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Abstract

This paper addresses the task of unsupervised video

multi-object segmentation. Current approaches follow a

two-stage paradigm: 1) detect object proposals using

pre-trained Mask R-CNN, and 2) conduct generic feature

matching for temporal association using re-identification

techniques. However, the generic features, widely used in

both stages, are not reliable for characterizing unseen ob-

jects, leading to poor generalization. To address this, we

introduce a novel approach for more accurate and efficient

spatio-temporal segmentation. In particular, to address in-

stance discrimination, we propose to combine foreground

region estimation and instance grouping together in one

network, and additionally introduce temporal guidance for

segmenting each frame, enabling more accurate object dis-

covery. For temporal association, we complement current

video object segmentation architectures with a discrimina-

tive appearance model, capable of capturing more fine-

grained target-specific information. Given object propos-

als from the instance discrimination network, three essen-

tial strategies are adopted to achieve accurate segmenta-

tion: 1) target-specific tracking using a memory-augmented

appearance model; 2) target-agnostic verification to trace

possible tracklets for the proposal; 3) adaptive memory up-

dating using the verified segments. We evaluate the pro-

posed approach on DAVIS17 and YouTube-VIS, and the re-

sults demonstrate that it outperforms state-of-the-art meth-

ods both in segmentation accuracy and inference speed.

1. Introduction

Unsupervised video object segmentation aims at au-

tomatically segmenting primary object(s) from the back-

ground in unconstrained videos, which is a fundamental vi-

sion task. This task has become increasingly popular due

to its potential values in a wide range of real-world ap-
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plications, e.g., video compression [17], autonomous driv-

ing [14], and human-centric understanding [52, 67]. It also

plays an essential role in collecting large-scale annotated

dataset [34, 63]. However, the task is challenging due to

the lack of prior knowledge about the target objects, as well

as the challenging factors (e.g., occlusions, cluttered back-

ground, diverse motion patterns) carried by video data.

Towards better segmenting the prominent foreground ob-

jects, early studies typically exploit saliency cues [50, 11]

or objectness priors [25, 64, 56, 66, 27] for identifying

them. More recently, with the advent of deep neural net-

works, many learning-based models have been proposed to

learn more discriminative video object patterns, by lever-

aging motion cues [43], addressing spatiotemporal fea-

tures [23, 68], exploring multi-frame contextual informa-

tion [32, 48, 61] or using recurrent networks to capture

sequential information [42]. Though impressive results

have been achieved, these approaches mainly focus on fore-

ground/background separation, hindering their applications

in more practical multi-object scenarios.

Unsupervised video multi-object segmentation, with an

elegant and formal definition in [4], is more challenging

as it requires not only discovering instance-agnostic, fore-

ground regions automatically, but also discriminating dif-

ferent object instances and associating the same identi-

ties over the entire sequence. To tackle this task, exist-

ing methods [33, 42, 49, 65] generally follow the conven-

tional tracking-by-detection paradigm which performs in

a top-down fashion to employ image-aware instance seg-

mentation networks (e.g., Mask R-CNN [18], SOLO [54])

to detect object candidates in individual frames, and asso-

ciate them over consecutive frames based on object track-

ing or proposal re-identification (ReID). In addition, to

avoid the negative impact of background objects, many

studies [42, 49, 65] also rely on a foreground/background

separation step to remove background proposals. Even

though these approaches demonstrate compelling perfor-

mance, they still suffer several limitations. 1) Directly using

image-level instance segmentation networks is insufficient
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since they are trained on static images, neglecting the in-

formative temporal context in videos. 2) Instance segmen-

tation and foreground estimation are often separately con-

sidered by different networks, incurring high computational

expense. 3) ReID-based matching networks, trained com-

pletely offline, focus more on general object appearance,

while rarely capturing distinctive fine-grained features of

specific targets.

In this work, we propose a novel approach for unsuper-

vised multi-object segmentation in unconstrained videos.

To address points 1) and 2), we introduce an instance dis-

crimination network (D-Net) for video object proposal. The

network performs in a bottom-up fashion and takes video

temporal information into account to achieve better seg-

mentation accuracy and efficiency. In particular, the D-Net

includes two branches: a foreground estimation branch fol-

lows the typical design of fully convolutional networks to

segment attention-grabbing objects, and an instance seg-

mentation branch learns to predict the instance center as

well as the offset from each pixel to its corresponding cen-

ter for instance grouping. Rather than processing each

frame independently, we consider segmentation of previous

frames as an important guidance for segmenting the cur-

rent frame. In this way, we integrate instance-agnostic and

instance-aware segmentation together into one network for

discovering temporal coherent object proposal.

To address point 3), we design a target-aware track-

ing network (T-Net) for associating object proposals of the

same identities over each image sequence. Different from

previous ReID-based matching techniques, we aim to learn

target-specific appearance features for more robust object

association. More specifically, the T-Net learns a discrimi-

native appearance model for each object instance during the

inference stage to predict a coarse but robust segmentation

score of the target object. Note that the appearance model

is more prone to drifting due to the lack of ground-truth an-

notations. Therefore, we further propose a target-agnostic

backward verification module to examine the tracking re-

sults. The verified results are used as new training samples

to update the appearance model online.

With above efforts, our algorithm achieves state-of-the-

art results on the DAVIS17 benchmark for video multi-

object segmentation. It also demonstrates compelling per-

formance for video instance segmentation on YouTube-

VIS. In addition, our approach obtains a better trade-off be-

tween segmentation accuracy and inference efficiency, run-

ning at about 10 FPS on images with 480p resolution.

To sum up, the contributions of the proposed approach

are three-fold: First, we propose a novel bottom-up in-

stance discrimination network which takes advantage of

temporal context information in videos for more accurate

segmentation. The network couples foreground discov-

ery and instance grouping together, benefiting from multi-

tasking and improving the inference efficiency. Second, we

introduce a target-aware tracking model for online match-

ing of object proposals. Compared with target-agnostic ap-

proaches, our method can better capture the appearance in-

formation of the target objects, yielding more robust asso-

ciation. Third, our approach achieves compelling perfor-

mance on the popular DAVIS17 and YouTube-VIS bench-

marks. Furthermore, its high inference speed enables our

method to support a wide variety of practical applications.

2. Related Work

Unsupervised Video Object Segmentation. The task of

U-VOS aims to segment conspicuous and eye-catching ob-

jects without any human intervention. Most current re-

search efforts focus on segmenting the prominent fore-

ground objects in unconstrained videos. Earlier methods

typically rely on motion analysis, e.g., extracting motion

information from sequential images to understand object

movement. For example, a large number of works [3, 12,

35, 10] employ sparse point trajectories to capture long-

term motion information and segment the objects which are

moving significantly in relation to the background. How-

ever, these methods are not robust because they rely heavily

on optical flow estimation and feature matching, and thus

may easily fail in the presence of occlusions, fast motion or

appearance changes. To address this limitation, later meth-

ods employ saliency cues[11, 50] and object proposal rank-

ing [25, 64, 36] to better identify the main objects. These

non-learning methods are confined by the limited represen-

tative ability of handcrafted features.

More recently, with the renaissance of artificial neural

networks in computer vision, deep learning based solutions

are now dominant in this field. For example, AGS[49] pro-

poses a dynamic visual attention-driven model for video

object segmentation, while [48, 32] mine higher-order re-

lations between video frames, resulting in more compre-

hensive understanding of video content and more accurate

foreground estimation. Moreover, many approaches dis-

cover the motion patterns of objects[43] as complementary

cues to object appearance. This is typically achieved within

two-stream networks [23, 44, 10, 22, 68, 26], in which an

RGB image and the corresponding flow field are separately

processed by two independent networks and the results are

fused to produce the final segmentation. To avoid the ex-

pensive computation of optical flow, some methods[51, 31]

directly feed consecutive frames into the networks and au-

tomatically learn spatiotemporal feature representations.

Unsupervised Video Multi-Object Segmentation. Unlike

the aforementioned U-VOS approaches that pay more at-

tention to learning powerful object representations for fore-

ground object discovery, in the multi-object setting, the

challenges become how to discover and segment each ob-

ject that captures human attention, and how to associate the
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Figure 1: Detailed illustration of our approach for video multi-object segmentation.

objects through the whole sequence. RVOS[45] delivers an

end-to-end recurrent neural network, in which the spatial

recurrence helps to discover object instances in each frame,

while the temporal recurrence finds the matching between

instances in different frames. This work represents an early

attempt towards end-to-end learning for unsupervised video

multi-object segmentation. However, RVOS is weak in the

segmentation performance due to its limited capability in

instance discrimination. Current trends [33, 65] follow a

two-stage pipeline, in which object proposals are first dis-

covered using Mask R-CNN[18], and the association is con-

ducted using greedy- or ReID-based matching techniques.

Instance Segmentation in Images and Videos. In re-

cent years, image-level instance segmentation has attracted

great research interests, which extends semantic segmenta-

tion [30, 28, 53, 62] to assign different labels for separate

instances of objects belonging to the same class. Driven

by the success of R-CNN [15], current dominant instance

segmentation methods follow a detect-then-segment frame-

work. Earlier methods[37, 8] learn to propose segment can-

didates, and then classify them by Fast R-CNN[15]. These

methods conduct segmentation before recognition, which

are slow and less accurate. Mask R-CNN[18] introduces an

extra ROI segmentation head into Faster R-CNN[38] and a

new assignment operator, i.e., ROIAlign, to better align the

ROI features with inputs. Along this line, some works im-

prove the performance by employing cascade inference[5],

low-level feature enhancement [29], and multi-tasking [6].

However, for complicated scenarios with many instances,

the inference time of two-stage methods is unacceptably

high, since it is proportional to the number of instances. The

resolution of ROI features and resulting masks are coarse,

resulting in poor segmentation of object boundaries.

To cope with these drawbacks, many recent works favor

bottom-up instance segmentation. These approaches are of-

ten box-free and thus not restricted by anchor locations and

scales, naturally benefiting from the inherent advantages of

fully convolutional networks. For example, [9, 13] learn

discriminative embeddings to group the pixels into an ar-

bitrary number of object instances. SOLO [54] introduces

a direct instance segmentation method that can predict in-

stance segmentation in one shot without additional group-

ing post-processing. AdaptIS[41] first generates point pro-

posals as representations of instances, and then sequentially

predicts the corresponding segmentation mask for each de-

tected proposal. PolarMask[57] utilizes the polar represen-

tation to encode masks and transforms per-pixel mask pre-

diction to distance regression.

Though these methods only focus on image-level seg-

mentation, we emphasize that they have motivated a number

of video analysis tasks, such as video object/instance seg-

mentation [59, 21, 2, 69] and multi-object tracking [70, 47].

In this work, we further propose a novel bottom-up ap-

proach for segment proposal generation in videos. Instead

of frame-by-frame segmentation, we take advantage of the

segmentation results in previous frames as temporal guid-

ance, yielding more robust results.

3. Methodology

Given a video I= {It}
N
t=1

with N frames It ∈R
3×h×w

with spatial size h × w, the goal of unsupervised video

multi-object segmentation is to automatically generate a

collection of non-overlapping segment tracks, each for an

individual instance. As shown in Fig. 1, we decompose the

problem into two sub-tasks: 1) discover object instances us-

ing the D-Net (§3.1) and 2) associate all instances of the

same identity over the entire sequence with the T-Net (§3.2).

3.1. Instance Discrimination Network (DNet)

The D-Net consists of four major components: 1) a back-

bone network for feature extraction; 2) a segmentation guid-

ance module to employ previous segmented masks to enrich

the feature representations; 3) a foreground estimation head
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for primary object prediction; and 4) an instance segmenta-

tion head for instance-level prediction.

Feature Extraction. Given the video frame It at time t, we

use a backbone CNN model to extract convolutional fea-

tures XSAL
t ∈ R

W×H×C , X INS
t ∈ R

W×H×C , where W ,

H and C represent the width, height and channel number

of the 3D tensors, respectively. XSAL
t and X INS

t indicate

two task-specific features that are responsible for salient

foreground estimation and instance-aware segmentation, re-

spectively. To achieve this, we take the convolutional blocks

of ResNet-50 [19] as the backbone, and modify the last

residual block with an atrous convolution with rate 2 to en-

large the receptive field. Furthermore, in order to extract

task-specific features, we augment the backbone network

with two parallel atrous spatial pyramid pooling (ASPP)

modules [7]. ASPP applies several parallel atrous convo-

lutions with different rates to further increase the receptive

field. In our model, we design each ASPP to have 1) one

1× 1 convolution and three 3× 3 convolutions with astrous

rates = (6, 12, 18) and 2) a global average pooling layer on

the last feature map of the backbone to obtain global context

information. The resulting features from all branches are

then concatenated and passed through an extra 1 × 1 con-

volutional layer to obtain XSAL
t and X INS

t . Both of these

tensors have C=256 channels and output strides of 16.

Segmentation Guidance Module (SGM). Rather than di-

rectly using the image-level feature representations (i.e.,

XSAL
t and X INS

t ) for segmentation prediction, we propose

to exploit the inherent correlation among video frames for

better results. Particularly, the segmentation mask St−1of

the previous frame It−1 is leveraged as a guidance to im-

prove the representation in the current frame. We introduce

an extra convolutional branch whose input is the concatena-

tion of It−1 and St−1. The input is processed with a similar

backbone and ASPP module to obtain feature XSGM
t−1

. Then,

two segmentation guidance modules are used to enrich the

feature representations as follows:

X̂SAL
t = FSGM(XSAL

t ,XSGM
t−1

), (1)

X̂ INS
t = FSGM(X INS

t ,XSGM
t−1

). (2)

Each guidance module FSGM has a squeeze-and-excitation

structure [20]. In particular, we first squeeze the global spa-

tial information of each feature into channel-wise statistics

using a squeeze operation FSQ:

cSAL
t = FSQ(XSAL

t ) ∈ R
C , (3)

cINS
t = FSQ(X INS

t ) ∈ R
C , (4)

where FSQ is a global average pooling layer. Then, the two

channel-wise descriptors are concatenated together to ob-

tain c ∈ R
2C , which is then processed by an excitation

operation FEX:

z=FEX(c;W )=softmax(reshape(W2δ(W1c)))∈R
2×C

, (5)

where W{1,2} denotes two fully connected layers, δ refers

to the ReLU function. Note that, after the fully connected

layers, we reshape the corresponding vector into 2× C

(which consists of two vectors α∈R
C and β ∈R

C). Then,

we apply a softmax function to ensure α + β = 1. Finally,

we obtain the features X̂SAL
t and X̂ INS

t as follows:

X̂SAL
t = α1X

SAL
t + β1X

SGM
t−1

, (6)

X̂ INS
t = α2X

INS
t + β2X

SGM
t−1

, (7)

where α1,2, β1,2 denote the attention vectors to weight con-

tributions of different features.

Salient Object Estimation Head. Given X̂SAL
t , we pro-

pose a simple yet effective decoder for salient object esti-

mation. Specifically, we first bilinearly upsample X̂SAL
t by

a factor of 2 and then concatenate it with the correspond-

ing low-level features from the backbone network with the

same spatial resolution (i.e., res3). The upsampled fea-

tures are further processed by a 5 × 5 convolutional layer,

and then upsampled again by a factor of 2. After concate-

nating then with the features in res2, we process them with

two consecutive 5 × 5 convolutional layers and one 1 × 1
convolutional layer to obtain the foreground estimation re-

sult St. Finally, the cross entropy loss is employed to eval-

uate the result against the corresponding ground-truth.

Instance-Aware Segmentation Head. The instance seg-

mentation head has a similar architecture to the foreground

estimation head, only differing in that it predicts two out-

puts, i.e., an object center heatmap and a pixel offset

field. Inspired by recent point-aware object representa-

tions [71, 24], we represent each object instance by its

center. For dense prediction, we additionally predict the

offset of each pixel to its corresponding instance center.

During training, ground-truth instance centers are encoded

by a 2-D Gaussian with a standard deviation of 10 pixels.

We adopt the mean squared error (MSE) loss to minimize

the distance between the predicted heatmaps and Gaussian-

encoded ground-truths. For the offset learning, we employ

the l1 loss for optimization, which is only activated at pixels

belonging to foreground object regions. During inference,

predicted foreground pixels are grouped to the closest ob-

ject center based on the predicted offset field, completing

the instance grouping.

3.2. TargetAware Tracking Network (TNet)

Target-Specific Tracking. For each object instance, we

build a target-specific appearance model to discriminate the

target from background distractors. Specifically, we instan-

tiate the model with a two-layer fully convolutional network

as in [39]:

S = T (X;W ) = W2 ∗ (W1 ∗X), (8)

where X denotes the image feature of frame I ∈ V , W =
{W1,W2} are the network parameters of the two convolu-
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tional layers, and ∗ indicates the convolution operator. S

is the output of the T-Net T , which indicates coarse seg-

mentation score prediction. For the semi-supervised VOS

task [39], Eq. (8) is trained over a set of m training sam-

ples S = {(Xj ,yj)}
m
j=1

collected from the ground-truth

annotations in the first frame, by minimizing the following

objective function:

L(W ;S)=
∑

j

αj‖T (Xj ;W )− yj‖
2 +

∑

k

λk‖Wk‖
2
, (9)

where yj denotes the target label of Xj and αj ≥ 0 is the

weight of Xj , controlling the impact of the sample on the

objective. The parameter λ balances the contributions of

the objective term as well as the regularization term. Note

that the training sample set S is critical for robust model

learning, especially in the unsupervised setting. In contrast

to the semi-supervised setting, no ground-truth y0 is avail-

able for model training in the first video frame, and directly

training on the segment proposals generated from D-Net is

more prone to drifting. To address this, in our approach,

the segment proposal from D-Net for each target serves as

the pseudo ground-truth label y̌0 for initial model learning.

Unlike [39], which regularly updates the training set S us-

ing tracked segments, we design heuristic strategies for the

backward verification of tracking results, and adaptively up-

date S . This enables our model to be robust to the noises in

y̌0, and greatly boosts the performance.

Target-Agnostic Verification. Let y̌j and Y denote the

tracking result of a target in frame Ij and its corresponding

tracklet, respectively. We aim to verify the consistency be-

tween y̌j and Y , as well as find a better possible candidate

from the object proposal set. This is achieved by match-

ing the object proposals in the current frame with historical

tracking results. To promote the reliablity of verification,

we conduct the matching in a target-agnostic manner, using

a pre-trained ReID network [33]. For each object proposal

p, its matching score with Y is computed as:

s(p,Y)=(cos(p, y̌j) + cos(p, y̌0)) ∗ ✶(IoU(p, y̌j) > 0.5), (10)

where cos(·, ·) indicates the cosine similarity between two

ReID embeddings, IoU(·, ·) measures the intersection-over-

union between two segments, and ✶(·) ∈ {0, 1} is the in-

dicator function. In Eq. (10), we first examine the overlap

ratio between p and y̌j , which is used to truncate the ReID

similarities. For more reliable matching, we compare p with

the most recent and the most distant tracking results, i.e., y̌j

and y̌0. This allows our model to conduct sequential model-

ing, while at the same time dealing with long-term semantic

consistency, leading to more robust matching results. Based

on Eq. (10), we find the proposal with the highest score s

with Y . If s is above a threshold threid (e.g., 0.6), we re-

place the current tracking result y̌j with the correspond-

ing proposal; otherwise, we keep y̌j unchanged. Besides,

we discover new targets if all corresponding proposals have

zero matching scores with all existing tracklets as well as

very small IoUs (< 0.1) with tracking results in the current

frame. This provides high flexibility to our model in dealing

with occlusions and discovering newly-appearing objects.

Adaptive Memory Updating. Once the tracking result

y̌j is verified, we add a new sample {Xj , y̌j} into the

training set S in order to guide the learning of latest ap-

pearance features. The sample is first assigned a weight

αj = (1 − γ)−1αj−1, where α0 = γ. For proposals with

m> threid, we double the corresponding weight αj so that

the model can put more emphasis on reliable object propos-

als. Then, we normalize all weights in the training set to

unity. During inference, if m > threid, we intermediately

update the appearance model in the frame; otherwise, we

update the model every eight frames.

4. Experiment

In this section, we present the experimental results of

our approach. We first elaborate on the datasets, training

and testing settings in §4.1. Then, we investigate the per-

formance of our method for the unsupervised video multi-

object segmentation task in §4.2 and video instance seg-

mentation task in §4.3, respectively. Visual comparison re-

sults are presented in §4.4. We conduct detailed ablative

experiments in §4.5. Finally, we provide run time analysis

to quantify the efficiency of the system in §4.6.

4.1. Experimental Settings

Datasets. We conduct experiments on two popular datasets:

• DAVIS17 [4] for video multi-object segmentation. The

dataset consists of 120 high-quality videos in total. These

videos are further split into 60 for train, 30 for val

and 30 for test-dev. In our experiments, we train our

models only on the train split, without any additional

data. Then, we evaluate the performance of our approach

on val and test-dev.

• YouTube-VIS [58] for video instance segmentation. It

contains 2,883 high-resolution videos collected from

YouTube, covering more than 131K object instances.

Different from DAVIS17 in which objects are category-

agnostic, objects in YouTube-VIS are labeled with one

semantic category out of 40 categories. Therefore, the

task in YouTube-VIS not only requires the algorithms to

segment consistent objects but also assign each object a

category label. We use this dataset to examine the perfor-

mance of our model in more challenging scenarios.

Training Phase. We train the D-Net on the training set of

DAVIS17 and YouTube-VIS. During training, each sample

is randomly augmented with a scaling factor of [0.8, 1.5]

and horizontal flipping, and is then cropped to 640×640.

For optimization, we use the standard SGD solver, with a
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Dataset Method Pub. J&F Mean↑ J Mean↑ J Recall↑ J Decay↓ F Mean↑ F Recall↑ F Decay↓

val

RVOS[45] CVPR19 41.2 36.8 40.2 0.5 45.7 46.4 1.7
‡OF-Tracker[1] - 54.6 53.4 60.9 -1.3 55.9 63.0 1.1
‡RI-Tracker[1] - 56.9 55.5 63.3 2.7 58.2 64.4 6.4

PDB[42] ECCV18 55.1 53.2 58.9 4.9 57.0 60.2 6.8

AGS[49] CVPR19 57.5 55.5 61.6 7.0 59.5 62.8 9.0

ALBA[16] BMVC20 58.4 56.6 63.4 7.7 60.2 63.1 7.9

MATNet[65] TIP20 58.6 56.7 65.2 -3.6 60.4 68.2 1.8

AGNN[48] ICCV19 61.1 58.9 65.7 11.7 63.2 67.1 14.3

STEm-Seg[1] ECCV20 64.7 61.5 70.4 -4.0 67.8 75.5 1.2
∗UnOVOST[33] WACV20 67.9 66.4 76.4 -0.2 69.3 76.9 0.0

Ours - 65.0 63.7 71.9 6.9 66.2 73.1 9.4

Dataset Method Pub. J&F Mean↑ J Mean↑ J Recall↑ J Decay↓ F Mean↑ F Recall↑ F Decay↓

test-dev

RVOS[45] CVPR19 22.5 17.7 16.2 1.6 27.3 24.8 1.8

PDB[42] ECCV18 40.4 37.7 42.6 4.0 43.0 44.6 3.7

AGS[49] CVPR19 45.6 42.1 48.5 2.6 49.0 51.5 2.6

MSP[40] DAVIS20 57.9 52.9 60.4 16.7 63.0 69.5 20.5
∗UnOVOST[33] DAVIS19 58.0 54.0 62.9 3.5 62.0 66.6 6.6

Ours - 59.8 56.0 65.1 7.8 63.7 68.4 11.0

Table 1: Quantitative video multi-object segmentation results on the val and test-dev sets of DAVIS17 in terms of region simi-

larity J and boundary accuracy F . ‘DAVIS19’ and ‘DAVIS20’ indicate the unsupervised tracks of the DAVIS 2019 and 2020 challenges,

respectively. ‡: baseline methods implemented in [1]. ∗: methods has complex heuristic post-processing.

momentum of 0.9 and weight decay of 5e-4. We utilize

the polynomial annealing procedure to schedule the learn-

ing rate. For the T-Net, we use ResNet-101 as the backbone

network of the appearance model. The layer w1 is a 1 × 1
convolutional layer that reduces the channel of input fea-

tures to 96 while w2 is a 3× 3 convolutional layer with one

output channel. The two layers are optimized online using

the Gauss-Newton algorithm [39] with the default settings,

which leads to significantly faster convergence than other

gradient descent-based approaches.

Testing Phase. Given a test video, we run our instance dis-

crimination network and target-aware adaptive tracking net-

work to process each frame sequentially. The input image

sizes for the two networks are separately set to 480 × 854
and 473 × 473. Our model requires no additional post-

processing components (e.g., CRF), which guarantees high

efficiency (10 FPS) against state of the arts.

Evaluation Metrics. We follow the standard evaluation set-

tings used in each dataset for evaluation. 1) For DAVIS17,

we report the performance in terms of region similarity J ,

boundary accuracy F , and the overall metric J&F . The

evaluation scores on the test-dev set are obtained from

the evaluation server of the DAVIS20 challenge, since the

ground-truths of the set are private. 2) For YouTube-VIS,

we follow [58] to use average precision (AP) and average

recall (AR) as the metrics, which are adapted from the im-

age instance segmentation task to the video instance seg-

mentation task.

Method mAP AP50 AP75 AR1 AR10

‡DeepSORT[55] 26.1 42.9 26.1 27.8 31.3
‡FEELVOS[46] 26.9 42.0 29.7 29.9 33.4

‡OSMN[60] 27.5 45.1 29.1 28.6 33.1

MaskTrack R-CNN[59] 30.3 51.1 32.6 31.0 35.5

SeqTracker[59] 27.5 45.7 28.7 29.7 32.5

STEm-Seg[1] 35.0 56.0 38.6 34.4 41.7

Ours 37.1 57.1 40.9 34.8 43.2

Table 2: Quantitative video instance segmentation results on

Youtube-VIS val, in terms of AP and AR. The baselines denoted

with ‡ were implemented by the authors in[59].

4.2. Performance Comparison on DAVIS17

We compare our approach with state-of-the-art video

multi-object segmentation methods on the DAVIS17 bench-

mark. In addition to recently published works (e.g.,

RVOS [45], PDB [42], AGS [49] , ALBA [16], MAT-

Net [65]), we also include some top-ranked solutions (i.e.,

UnOVOST[33], MSP[40]) from the unsupervised tracks of

the DAVIS-2019 and DAVIS-2020 VOS challenges. This

leads to a more comprehensive examination of the proposed

approach. As reported in Table 1, on DAVIS17 val, our ap-

proach achieves the second-best overall results across most

metrics. It is slightly worse than UnOVOST, the champion

solution in DAVIS-2019 VOS challenge. However, we em-

phasize that UnOVOST is computationally expensive, re-

quiring not only Mask R-CNN for instance proposal gen-

eration, but also needing to compute optical flow for mo-

tion estimation. Complex post-processing and heuristics

also make the method unsuitable for many practical appli-
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Figure 2: Qualitative results of multi-object segmentation masks on DAVIS17 test-dev. From top to bottom: basketball-game, bmx-

rider, ducks, mascot, and snowboard-race.

Model AP AP50 AP75 APS APM APL

Mask R-CNN[18] 48.1 70.0 51.1 29.9 51.8 62.2

SOLO[54] 46.8 68.6 49.3 28.7 50.4 60.9

D-Net w/o SGM 50.3 71.9 53.3 28.9 53.6 65.3

Full D-Net 52.0 73.3 54.9 30.3 55.4 67.5

Table 3: Ablation study of D-Net on DAVIS17 val. We report

the AP scores with and without the segmentation guidance module

(i.e., SGM). For comparison, we report the performance of Mask

R-CNN[18] and SOLO[54], which are representative methods for

top-down and bottom-up instance segmentation models, respec-

tively. All the models use ResNet-50 as the backbone. See §4.5.

cations. In addition, we see that our approach outperforms

all other comparative approaches.

On DAVIS17 test-dev, our method outperforms all

competitors, including all top solutions in the challenges.

Keeping in mind that test-dev is more challenging than

val and the ground-truths are kept private, the good per-

formance over this set can better support our approach.

4.3. Performance Comparison on YouTubeVIS

We further examine the performance of the proposed ap-

proach on YouTube-VIS, which requires not only segment-

ing and tracking objects, but also recognizing their seman-

tic categories. To this end, we modify the foreground es-

timation head in the D-Net to predict semantic labels of

Variant J&F Mean J Mean J Recall F Mean F Recall

w/o. target verification 61.3 58.2 63.5 61.9 66.3

w/o. memory updating 61.2 59.4 66.3 62.8 69.2

Full Model 65.0 63.7 71.9 66.2 73.1

Table 4: Key component analysis of the proposed T-Net on

DAVIS17 val. See §4.5 for details.

each pixel (instead of original binary labels) following gen-

eral semantic segmentation networks [30, 7]. We train all

the networks on the training data of YouTube-VIS. As re-

ported in Table 2, our approach outperforms all the compar-

ative methods with respect to all metrics. We improve the

AP by +2.1% in comparison with the most recent model

STEm-Seg [1]. Our approach also significantly outperforms

existing two-stage methods, like MaskTrack R-CNN [59],

demonstrating its superiority.

4.4. Qualitative Result

In Fig. 2, we show the qualitative segmentation results of

our approach on test-dev. Different colors are used to

indicate different object instances. From the figures, we can

see the remarkable performance of the proposed approach

in 1) accurately discovering distinct objects in complex sce-

narios (e.g., low-light illumination in gold-fish), as well as

2) producing robust and temporally coherent object track-

ing across the sequence. Moreover, our approach shows
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Instance Foreground Tracking /
Method

Proposal Estimation Matching
Total Time (s)

RVOS[45] - - 0.07 0.07

PDB[42] 0.74 0.70 0.03 1.47

AGS[49] 0.74 0.10 0.03 0.87

MATNet[65] 0.74 0.75 0.03 1.52

UnOVOST[33] 0.74 0.20 0.08 1.02

Ours 0.05 - 0.06 0.11

Table 5: Runtime analysis (second/frame) on DAVIS17 val.

Note that our approach is much faster than existing two-stage

methods. Although slightly slower than RVOS, our approach has

a better tradeoff between segmentation accuracy and efficiency.

good performance in dealing with various challenging fac-

tors, such as, occlusions, scale variations, fast motion.

4.5. Diagnostic Experiment

Segmentation Guidance Module. To demonstrate the su-

periority of the D-Net in comparison with other counter-

parts, we compare it with two baseline methods (i.e., Mask

R-CNN [18] and SOLO [54]) in terms of category-agnostic

instance segmentation on DAVIS17 val. We also examine

the performance of the D-Net with and without the SGM.

For fair comparison, we follow the standard setting [18, 54]

to use mAP as the metric for evaluation. As reported in Ta-

ble 3, the D-Net w/o SGM achieves obvious performance

improvement against the two baselines (+2.2% in terms of

AP). By incorporating the SGM, our full model further im-

proves the AP by +1.7%, thereby demonstrating the effec-

tiveness of the SGM module.

Key Components in T-Net. We further conduct experi-

ments to verify the essential components (i.e., target veri-

fication and memory updating modules) in T-Net. We ex-

amine the performance by discarding each module once at

a time. As summarized in Table 4, the performance drops

significantly after removing each module compared with the

full model, proving their efficacy.

4.6. Runtime Comparison

In addition to segmentation accuracy, runtime efficiency

is also an important dimension for evaluating the usability

of U-VOS algorithms. For this reason, we conduct a run-

time analysis on DAVIS17 val for a more comprehensive

comparison. Five representative methods are used for com-

parison, including RVOS [45], PDB [42], AGS [49], MAT-

Net [65], and UnOVOST [33]. For each model, we report

the inference speeds in terms of three components, i.e., in-

stance proposal, foreground estimation (or salient object es-

timation), and instance tracking (or matching). Note that

most comparative methods simply claim to use MASK R-

CNN for instance proposal generation without revealing too

many details (e.g., backbones). Thus, we directly use the

value (0.74 s) reported in UnOVOST [33] for all the meth-

ods as reference. The analysis results are summarized in

0 2 4 6 8 10 12 14 16
Inference Speed (FPS)
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45

50

55
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65
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Figure 3: Trade-off between inference speed (x-axis) and segmen-

tation accuracy (y-axis) on DAVIS17 val. Our approach demon-

strates compelling performance with high efficiency.

Table 5. We observe that, since our approach formulates

instance proposal and foreground estimation in a unified

framework, it requires much less time to generate instance

proposals. Further, with the efficient target-aware tracking

network, our approach can run at about 10 FPS, taking 0.11

s to process one image with 480p resolution. Though it is

slightly slower than RVOS (0.07 s), we have seen from Ta-

ble 1 that our approach is able to produce considerably more

accurate segmentation results. Fig. 3 depicts a visualization

of the trade-off between accuracy and efficiency of repre-

sentative algorithms on the validation set of DAVIS17. As

can be seen, our approach achieves the best trade-off.

5. Conclusion

Unsupervised video object segmentation is significant

in empowering machines to automatically understand dy-

namic real-world scenarios. In this paper, we present a

novel approach for multi-object segmentation in uncon-

strained videos. First, we propose an instance discrim-

ination network to discover salient instance segments in

a bottom-up manner. By introducing previously well-

segmented masks as guidance for segmenting later frames,

the network is able to produce accurate and temporally co-

herent segments. Second, based on the instance propos-

als, we design a target-aware adaptive tracking framework

to associate the proposals of the same identity across the

sequence. By building a target-aware appearance model

for each object, our model achieves more robust matching

than previous ReID-based methods. Third, we have con-

ducted extensive experiments on two popular benchmarks,

i.e., DAVIS17 and YouTube-VIS, and the results demon-

strate that our approach achieves higher segmentation ac-

curacy against state-of-the-art methods, while running at a

faster inference speed.
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