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Figure 1: Results of our reference-guided inpainting for user-provided images. We show multiple practical applications like

replacing and removing foreground people and objects. Each triad shows the target image with the hole, the source image

used as a reference, and the inpainting result. Our method has strong performance and addresses challenging real-world

issues such as parallax, 90 degree image rotations, and lighting inconsistency between the source and target images.

Abstract

Image inpainting is the task of plausibly restoring miss-

ing pixels within a hole region that is to be removed from a

target image. Most existing technologies exploit patch sim-

ilarities within the image, or leverage large-scale training

data to fill the hole using learned semantic and texture infor-

mation. However, due to the ill-posed nature of the inpaint-

ing task, such methods struggle to complete larger holes

containing complicated scenes. In this paper, we propose

TransFill, a multi-homography transformed fusion method

to fill the hole by referring to another source image that

shares scene contents with the target image. We first align

the source image to the target image by estimating multi-

ple homographies guided by different depth levels. We then

learn to adjust the color and apply a pixel-level warping

to each homography-warped source image to make it more

consistent with the target. Finally, a pixel-level fusion mod-

ule is learned to selectively merge the different proposals.

Our method achieves state-of-the-art performance on pairs

of images across a variety of wide baselines and color dif-

ferences, and generalizes to user-provided image pairs.

1. Introduction

Image inpainting is an image restoration task where the

goal is to fill in specific regions of the image while making

the entire image visually realistic. The regions to be filled

are called hole regions, and could contain undesired fore-

ground objects or small distracting elements, or corrupted

regions of the image. Much research has been devoted to

improving image inpainting either by image self-similarity

(e.g. [3]) or deep generative models (e.g. [67, 60, 66]).

Such methods synthesize realistic semantics and textures

by reusing similar patches from non-hole regions or learn-

ing from large collections of images, respectively. However,

those methods still struggle in cases when holes are large, or

the expected contents inside hole regions have complicated

semantic layout, texture, or depth.

These problems can be addressed if there happens to be

a second reference image of the same scene that exposes

some desired image content that can be copied to the hole.

This task is referred to as reference-guided image inpainting

in the literature [37], but this topic is less explored. In our

paper, we call the image with the hole indicated for removal

the target image. In general, there could be multiple other

source images used as references. These could be taken

by the photographer for the same scene after objects have

moved or the photographer moved the camera to a different
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viewpoint to expose the background. Alternatively, a source

image could be collected from the Internet [57]. If one such

source image contains new desired appearance for the target

hole region, then we can copy the pixels from the source to

fill in the target hole regions. In this paper we assume that

the user has identified a particular source image with the

new desired appearance, so we refer to this as the source

image. We imagine that dedicated apps might be created for

aiding the photographer in this process, or for automatically

retrieving suitable such source images from the Internet.

Although the reference source image makes the inpaint-

ing task easier, reference-guided inpainting is still quite

challenging for several reasons. First, the hole regions could

be very large, which makes the task of guessing the pixel

colors in the hole region less well-posed. Second, we wish

for our task to be as general as possible, so we allow an

uncalibrated camera to freely translate to different 3D po-

sitions for the source and target image, because this can al-

low the photographer to intentionally reveal regions behind

a foreground object to be removed. Such translations, how-

ever, can induce large parallax, which cannot be modeled in

image space by a simple 2D warp such as a global homogra-

phy. Unlike video inpainting or multi-view Structure-from-

Motion (SfM), we assume the system will not have access

to more than two photos. Thus, it is harder in our setting

to reliably estimate 3D structures, depth, and point corre-

spondences. Third, depending on the camera and photog-

raphy setup, the photographs may have substantially differ-

ent exposure, white balance, or lighting environment, and if

one photograph comes from the Internet, then it will have

different camera response curves. Existing methods based

purely on warping cannot resolve the resulting complex is-

sues of color matching. Finally, there may exist regions in

the source image that do not exist after warping due to pix-

els being out of the image or occluded.

To address these challenges, we propose a multi-

homography fusion pipeline combined with deep warping,

color harmonization, and single image inpainting. We ad-

dress the issue of parallax by assuming that there may be

multiple depth planes inside the hole. Loosely inspired by

recent work on multiplane images [9, 75, 33, 53], we pro-

pose multiple homographic registrations of the source im-

age to the target, each corresponding to an assumption that

the scene geometry lies on a different 3D plane. Given a

target and a source image, we first estimate the matched

feature points between the two images, cluster the inliers

according to their estimated depths in the target image, and

for each cluster estimate a single homography to perform

an initial image registration. We call each of these candi-

date alignment images a proposal. For each proposal, we

then tackle the challenge of color matching by using a deep

bilateral color transformation, and we address parallax is-

sues by refining the warp using a learned per-pixel spatial

transformation. We then merge all the transformed source

image proposals by learning a set of fusion masks. Finally,

we address the last challenge regarding regions which do

not exist in the source image by using a state-of-the-art sin-

gle image inpainting method to complete missing regions,

and learn to merge it as well.

In summary, the main contributions of our method are:

(1) We propose TransFill, a multi-homography estimation

pipeline to obtain multiple transformations of the source im-

age, where each aligns a specific region to the target image;

(2) We propose to learn a color and spatial transformer to

simultaneously perform a color matching and make a per-

pixel spatial transformation to address any residual differ-

ences after the initial alignment; (3) We learn weights suit-

able for combining all final proposals with a single image

inpainting result.

2. Related Work

Image inpainting. Inpainting research can be divided

into two categories: traditional methods that work by prop-

agating colors or matching patches, and deep methods that

learn semantics and texture from large image datasets.

Some traditional methods propagate pixel colors by

anisotropic diffusion [4] or solving PDEs [2]. Such meth-

ods work well for thin hole regions but as the hole regions

grow larger they tend to result in over-blurring. Patch-based

image inpainting methods work by finding similar matches

elsewhere in the image and copying the resulting texture

[56, 3]. Those methods tend to result in high-quality texture

but may give implausible structure and semantics.

Our work is more closely related to deep models for in-

painting that use a single image. Context encoders analyze

the surroundings of the hole [39], local and global discrimi-

nators [17] can improve local texture and overall image lay-

out, and partial [29] and gated convolutions [67] can reduce

artifacts from filter responses at the hole boundary.

More recently, some deep methods have focused on in-

ferring other information first: these can be roughly cat-

egorized into using edges [34], segmentation masks [47],

low-frequency structures [43, 27], and other possible maps

like depth. The ill-posed nature [74] of single-image in-

painting makes it challenging to complete larger holes and

higher-resolution images. Recent works demonstrate neural

networks can generate high-resolution images [63, 69, 65],

but for large holes, these methods can still generate results

that appear semantically implausible or have artifacts in the

fine-scale texture. Since our method has a source reference

image, we can better establish consistency with the ground

truth image by learning appropriate spatial and color trans-

formations for a source image patch.

Video inpainting. A few classical works in this area are

Wexler et al. [56] and Granados et al. [13], which glob-

ally optimize patch-based energies, and Newson et al. [35],
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which estimates multiple homographies using a piecewise

planar assumption for the scene. Xu et al. [61] estimates the

optical flow to learn the pixel warping field. Recently, the

Onion-Peel Network (OPN) [37] leverages non-local de-

signs inside the network, making it feasible to apply multi-

source inpainting for a larger temporal range. Lee et al.

[25] proposed a Copy-and-Paste Network to learn the align-

ment of consecutive frames for video inpainting. Zhao et al.

[73] reuse contents from an unrelated image for a reference-

based inpainting. Their method is based on only a single

affine transform, which we show is not enough in our ex-

periments, and exhibits residual color and geometric incom-

patibilities that are problematic in our multi-view scenario.

Xue et al. [62] is a specialized method designed to remove

reflective or occluding elements near the camera such as

fences.

Image harmonization. Image harmonization refers to

matching the color distribution and appearance when com-

positing a foreground from one image on a background

from another image. Traditional methods transfer color

statistics locally and globally [41, 42, 50] and use gradient-

domain based blending [40, 20, 51]. Digital photomon-

tage [1] also demonstrated copy-and-paste workflows that

can change the appearance of a foreground subject. Un-

like our method, photomontage required user input and as-

sumes the photographs have been aligned. Recently, CNN-

based harmonization models [76, 59] are emerging, includ-

ing methods involving segmentation masks [52] for region

selection, and discriminators for domain verification [6].

Deep bilateral filtering has also been used to better pre-

serve edges and details while transforming image color

space [12, 54]. Our work is the first to integrate harmoniza-

tion with a neural network for reference-guided inpainting.

We apply a deep bilateral color transformation to address

color inconsistencies while preserving edges.

Image alignment. Image alignment or registration in-

volves placing multiple images in the same coordinate sys-

tem. It is widely used for video stabilization [30], image

stitching [24, 14], and serves as an important pre-processing

step for many video and image applications like face anal-

ysis. Homography warping is a widely used global para-

metric method. Sparse local features like SIFT [31] can

be matched either using nearest neighbour, or deep mod-

els like OANet [70] and SuperGlue [45], and the resulting

correspondences can be used to estimate warping models.

Recently, deep models have been explored to directly learn

homography parameters [7, 71, 36], demonstrating their ad-

vantages on low-light and low-texture images.

Issues of parallax due to content at different depths can

be better addressed by mesh-based warping [30, 26, 28] or

pixel-wise dense optical flow [15, 58, 48, 49, 55, 18]. Liu

et al. proposed the Content Preserving Warp (CPW) [28] to

maintain the rigidity of motions. Recently, Ye et al. pro-
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Figure 2: System pipeline. Given the target image IMt
masked by an associated binary hole image M , and a sin-

gle source image Is, we first propose multiple global homo-

graphies using the multi-homography proposal module, and

locally adjust color and spatial misalignments in each pro-

posal using our Color-Spatial Transformer (CST). Then we

merge each proposal with the output Ig from a single-image

inpainting model using Single-Proposal Fusion (SPF), and

finally selectively blend all the proposals.

posed deep meshflow [64] to make mesh estimation more

robust on different scenes. Due to the sparsity of the mesh,

image contents can be better retained while warping. How-

ever, optical-flow based methods can provide greater flex-

ibility in permitted motions. Our pipeline uses multiple

global homographies followed by per-pixel warping fields

to combine the advantages of various alignment methods.

3. Method

We will first give an overview of our pipeline. Sup-

pose we are given a target image It ∈ IRW×H×3, an as-

sociated mask M ∈ IRW×H×1, and a single source image

Is ∈ IRWs×Hs×3. Note that M indicates the hole regions

with value one, and elsewhere with zero. The masked target

image is then denoted by IMt = (1 − M) ⊙ It. We as-

sume there is sufficient overlap in content between the two

images especially nearby (but not necessarily within) the

masked regions. Our task is to generate contents inside the

masked regions of It by effectively reusing contents of Is.

More specifically, we wish to geometrically align Is with It
in the vicinity of the hole region globally and locally, and

adjust any color inconsistency. We fill any regions that are

occluded or outside the image using a state-of-the-art single

image inpainting method.

Our pipeline follows four steps as shown in Figure 2. It

includes an initial registration using multiple homography

proposals, per-pixel color and spatial transformations for

each proposal, single-proposal fusion and multi-proposal

fusion, as introduced in the following sections.

3.1. Multihomography Proposals

In this stage, we first globally warp the source image

Is to align it with the masked target image IMt . Provided

the contents inside the hole region occur at multiple depth

planes, or the camera motion is not a simple rotation, a

single homography is not sufficient to perfectly align the

source and target image [10]. Therefore, we propose to es-
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Figure 3: Multi-homography Proposal Module. We com-

pute the monocular depth Dt of the non-hole region IMt ,

and cluster the feature matching points into N sub-groups

using the depth values. Each estimated homography Hi will

align different regions within the hole. ∗H6 indicates a ho-

mography estimated using all the points.

timate multiple homography matrices to transform Is. Ide-

ally, each homography-transformed Is can align with It
within a specific image depth level range or local spatial

area, as shown in Figure 3.

To obtain different transformation matrices, we first ex-

tract SIFT [32] features from IMt and Is, and feed all the ex-

tracted feature points and their descriptors into a pre-trained

OANet [70] for outlier rejection. The lightweight OANet

efficiently establishes the correspondences between IMt and

Is by considering the order of the points in the global and

local context. OANet outputs the inliers forming a point set

Pt in IMt , and its corresponding matched point set Ps in

Is. To consider different possible depth planes within and

nearby the hole region, we are inspired by the Multi-Plane

Image (MPI) [75] idea for scene synthesis. We estimate

the depth map Dt from IMt using a deep learning based

monocular depth estimator [16] , and record the depth value

for each point in Pt. We then cluster those points into a

partition of N subsets {P j
t }, j ∈ [1, N ] by their depth val-

ues using an agglomerative clustering method [21], where

Pt = ∪N
j=1P

j
t . The corresponding matched points in Ps are

used to form the subsets Ps = ∪N
j=1P

j
s accordingly.

For each subset’s pairs of points (P j
t , P

j
s ), we estimate a

single homography using RANSAC [8]. By further includ-

ing the homography estimated from the full set of points

(Pt, Ps), we obtain N+1 homography matrices overall. We

denote them by Hi, i ∈ [1, N + 1]. Finally, we transform

the source image Is using the estimated Hi, and obtain a set

of warped source images {Iis}, where Iis ∈ IRW×H×3, i ∈
[1, N + 1]. We set N = 5 in our experiments.
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Figure 4: Structure of the Color-Spatial Transformer Mod-

ule. Iis will first go through a Color Transformer (CT),

and then a Spatial Transformer (ST) to obtain a refined

source image Îis. The bottom row shows examples of the

refinement stages. Blocks with blue color indicate there are

learned parameters, otherwise they are parameter-free.

3.2. ColorSpatial Transformation (CST) Module

The global homography-warped source image sets {Iis}
are regarded as the initialization of the warping of Is. How-

ever, as shown in Figure 3 and 4, while directly compositing

Iis and IMt using Iis ⊙M + IMt , due to the possibly inaccu-

rate homography estimation or challenges of large parallax,

there may be small misalignments inside and near the hole

region, especially along the hole boundary. Additionally,

the composite image may suffer from color and exposure

differences. Therefore, we propose another refinement step

that we call a Color-Spatial Transformer (CST). This simul-

taneously adjusts the color and alignment for each Iis. The

structure of CST is illustrated in Figure 4. Iis will first go

through a Color Transformer (CT), and then a Spatial Trans-

former (ST) to obtain a refined source image Îis.

In our design of the color and spatial transformers, we

would like to retain the texture details and the rigidity of

the source image contents. Additionally, we prefer the

color transformation and warping operations to be decou-

pled and not have to use auxiliary losses for each compo-

nent. Inspired by deep bilateral filtering [12] and Spatial-

Transformer Network (STN) [19], we propose to learn

the transformations in a lower resolution, and obtain the

full-resolution coefficients using up-sampling. Specifically,

given Iis, IMt and M , we down-sample them to 256 × 256
to obtain Iis ↓, IMt ↓ and M ↓. Then we compute the high-

level features ui
s = B(Iis ↓, IMt ↓,M ↓) using a shared

network B. After that, the color and spatial transformation

coefficients will be learned by the CT and ST sub-networks.

Color Transformation (CT). To transform the color in

RGB space of Iis to Iisc, we learn an affine transformation
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Figure 5: Single-Proposal Fusion (SPF) module. This takes

IMt , M , a single Îis and Ig as inputs, where Ig is the result of

a single image inpainting method. SPF outputs a confidence

map ci, the merged Ĩis, and the packed features f i
s.

with parameters Ai
c = [Ki

c bic] ∈ IRW×H×3×4. Formally,

for each pixel at location p, Iisc(p) = Ki
c(p)I

i
s(p) + bic(p),

where Ki
c(p) ∈ IR3×3 and bc(p) ∈ IR1×3. To better pre-

serve the edges and textual details, we adopt deep bilat-

eral filtering [12]. Specifically, we learn a bilateral grid

Āi
c = Bc(u

i
s) ∈ IRs×s×d×3×4 in a lower resolution, and a

single-channel guidance map gic = Gc(I
i
s) ∈ IRW×H×1 in

full-resolution. We fix s = 8 and d = 8 in our experiments.

Bc and Gc are the trainable networks for estimating the grid

and guidance map. Finally, Ai
c is tri-linearly sampled from

Āi
c using the normalized triplet (x, y, gic(p)).
Spatial Transformation (ST). We learn the spatial

warping offset Ai
s = [Ai

sx Ai
sy] ∈ IRW×H×2 along the

horizontal and vertical axes. To better preserve the rigid-

ity of the image contents inside hole region, we propose to

learn the warping field Āi
s = Bs(u

i
s) ∈ IRs×s×2 in a lower

resolution, and up-sample it to Ai
s using bi-linear interpo-

lation. Finally, Îis = Warp(Iisc;A
i
s). The objective loss to

learn the CST module is defined by,

Li
CS = ||Mv ⊙M ⊙ (It − Îis)||1, (1)

where Mv = ✶(Iis > 0) is the valid mask indicating the

pixel regions after initial homography warping.

3.3. SingleProposal Fusion (SPF) Module

The Single-Proposal Fusion (SPF) module learns to esti-

mate a confidence map and other features for the refined re-

sults Îis from the CST module by merging it with the outputs

of a well-trained single image inpainting model called Pro-

Fill [69]. The inpainting results from ProFill often generate

good structures, so the intuition for the SPF module is that

we independently do an image comparison of each proposal

against this ProFill reference, to better constrain the overall

learning task and learn confidence and difference features

that can help the harder downstream multi-proposal fusion

task. As shown in Figure 5, the module takes IMt , M , a sin-

gle Îis and Ig as inputs, where Ig is the output from a single

image inpainting method. In this paper, we use a pre-trained

ProFill [69] model and freeze its weights while training the

whole pipeline. The module outputs a confidence map of Îis
denoted by ci of the same spatial size as IMt . The output Ĩis
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Figure 6: Structure of the Multi-Proposal Fusion (MPF)

Module. We feed the UNet with packed features f i
s and fg

from the SPF module, and learn a spatially-varying merging

mask for all the proposals.

of merging is

Ĩis = ci ⊙ Îis + (1− ci)⊙ Ig, (2)

The values in the confidence map range from zero to one,

and higher-valued regions should contain more informative

and realistic pixels. The composited result of merging IMt +

M ⊙ Ĩis can also be displayed to the user as an intermediate

result demonstrating the performance of a single proposal.

In our experiments, we will show that compared to learning

to merge multiple Îis directly, it is better to condition on the

outputs from a well-learned SPF module.

Additionally, we utilize a shallow convolutional module

to concatenate the learned confidence map ci and the output

of the CST module Îis, and output a three-channel feature

map f i
s to be fed into the final multi-proposal fusion module

in section 3.4. Similarly, when we input Ig to the SPF, we

obtain the feature fg . The objective function for learning

the SPF is defined as,

Li
E = ||M ⊙ (It − Ĩis)||1, (3)

and an additional Total Variance loss is imposed on ci to

enforce the smoothness of the map.

Li
c = LTV(ci),LTV(u) =

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∂u

∂y

∥

∥

∥

∥

1

(4)

3.4. MultiProposal Fusion (MPF) Module

The Multi-Proposal Fusion (MPF) module merges the

N + 1 proposals of the refined source images Îis and the

single-image inpainting results Ig together. The module is

fed with the packed features f i
s and fg from the SPF mod-

ule. Pixel-wise merging weights ci, i ∈ [1, N+1] and cg are

learned through a UNet [44] with softmax (cg+
∑N+1

i=1
ci =

1) by merging different portions of proposals as Im,

Im = cg ⊙ Ig +

N+1
∑

i=1

ci ⊙ Îis, (5)

Then the final result Io = IMt + M ⊙ Im is learned by

the objective functions,

Lo = ||M ⊙ (It − Io)||1 + V GG(M ⊙ It,M ⊙ Io), (6)
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where the VGG loss matches features of the pool5 layer of

a pre-trained VGG19 [46]. Similarly, total variance losses

are imposed to the weighting maps ci and cg , so we have

the losses Li
c = LTV(c) and Lg

c = LTV(cg). Therefore,

the overall loss function with λ1 = 1, λ2 = 1 becomes

Lall = Lo + λ1L
g
c +

∑N+1

i=1
(Li

CS + Li
E + λ2(L

i
c + Li

c)). (7)

4. Experimental Results

4.1. Datasets and Implementation

Datasets. We trained the model on the RealEstate10K

dataset [75]. This was collected from YouTube videos la-

belled as real estate footage. In total it consists of more

than 8000 video clips with length from 1 to 10 seconds.

For each clip, we randomly sampled pairs of images with a

displacement of 10, 20, and 30 frames apart. We call this

“Frame Displacement” (FD). This resulted in 188184 frame

pairs for training, and 20290 pairs for testing. We generated

random free-form brush-and-stroke holes like in DeepFillv2

[67]. We also collected 3K more pairs of real user-provided

image pairs to serve as practical user cases for testing.

For training the Color-Spatial Transformer (CST), al-

though RealEstate10K contains sufficient samples with real

multi-view data and different exposures across image pairs,

it lacks image pairs with large color inconsistency. There-

fore, we synthesized misaligned color-different images

from the MIT-Adobe5K dataset [5], and uniformly mixed

these data with RealEstate10K for training. Adobe5K con-

tains 5000 images, and for each image it provides five ad-

ditional expert-retouched images to form 5000 sets in total.

We regard the original samples as target images and syn-

thesized the misaligned source images using the method in

[7]. We make two binary variables for whether there is a

color difference (C) and whether there is spatial misalign-

ment (S), and synthesized pairs with CS, CS̄, C̄S and C̄S̄

with equal probability from 4000 sets to form a balanced

training set, leaving 1000 sets for validation.

Implementations. We obtained a pre-trained OANet

model for image feature matching and outlier rejection. We

applied the pretrained model of Hu et al. [16] to estimate

the depth map from a single target image. We also obtained

a pre-trained ProFill [69] from the authors. All the above-

mentioned model weights were frozen during training. Ad-

ditionally, we pre-trained the CST module using the mixed

dataset in advance for 400 epochs, and froze its weights af-

terwards. Finally, the whole pipeline was trained end-to-end

for 400 more epochs. We used a patch size of 256×256 for

training and arbitrary size for inference, and a learning rate

of 10−4 with decay rate 0.5 after 200 epochs. We used the

Adam optimizer [22] with betas (0.9, 0.999). The code is

implemented in PyTorch [38].

4.2. Baseline Models

We chose baselines that are similar to, but may not ex-

actly the same as our task, including approaches address-

ing image stitching [68], optical flow-guided video inpaint-

ing [61], non-local patch matching for multiple photo in-

painting [37], and a state-of-the-art single image inpainting

method [69] with the reference image concatenated so the

method has access to the same inputs as the rest.

APAP [68]: As-Projective-As-Possible is a baseline image

stitching algorithm that resolves depth parallax. We used

the official Matlab 1 implementation for testing.

DFG [61]: Deep Flow-Guided Video Inpainting treats

video inpainting as pixel propagation. It fills the holes by

completing the optical flow field estimated by FlowNet2.0

[18]. We used their official2 pre-trained model for testing.

OPN [37]: Onion-Peel Network is a recent work addressing

video and group photo inpainting using non-local attention

blocks. We used their official PyTorch code3.

ProFill [69]: ProFill is a state-of-the-art single-image in-

painting method that also contains a contextual attention

module [66]. We used the official pre-trained model 4

from the authors. When testing, we fed in the target with

the homography-warped source image. Before testing on

RealEstate10K, we also fine-tuned OPN and ProFill on

RealEstate10K training frames for fairness.

4.3. Qualitative Comparison

Results on User-Provided Images. In Figure 7, we

show visual results of testing on real user-provided images.

We indicate the hole region on the target image, and crop

only the region of interest due to the space limits. More

results can be found in the supplementary material. APAP

and DFG well-preserve the source image contents due to

the global homography warping, but they still suffer from

color inconsistencies and alignment issues. We also exper-

imented with combining Poisson blending with APAP but

found it gives color bleeding artifacts: see the supplemental

for details. OPN usually works well when there are multiple

reference frames which have similar scales and color distri-

butions within the same video clips. However, if only one

source reference image exists, the non-local attention mod-

ule struggles to search for similar local patches and fails.

ProFill with the contextual attention module usually does

well in searching for textures, but the estimated interme-

diate coarse results cannot be matched with specific image

contents. Thus the reference-based ProFill can only achieve

texture or object removal but not background contents re-

covery. Compared to them, ours better reuses the back-

ground patterns and achieves a content-aware alignment and

1APAP: https://cs.adelaide.edu.au/∼tjchin/apap/
2DFG: https://github.com/nbei/Deep-Flow-Guided-Video-Inpainting
3OPN: https://github.com/seoungwugoh/opn-demo
4ProFill: https://zengxianyu.github.io/iic/
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Figure 7: Comparison with baselines on challenging user-provided image pairs. For better visualization, we only crop the

regions of interest from the whole target and source images. Please zoom in to see the details.

composition. The generated results are more faithful to and

compatible with the target image. The multi-homography

proposal approach provides more options for warping ini-

tialization when the matched features are too complex for

a single homography. It helps to resolve challenging cases

when the hole regions do not belong to the dominant plane

in the image as shown in row four. In Figure 8 we show

intermediate results indicating regions selected to form the

final results and how the CST resolves misalignment.

4.4. Quantitative Comparison

Results on RealEstate10K. The quantitative compari-

son on RealEstate10K is shown in Table 1. OPN and Pro-

Fill are more suitable for large batch testing. We tested

them on the entire testing set. Results on cropped image

pairs with Frame Displacement (FD) 10, 20 and 30 are

reported in terms of PSNR, SSIM and LPIPS scores [72]

based on AlexNet [23]. APAP and DFG are not suitable

for large batch testing and their performance may be influ-

enced by non-existing regions, so we sampled a 300-image

subset from FD=10 as Small Set to test. Results showed

that contextual-attention based ProFill failed to faithfully

reconstruct the source contents. Optical-flow based DFG

achieved better results by smoothly completing the flow

field. OPN with atomic patch matching was not better than

our warping-based approach. The TransFill thus demon-

strated its superiority in faithful reconstruction.

User Study on User-Provided Images. To better evalu-

ate the performance on our user-provided images, we con-

ducted a user study via Amazon Mechanical Turk (AMT).

We compared our method with each baseline separately

and presented users with binary choice questions. We re-

quested the users to choose one fill result which looks more

realistic and faithful. To ensure the reliability, we used a

pre-qualification test as well as check questions, as we ex-

plain in the supplementary material. For each method pair,

we randomly sampled 80 examples, and each example was

evaluated by 7 independent users. For each sample, one

method was regarded as “preferred” if at least 5 users se-

lected it. Samples voted by 3 or 4 users are considered

confusing samples and filtered out. We reported TransFill’s

Preference Rate (PR) in Table 1. The high preference rate

demonstrates the effectiveness of TransFill. We also con-

ducted a one-sample permutation t-test with 106 samples by

assuming a null hypothesis that on average 3.5 users prefer

one method. The p-values are all sufficiently small so we

can draw the conclusion that the preference for our method

was statistically significant.
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Figure 8: Visualization of intermediate results. Iis are the initialized homography warping of the source image Is. Îis are

the learned spatial and color transformation of Iis. The final result Io is the merging of Îis and the results of ProFill Ig by

pixel-wise weights ci and cg overlaying on the images. The result draws from regions that are better aligned: on the left from

Î2s , in the center from the single image inpainting Ig , and on the right from Î4s and Î6s . Zoom in for better visualization.

Table 1: Quantitative Comparisons and User Study. FD: Frame Displacement. PR: Preference Rate
RealEstate10K: PSNR ↑/ SSIM ↑ / LPIPS ↓ User-provided Images: User Study

Model FD=10 FD=20 FD=30 All Small Set PR p-value

APAP [68] - - - - 31.94 / 0.9738 / 0.0251 90.76% p < 10−6

DFG [61] - - - - 36.17 / 0.9873 / 0.0155 87.50% p < 10−6

OPN [37] 33.45 / 0.9765 / 0.0201 32.47 / 0.9734 / 0.0258 31.32 / 0.9699 / 0.0320 32.43 / 0.9734 / 0.0261 33.40 / 0.9771 / 0.0207 95.65% p < 10−6

ProFill [69] 31.18 / 0.9689 / 0.0423 31.14 / 0.9687 / 0.0425 30.83 / 0.9683 / 0.0440 31.05 / 0.9687 / 0.0429 30.95 / 0.9690 / 0.0419 81.67% p < 10−6

TransFill (Ours) 39.59 / 0.9919 / 0.0116 37.39 / 0.9877 / 0.0162 35.62 / 0.9839 / 0.0213 37.58 / 0.9879 / 0.0164 38.83 / 0.9914 / 0.0126 - -

Table 2: Ablation Study on Multi-Homography Proposals.
Clustering N Outlier Rejection PSNR↑ SSIM↑ LPIPS↓

Depth N=5 OANet 37.576 0.9879 0.0164

Depth N=5 Ratio Test [32] 37.444 0.9876 0.0168

Random N=5 OANet 37.499 0.9873 0.0166

Spatial N=5 OANet 37.384 0.9876 0.0169

Depth N=3 OANet 37.537 0.9878 0.0162

None N=1 OANet 37.092 0.9868 0.0172

Table 3: Color-Spatial Transformation. C: Color, S:Spatial
Order PSNR↑ SSIM↑ LPIPS↓

C → S 37.576 0.9879 0.0164

S → C 37.566 0.9879 0.0163

Only S 36.717 0.9866 0.0182

Only C 36.228 0.9849 0.0179

4.5. Ablation Study

Type and Number of Multi-Homography Proposals.

This ablation study was conducted on the testing set of

the RealEstate10K. For each alternative, we re-trained the

model. We compared the proposed depth-based points clus-

tering methods with other alternatives including random

and spatial clustering in Table 2. When we proposed five

homography matrices, depth-based clustering works best.

The results were fairly close when we set N to either 3 or

5, but N = 5 was slightly better in PSNR. However, these

are much better than using just one global homography.

Color-Spatial Transformation Module. Table 3 shows

that the order of the Color-Spatial Transformer did not make

too much difference. However, according to our experi-

ments, adjusting the color first made the training converge

faster since the guidance map was computed from a fixed

Iis. Table 3 also demonstrated that both the Color and Spa-

tial Transformer were necessary.

Pipeline Components. Table 4 indicates that refining

the source image with CST outperforms directly merging

the initialized homography-warped images. SPF and its

Table 4: Ablation Study on Pipeline Components. CST:

Color-Spatial Transformer, SPF: Single-Proposal Fusion.
CST SPF PSNR↑ SSIM↑ LPIPS↓

X X 37.576 0.9879 0.0164

✗ X 35.579 0.9838 0.0183

X ✗ 36.710 0.9861 0.0188

✗ ✗ 33.484 0.9782 0.0249

output confidence ci effectively guided the learning of MPF.

The proposed full pipeline achieved the best performance.

5. Limitations, Discussion and Conclusions

The proposed method has limitations in certain situa-

tions. First, the pipeline may not work well on extreme

low-light or texture inputs containing very few SIFT fea-

ture points. Second, our homography-based transforma-

tion is not suited for image pairs with extreme viewpoint

changes. Third, the current model may struggle to transfer

color if the lighting environment is very different, such as

day to night. This is because we use an effective bilateral

grid color matching, but do not incorporate any specialized

models that reason further about lighting (e.g. [11]). Addi-

tionally, we utilize the pre-trained ProFill to fill the miss-

ing pixels so the final generation quality highly depends on

the performance of the single image inpainting module Pro-

Fill. That module could be replaced by other state-of-the-art

models, and could potentially be optimized with the multi-

fusion pipeline together. We leave that for future work.

In conclusion, we contribute a multi-source image in-

painting model based on multiple homography, deep warp-

ing and color harmonization. The results outperform state-

of-the-art single image and multi-source inpainting meth-

ods, especially when the hole contains complicated depth.
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