patch2Pix on the Aachen Day-Night benchmark

(v1.0) [34,35] for outdoor localization under day-night illu-

Method Supervision
Localized Queries (%, 0.25m,2◦/0.5m,5◦/1.0m, 10◦)

Day Night

Local Feature Evaluation on Night-time Queries

SuperPoint [5] + NN Full - 73.5 / 79.6 / 88.8

D2Net [6] + NN Full - 74.5 / 86.7 / 100.0

R2D2 [28] + NN Full - 76.5 / 90.8 / 100.0

SuperPoint + S2DNet [10] Full - 74.5 / 84.7 / 100.0

ASLFeat [17] + NN Full - 77.6 / 89.8 / 100.0

SuperPoint + CAPS [40] + NN Mix - 82.7 / 87.8 / 100.0

DualRC-Net [13] Full - 79.6 / 88.8 / 100.0

SIFT + CAPS [40] + NN Weak - 77.6 / 86.7 / 99.0

SparseNCNet [30] Weak - 76.5 / 84.7 / 98.0

Patch2Pix Weak - 79.6 / 87.8 / 100.0

Full Localization with HLOC [32]

SuperPoint [5] + NN Full 85.4 / 93.3 / 97.2 75.5 / 86.7 / 92.9

SuperPoint + CAPS [40] + NN Mix 86.3 / 93.0 / 95.9 83.7 / 90.8 / 96.9

SuperPoint + SuperGlue [33] Full 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0

Patch2Pix Weak 84.6 / 92.1 / 96.5 82.7 / 92.9 / 99.0

Patch2Pix (w.CAPS) Mix 86.7 / 93.7 / 96.7 85.7 / 92.9 / 99.0

Patch2Pix (w.SuperGlue) Mix 89.2 / 95.5 / 98.5 87.8 / 94.9 / 100.0

Table 2. Evaluation on Aachen Day-Night Benchmark

(v1.0) [34, 35]. We report the percentage of correctly localized

queries under specific error thresholds. We follow the supervision

notations described in Tab. 1 and mark the best results in bold.

mination changes.

Experimental Setup. To localize Aachen night-time

queries, we follow the evaluation setup from the website1.

For evaluation on day-time and night-time images together,

we adopt the hierarchical localization pipeline (HLOC2)

proposed in [32]. Matching methods are then plugged into

the pipeline to estimate 2D correspondences. We report

the percentage of correctly localized queries under specific

error thresholds. We test our Patch2Pix model with NC-

Net proposals and SuperPoint [5] + SuperGlue [33] pro-

posals. Note, the model has been only trained on NCNet

proposals. Due to the triangulation stage inside the local-

ization pipeline, we quantize our matches by representing

keypoints that are closer than 4 pixels to each other with

their mean location. We provide a more detailed discussion

of the quantization inside our supp. mat (c.f . Sec. C).

Results. As shown in Tab. 2, for local feature evalua-

1https://github.com/tsattler/visuallocalizationbenchmark
2https://github.com/cvg/Hierarchical-Localization

4675



Method Supervision
Localized Queries (%, 0.25m/0.5m/1.0m, 10◦)

DUC1 DUC2

SuperPoint [5] + NN Full 40.4 / 58.1 / 69.7 42.0 / 58.8 / 69.5

D2Net [6] + NN Full 38.4 / 56.1 / 71.2 37.4 / 55.0 / 64.9

R2D2 [28] + NN Full 36.4 / 57.6 / 74.2 45.0 / 60.3 / 67.9

SuperPoint + SuperGlue [33] Full 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4

SuperPoint + CAPS [40] + NN Mix 40.9 / 60.6 / 72.7 43.5 / 58.8 / 68.7

SIFT + CAPS [40] + NN Weak 38.4 / 56.6 / 70.7 35.1 / 48.9 / 58.8

SparseNCNet [30] Weak 41.9 / 62.1 / 72.7 35.1 / 48.1 / 55.0

Patch2Pix Weak 44.4 / 66.7 / 78.3 49.6 / 64.9 / 72.5

Patch2Pix (w.SuperPoint+CAPS) Mix 42.4 / 62.6 / 76.3 43.5 / 61.1 / 71.0

Patch2Pix (w.SuperGlue) Mix 50.0 / 68.2 / 81.8 57.3 / 77.9 / 80.2

Table 3. InLoc [39] Benchmark Results. We report the percent-

age of correctly localized queries under specific error thresholds.

Methods are evaluated inside the HLOC [32] pipeline to share the

same retrieval pairs, RANSAC threshold, etc. We use the supervi-

sion notation from Tab. 1 and mark the best results in bold.

tion on night-time queries, we outperform the other two

weakly-supervised methods. While being worse than Su-

perPoint [5] + CAPS [40], which involves both full and

weak supervision, we are on-par or better than all the

other fully-supervised methods. For full localization on all

queries using HLOC, we show we are better than Super-

Point + NN on night queries and competitively on day-time

images. By further substituting NCNet match proposals

with SuperGlue proposals, we are competitive to SuperGlue

on day-time images and outperform them slightly on night

queries. Our intuition is that we benefit from our epipolar

geometry supervision which learns potentially more gen-

eral features without having any bias from the training data,

which is further supported by our next experiment.

5.4. Indoor Localization on InLoc

Finally, we evaluate Patch2Pix on the InLoc benchmark

[39] for large-scale indoor localization. The large texture-

less areas and repetitive structures present in its scenes

makes this dataset very challenging.

Experimental Setup. Following SuperGlue [33], we eval-

uate a matching method by using their predicted correspon-

dences inside HLOC for localization. We report the per-

centage of correctly localized queries under specific error

thresholds. It is worth noting that compared to the evalua-

tion on Aachen Day-Night, where our method looses accu-

racy up to 4 pixels due to the quantization, we have a fairer

comparison on InLoc (where no triangulation is needed)

to other methods. The results directly reflect the effect of

our refinement when combined with other methods. Except

for SuperPoint+SuperGlue, we evaluate several configura-

tions of the other methods and compare to their best results.

Please see the supp. mat. for more details (c.f . Sec. C).

Results. As shown in Tab. 3, Patch2Pix is the best among

weakly supervised methods and outperforms all other meth-

ods except for SuperPoint + SuperGlue. Notice, we are 14.5

% better than SparseNCNet on DUC2 at the finest error,

which further highlights that our learned refinement net-

work is more effective than their hand-crafted relocalization

mechanism. Further looking at the last rows of Tab. 3, our

refinement network achieves the overall best performance

among all methods when we replace NCNet proposals with

more accurate proposals predicted by SuperPoint + Super-

Glue. By searching inside the local regions of SuperPoint

keypoints that are matched by SuperGlue, our network is

able to detect more accurate and robust matches to outper-

form SuperPoint + SuperGlue. This implies that epipolar

geometry is a promising type of supervision for the match-

ing task. While CAPS is also trained with epipolar loss,

its performance still largely relies on the keypoint detection

stage. In contrast, we bypass the keypoint detection errors

by working directly on the potential matches.

Generalization By evaluating Patch2Pix on image match-

ing (c.f . Sec. 5.1) and homography estimation (c.f .

Sec. 5.2), we validate our refinement concept by showing

dramatic improvements over NCNet matches. While our

network has been trained only on NCNet-type of propos-

als, we show that our refinement network provides distinct

improvements, on both indoor and outdoor localization, by

switching from the match proposals produced by NCNet to

SuperPoint + SuperGlue proposals without the need for re-

training. This highlights that our refinement network learns

the general task of predicting matches from a pair of local

patches, which works across different scene types and is in-

dependent of how the local patch pair has been obtained.

Such general matching capability can be used to further im-

prove the existing methods. As shown in Tab. 2 and Tab. 3,

both SuperPoint + SuperGlue and SuperPoint + CAPS get

improved by using our refinement network.

6. Conclusion

In this paper, we proposed a new paradigm to predict cor-

respondences in a two-stage detect-to-refine manner, where

the first stage focuses on capturing the semantic high-level

information and the second stage focuses on the detailed

structures inside local patches. To investigate the poten-

tial of this concept, we developed a novel refinement net-

work, which leverages regression to directly output the lo-

cations of matches from CNN features and jointly pre-

dict confidence scores for outlier rejection. Our network

was weakly supervised by epipolar geometry to detect geo-

metrically consistent correspondences.We showed that our

refinement network consistently improved our correspon-

dence network baseline on a variety of geometry tasks. We

further showed that our model trained with proposals pre-

dicted by a correspondence network generalizes well to

other types of proposals during testing. By applying our

refinement to the best fully-supervised method without re-

training, we achieved state-of-the-art results on challenging

long-term localization tasks.
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