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Abstract

Vision-and-language pre-training has achieved impres-

sive success in learning multimodal representations be-

tween vision and language. To generalize this success to

non-English languages, we introduce UC2, the first ma-

chine translation-augmented framework for cross-lingual

cross-modal representation learning. To tackle the scarcity

problem of multilingual captions for image datasets, we

first augment existing English-only datasets with other lan-

guages via machine translation (MT). Then we extend

the standard Masked Language Modeling and Image-Text

Matching training objectives to multilingual setting, where

alignment between different languages is captured through

shared visual context (i.e., using image as pivot). To fa-

cilitate the learning of a joint embedding space of images

and all languages of interest, we further propose two novel

pre-training tasks, namely Masked Region-to-Token Mod-

eling (MRTM) and Visual Translation Language Modeling

(VTLM), leveraging MT-enhanced translated data. Evalua-

tion on multilingual image-text retrieval and multilingual

visual question answering benchmarks demonstrates that

our proposed framework achieves new state of the art on

diverse non-English benchmarks while maintaining compa-

rable performance to monolingual pre-trained models on

English tasks.

1. Introduction

The world we navigate through is a multimodal and mul-

tilingual kaleidoscope. While tremendous success has been

realized in multimodal research with the advent of vision-

and-language (V+L) pre-training [10, 35, 36, 45, 26], the

majority of current literature is biased towards English. Al-

though English-trained V+L models can be finetuned on

each target language (given that there is sufficient language-

specific data in downstream task), maintaining language-

specific models for every language in the world (6,900+)

is impossible given insurmountable development and main-

Figure 1. A topology comparison between existing work (M3P)

and our proposed UC2. M3P combines two types of pre-training

tasks and the cross-modal Transformer works only on images and

English captions. Our UC2 builds a cross-lingual cross-modal

Transformer over images and all the other languages.

tenance cost [23]. Naturally, a “Tower of Babel” strategy

starts to gain interest in the community, aiming at build-

ing one giant model that can handle all languages, notable

examples including massively multilingual neural machine

translation [1], cross-lingual language model [32], and mul-

tilingual multimodal representation learning [18, 24].

Early works on cross-lingual multimodal tasks mainly

focus on machine translation [22, 55, 6, 50, 2] and image-

text retrieval [18, 28, 5, 19, 49]. The goal is to construct a

common embedding space for vision and cross-lingual in-

puts, and draw visual concepts from images and similar se-

mantics from languages close together in the feature space.

However, due to the scarcity of large-scale training cor-

pora, these models are validated only on small task-specific

datasets, thus scaling and generalizing these models to more

languages is non-trivial.

Recent release of large-scale multimodal datasets [41]

and multilingual corpora (e.g. Wikipedia in 100 languages)

has served as a key impetus to accelerate fast advances in

V+L pre-training [10, 36, 45, 54] and multilingual language

modeling [12, 11, 23], which makes pre-training large-scale

multilingual V+L models possible. A pioneering work is

M3P [24], which formulates the training process as alter-

nating V+L pre-training between cross-modal monolingual
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Figure 2. An overview of UC2 model. Figure (a) shows the construction of multilingual multimodal pre-training corpus via machine

translation. (b) depicts the overall UC2 framework, which is pre-trained with a massive corpus of multilingual caption-image pairs. Figure

(c) and (d) illustrate details of four pre-training tasks.

corpus and mono-modal cross-lingual corpus. It relies on

English as the focal point to build a bridge between im-

age and different languages, which inevitably introduces

linguistic discrepancy into downstream tasks that rely on

direct alignment between image and Non-English language

(e.g., Image-to-German retrieval), as shown in Figure 1 (a).

In this paper, we propose a new pre-training framework,

UC2 (Universal Cross-lingual Cross-modal pre-training),

which pivots primarily on images and complementarily on

English for multilingual multimodal representation learn-

ing (Figure 1 (b)). The major challenge is that pivoting

on images requires paired image and aligned multilingual

data (e.g., image-English, image-German), while existing

V+L datasets only contain image-English pairs. To fill this

blank, we propose to augment English-only datasets with

other languages via machine translation (MT), and leverage

the augmented datasets for pre-training. To the best of our

knowledge, this is the first known effort in creating large-

scale training datasets with multilingual image captions.

In addition to extending two widely-adopted pre-training

tasks (Masked Language Modeling and Image-Text Match-

ing) to a multilingual setting, we further propose two novel

pre-training objectives, namely Masked Region-to-Token

Language Modeling (MRTM) and Visual Translation Lan-

guage Modeling (VTLM). MRTM encourages fine-grained

alignment between words and image regions, by sharing

the embedding space of word tokens and region labels (i.e.,

object class predictions from an object detector). VTLM

is designed to jointly learn cross-lingual cross-modal map-

ping from parallel textual corpora and paired images. Ex-

tensive experiments demonstrate that our proposed UC2

framework achieves new state of the art over multiple

mainstream benchmarks such as Multi30k [16, 15, 4] and

COCO [9, 51, 34] across multilingual image-text retrieval

and visual question answering (VQA) tasks.

Our contributions are summarized as follows. (i) We

construct a multilingual V+L corpus, and propose the

first MT-augmented cross-lingual cross-modal pre-training

framework UC2, which pivots on both images and English

language for joint representation learning. (ii) We pro-

pose new pre-training tasks, Masked Region-to-Token Lan-

guage Modeling and Visual Translation Language Model-

ing, two effective learning objectives for multilingual mul-

timodal tasks. (iv) We achieve new state of the art on multi-

ple multilingual image-text retrieval and VQA benchmarks,

outperforming existing methods.

2. Related Work

Vision-Language Pre-training. There is a growing in-

terest in building generic pre-trained BERT-like [13] mod-

els for V+L tasks. Early work such as VilBERT [36] and

LXMERT [45] propose a two-stream architecture that en-

codes visual and textual input through two separate Trans-

formers, and then fuse the two modalities by a cross-modal

Transformer. Later work such as VL-BERT [44], Unicoder-

VL[33] and UNITER [10] introduce a single-stream archi-

tecture that uses one Transformer to encode concatenated

input from both modalities simultaneously. Later, Uni-

fied VLP [54] applies to both understanding and generation

tasks. Further improvements are proposed on using differ-

ent input features [35, 26] and multi-task learning [37].
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Multimodal Multilingual Learning. Existing studies

arching over multilingual and multimodal aspects mainly

focus on two tasks: cross-modal retrieval and multimodal

machine translation (MT). [38, 7] introduces a multimodal

multilingual approach by aligning images and captions in

different languages to English captions. Unlike previ-

ous work using languages as a pivoting point, [18] learns

a shared embedding space that forces representations of

different languages towards the pivot image representa-

tion. Later work focuses on scaling to more languages via

character-based word-embedding [49] or shared language-

acoustic embedding [28]. SMALR [5] proposes a scalable

multilingual model to learn visually aligned word embed-

dings, for better balance between multilingual capacity and

task performance.

Multimodal MT exploits visual information to improve

language translations. Earlier work introduces vision to

an LSTM-based neural MT model via attention to vi-

sual context [8, 21], or fusion [6], or multi-task learning

[17, 55]. Lately, Transformer-based [46] models are pro-

posed [2, 50]. There is also an growing interest in unsuper-

vised multimodal MT [25, 43], where translation between

monolingual corpus is augmented via pivoting on image.

While successful in individual tasks, these models are

usually trained on small amount of data, which limits its ex-

tension to other tasks or languages. To learn task-agnostic

universal representations across vision and multilingual

text, M3P[23] introduces the first pre-training framework

that alternatively optimizes the model on multimodal mono-

lingual corpus and mono-modal multilingual corpus. While

M3P achieves better performance compared to task-specific

methods, the alignment between vision and Non-English

languages is hard to capture, as the model is learned via us-

ing English as the anchor point. To strengthen the alignment

between vision and all languages, we propose to pre-train a

unified architecture where sentences in different languages

are grounded on shared visual context.

3. Cross-Lingual Cross-Modal Pre-training

In this section, we start with introducing our ma-

chine translation augmented dataset that enables large-scale

cross-lingual pre-training. We then go over the proposed

UC2 model and our designed pre-training objectives for uni-

versal representation learning across vision and languages.

3.1. Machine Translation Augmented Dataset

Our multilingual image-text paired data is collected via

augmenting the captions from the Conceptual Captions

dataset [41] with a set of machine translated1 captions in

other languages L = {l1, l2, . . . , ln}. Specifically, we

1We use Microsoft Azure Translation API Service and will release the

translated captions.

translate the original English captions into five different lan-

guages (German, French, Czech, Japanese, and Chinese),

which covers languages required for all the downstream

tasks studied in this work. Note that with recent advances on

machine translation for low-resource languages, we can fur-

ther expand the dataset to more languages, which we leave

for future work. With this data augmentation, we obtained

3.3 million images, each paired with captions in six lan-

guages, as the process shown in Figure 2 (a). This one-to-

many mapping greatly facilitates the learning of alignment

between visual content and semantics from each language

through image as a shared anchor. By introducing translated

data into model pre-training, our method yields significant

improvement over the baseline with MT tools applied only

on downstream tasks. Next, we elaborate how to leverage

these data for cross-lingual cross-modal pre-training.

3.2. Model Overview

UC2 extends monolingual language encoder of V+L

frameworks, such as UNITER [10], to cross-lingual en-

coder [11], as shown in Figure 2 (b). The visual feature is

extracted from an image encoder and the language feature

is obtained from a general cross-lingual language encoder.

The multimodal features are then combined into a sequence

and fed to a multi-layer Transformer to produce contextual-

ized cross-modal and cross-lingual representations.

Image Encoder. Given an input image, we first obtain a

sequence of image region features v = {v1, v2, · · · , vm}
with Faster R-CNN [39]. For each region, we also ex-

tract location features via a 7-dimensional vector: p =
[x1, y1, x2, y2, w, h, w ∗ h], which denotes the normalized

top left coordinates, bottom right coordinates, width, height,

and the area of the detected region box. The region fea-

ture and location feature are fed through separate fully-

connected (FC) layers to be projected into the same di-

mension as the text embedding space, followed by a layer-

normalization (LN) layer. The final representation of the re-

gion feature is then obtained via summing up the projected

region feature and location feature.

Cross-lingual Language Encoder. We follow XLM-R [11]

to tokenize an input sentence T li in language li to BPE to-

kens tli = {tli1 , t
li
2 , · · · , t

li
n} using Sentence Piece model

[31]. We then project each token to its embedding based

on the XLM-R vocabulary and word embeddings. The fi-

nal representation of each token is obtained via summing

up its word embedding, segment embedding, and position

embedding as in XLM-R, followed by another Layer Nor-

malization.

3.3. Pre­training Tasks

For model training, we employ four pre-training objec-

tives to train on large multilingual image-text paired data:
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Masked Language Modeling (MLM), Image-Text Matching

(ITM), Masked Region-to-Token Modeling (MRTM), and

Visual Translation Language Modeling (VTLM), as shown

in Figure 2 (c) and (d). We continuously optimize our model

with the four objectives on multilingual image-text pairs to

capture the cross-modal alignment between vision and dif-

ferent languages. As the translated captions are associated

to the same image, cross-lingual alignment is also enforced

using visual context as the anchor.

3.3.1 General Tasks

Following previous V+L pre-training work [10, 33, 36, 44],

we consider Masked Language Modeling and Image-Text

Matching as two of our pre-training tasks.

Masked Language Modeling (MLM). Given a set of im-

age regions v = {v1, v2, · · · , vm} and its associated cap-

tion words wli = {wlii
1 , · · · , wli

T } in language li ∈ L, and

mask indices as m ∈ N
M , we randomly mask a word wli

m

with the probability of 15% and replace the masked word

with a special token [mask]. The objective is to predict

the masked word wli
m based on the surrounding words wnm

and all image regions v, by minimizing the negative log-

likelihood:

LMLM (θ) = −E(wli ,v)∼D logPθ(w
li
m|wli

\m, v),

where θ is the learnable parameters. Each pair (wli ,v) is

sampled from the whole training set D. The caption for

each language is sampled with even probability p = 1/|L|.

Image-Text Matching (ITM). ITM has been widely used

in vision-and-language pre-training [10, 33, 36, 44] to learn

instance-level alignment between image and sentence. The

output of the special token [cls] is fed through a FC layer

and a sigmoid function to predict a score sθ(w
li , v) be-

tween 0 and 1, which predicts whether the input image v

and the text input wli are semantically matched. During

training, we sample positive and negative pairs from the

dataset D with equal probability at each step. The negative

image-text pair is created by replacing the image or text in

a matched pair with a randomly-selected distractor from the

same mini-batch. The objective is optimized with binary

cross-entropy loss:

LITM (θ) =− E(wli ,v)∼D[y log sθ(w
li , v)

+ (1− y)log(1− sθ(w
li , v))]

where y ∈ {0, 1} indicates whether the input image-text

pair is a positive or negative sample. The deployment of

MLM and ITM serves as our base model. Next, we intro-

duce two novel objectives to further enhance cross-lingual

cross-modal representation learning.

3.3.2 Masked Region-to-Token Modeling

Now that we have a learning objective for language (MLM),

how about the vision counterpart? In existing VLP models,

Masked Region Modeling (MRM) serves this purpose by

predicting the top-1 or soft object label associated with the

masked image region. The de facto approach to harvesting

object labels is using the predictions from an off-the-shelf

object detector (e.g., Faster R-CNN [39]). However, there

are two limitations with this approach. First, the association

between object labels from image and word tokens from

text is not well utilized. While salient objects detected in

the image are usually mentioned in the paired description,

MRM misses this connection as it directly predicts masked

image region to an index between 0 and 1600. Second, the

visual embedding extracted from an object detector can dif-

fer significantly from pre-trained word embedding due to

different embedding space. Existing methods merely rely

on weak supervision from pre-training objectives to close

the gap between these two disparate embedding spaces. We

argue that a well-aligned embedding space is indispensable

for our problem, given its complex multilingual multimodal

nature. Therefore, we propose to explicitly learn the corre-

spondence between region and word tokens and tackle the

aforementioned issues with two strategies.

Masked Region-to-Token Modeling (MRTM). This new

objective aims to classify each masked region to its

“pseudo” object label (e.g., “dog”, “cat”, provided by a pre-

trained object detector), which is the (sub-word) token in

our word vocabulary that associates with the original ob-

ject label. Compared to the MRM objective from previous

work [36, 33, 10], MRTM leverages additional semantic as-

sociation between object labels and captions to capture se-

mantic alignment between vision and language. More for-

mally, given an image region vi ∈ v, we set its probability

for being masked out as 15% (as in [13]). For each masked

region, the region feature vector is either replaced by a zero-

initialized vector vm (90% probability) or remains the same

(10%). Then we predict the associated “pseudo” object la-

bel clivm
on the masked region based on the observation of

surrounding image regions v\m and the paired caption wli

in language li, by minimizing the negative log-likelihood:

LMRTM (θ) = −E(wli ,v)∼D logPθ(c
li
vm

|wli , v\m)

Early Adaptation (EA). To address the second limitation

and facilitate learning of a joint embedding space between

vision and language, we warm up the image encoder to

make sure the output visual embedding shares the same em-

bedding space as word embeddings. Specifically, each im-

age region is projected to an image region feature vi ∈ R
p

through the image encoder, with the same dimension as the

word embedding vector. We then extract the word embed-

ding vectors from XLM-R that correspond to the k object
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categories c = {c1, c2, . . . , ck} defined by the object detec-

tor. We compute the cosine similarity between the projected

image feature vi with the k word embedding vectors fol-

lowed by a softmax function, resulting in a normalized dis-

tribution hθI (vi) ∈ R
k that indicates the prediction on what

semantics are mapped in the region. We then maximize the

similarity between this predicted distribution and the “GT”

object probability distribution from the object detector out-

put g(vi) ∈ R
K , by minimizing their KL divergence:

LEA(θI) = DKL(g(vi)||hθI (vi)),

where θI is the learnable parameters of the image Encoder.

Note that a recent work named OSCAR [35] has made a

similar effort to close the visual-textual embedding gap by

inserting object tags into the input sequence. Compared to

OSCAR [35], our method has two advantages. First, it does

not rely on object tags for downstream tasks, which might

not be applicable for image domains that cannot be well

covered by the object categories from the pre-trained detec-

tor. Second, by forcing image representation to be similar

to language representation with EA, our pre-training model

can better leverage the initialized weights from language-

only pre-trained model to adapt to image modality.

3.3.3 Visual Translation Language Modeling

All the objectives mentioned so far operate on image and

monolingual input, without considering cross-lingual ob-

jectives. The correspondence between languages is vital for

cross-lingual generalization, clearly observed from existing

work on language understanding [11]. Our proposed meth-

ods so far unexceptionally learn cross-lingual correspon-

dence indirectly through the image focal point, which might

not be sufficient. We hence propose visual translation lan-

guage modeling (VTLM), which directly and jointly learns

the alignment between visual context and text in different

languages.

In VTLM, given an image v and a pair of captions

(wli , wlj ) in two different languages, the goal is to predict

masked caption tokens from both languages. One of the two

languages is always English, as English captions in our pre-

training data are directly from [41], while captions in other

languages are translated by MT, therefore less reliable. Un-

der this bilingual framework, model input size only grows

linearly with more languages.

Besides, as our model is initialized with the weights

of a powerful pre-trained multilingual model, it has al-

ready learned a good alignment between different linguistic

words to some extent. Applying random masking strategy

in VTLM is sub-optimal, as the model can make a correct

prediction by simply translating words from one language

to another, without taking into account the visual informa-

tion from image. To encourage the model to fully consider

visual context, we introduce a strategy called co-masking,

where we simultaneously mask out tokens with similar se-

mantic meanings from paired captions to prevent easy trans-

lations.

There are a few steps in co-masking. First, we apply

Fast Align [14] to learn the word alignment between two

different languages (li, lj) from the noisy parallel corpus

that was created using machine translation. Then, during

the pre-training stage, we follow the same strategy as in

MLM to randomly mask a token wli
m from the caption of

one language. For the paired caption in the other language

lj , we mask the aligned word tokens w
lj
k that are predicted

from Fast Align. [14] The final objective is again to pre-

dict masked tokens from both languages by minimizing the

negative log-likelihood:

LV TLM (θ) = −E(wli ,w
lj ,v)∼D

logPθ(w
li
m, w

lj
k |w

li
\m, w

lj
\k, v)

4. Experiments

In this section, we provide detailed experiments to eval-

uate our proposed UC2 model over multilingual image-text

retrieval and multilingual VQA tasks.

Multilingual Image-Text Retrieval In the retrieval task,

the model retrieves an image from a set of candidates given

a caption in a certain language, or vice versa. We consider

two datasets: Multi30K [16, 15, 4] and MSCOCO [9, 51,

34]. Multi30K is built upon Flickr30K [52], where English

captions are manually translated to German, French, and

Czech. It contains 31K images (each paired with 5 captions

in English and German, 1 caption in French and Czech).

Following Flickr30K[52], we split the data into 29K/1K/1K

images for train/val/test.

MSCOCO[9] consists of 123K images, with 5 English

captions per image. STAIR [51] extends the original

MSCOCO dataset by collecting 820K Japanese captions

for 165K COCO images. Similarly, Li et al. [34] extend

MSCOCO by collecting Chinese captions for 20K COCO

images with roughly 1 caption per image. We use the

train/dev/test splits for English and Japanese defined in [27],

and present results on the 1K test set. For MSCOCO Chi-

nese, we follow the original split as in [34]. We compute

Recall@K (recall of top K candidates) for both image-to-

text retrieval and text-to-image retrieval with K = 1, 5, 10.

The average of all these 6 evaluation scores, Average Recall

(AR)[24], is used as the final evaluation metric.

Multilingual Visual Question Answering (VQA) In

Multilingual VQA, given an image and a question in a cer-

tain language, the model predicts an answer based on the

visual context in the image. We evaluate our model on two

datasets: VQA v2.0 [20] and Japanese Visual Genome (VG)
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Flickr30K MSCOCO

Method EN DE FR CS EN ZH JA Meta-Ave

SOTA without pre-training

EmbN[47] 72.0 60.3 54.8 46.3 76.8 73.2 73.5 65.3

PAR.EmbN [19] 69.0 62.6 60.6 54.1 78.3 76.0 74.8 67.9

S-LIWE [49] 76.3 72.1 63.4 59.4 80.9 73.6 70.0 70.8

MULE [28] 70.3 64.1 62.3 57.7 79.0 75.9 75.6 69.3

SMALR [5] 74.5 69.8 65.9 64.8 81.5 77.5 76.7 73.0

English-only Fine-tune

M3P[24] 87.4 58.5 46.0 36.8 88.6 53.8 56.0 60.7

UC2 87.2 74.9 74 67.9 88.1 82 71.7 78.0

Translate-Test

UNITERCC[10] 87.7 81.2 81.9 80.2 88.4 87.3 82.2 84.1

Single-Language Fine-tune

M3P[24] 87.4 82.1 67.3 65.0 88.6 75.8 80.1 78.0

UC2 87.2 83.8 77.6 74.2 88.1 84.9 87.3 83.3

All-Language Fine-tune

M3P[24] 87.7 82.7 73.9 72.2 88.7 86.2 87.9 82.8

UC2 88.2 84.5 83.9 81.2 88.1 89.8 87.5 86.2

Table 1. Evaluation results on image-text retrieval over Flickr30K and MSCOCO datasets across different languages. We highlight the

MSCOCO results for MULE and SMALR in blue as they are using different dev/test splits of MSCOCO compared to other models.

VQA [42]. VQA v2.0 is a widely used benchmark for En-

glish VQA task. We follow the official partition to split the

dataset and report results on Test-Dev set through the offi-

cial evaluation server. Following [10], our training is aug-

mented by running on both the training and validation split

of VQA v2.0 as well as the VQA from Visual Genome[30].

Visual Genome VQA Japanese [42] expands the VG En-

glish VQA dataset [30] by collecting 793K Japanese ques-

tion answering pairs on 99K images from VG. We use the

train/test split in the original VG VQA to split the data into

61K/30K training/test images.

We formulate VQA as a multi-label classification prob-

lem, where the model predicts answer from the candidate

pool.2 VQA score [20] is used to compare model predic-

tions against 10 human-annotated answers in VQA v2.0.

On Visual Genome VQA Japanese, which only has one

ground-truth answer to each question, we use accuracy and

BLEU score as the evaluation metrics.3

Implementation Details UC2 consists of 12 layers of

transformer blocks, where each block has 768 hidden units

and 12 self-attention heads. Except for the image encoder,

the model is initialized with XLM-R [11]. We run contin-

uous pre-training with MLM, ITM, MRTM and VTLM ob-

jectives. We use Adam optimizer [29] with a linear warm-

up for the first 5% of training, and set the learning rate to

4e−4. We use Horovod and NCCL for multi-node commu-

nications and apply gradient accumulation (every 3 steps) to

2We only consider top-3129 frequent answers for VQA v2.0 and top-

3000 frequent answers for VQA VG Japanese.
3BLEU score is used to compute a soft mapping score between the pre-

dicted answer and the ground-truth answer, assuming answers with many

overlapping words should share similar semantic meaning.

reduce multi-GPU communication overheads. The batch-

size for pre-training is set as 1024 and the dropout rate is

0.1. Pre-training experiments are conducted on 8 Nvidia

V100 GPUs for 30 epochs, which takes 4 days to converge.

4.1. Experimental Results

We first compare UC2 to various SOTA with or with-

out pre-training on the two downstream tasks. Then, We

conduct ablation experiments to study the effectiveness of

MRTM and VTLM, as well as the impact of image pivot-

ing. Finally, we visualize the alignments between visual

context and cross-lingual text context learned by our pre-

trained UC2 model.

4.1.1 Evaluation on Multilingual Retrieval

We compare UC2 with state-of-the-art methods on image

retrieval and text retrieval in two different settings:

• English-only Fine-tune: We finetune the pre-trained

model on just the English training data.

• Single-Language Fine-tune: We finetune the pre-

trained model on training data for each target language.

• All-Language Fine-tune: We finetune the pre-trained

model on merged training data of all languages.

Besides reporting AR on each language, we also compute

the Meta-Ave (average of AR across all languages over

two datasets) to reflect the overall performance in this task.

Given that we have access to pre-trained machine transla-

tion models, we also introduce a strong translate-test base-

line UNITERCC based on [10], which is pre-trained on Con-

ceptual Conception English data and finetuned on English

training data in the downstream tasks. By translating the
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VQA v2.0 VG VQA JA

method Test-Dev Acc Acc BLEU

MCAN [53] 70.63 - -

PCATT [42] - 19.2 -

Vil-BERT [36] 70.55 - -

VL-BERT [44] 71.16 - -

UNITERCC [10] 71.22 22.7 11.8

UC2 71.48 34.2 26.8

Table 2. Evaluation results on multilingual VQA task over VQA

v2.0 and VG VQA Japanese datasets. We highlight the results for

PCATT in blue as they are using different dev/test splits.

test data from other languages to English, UNITERCC can

be directly applied for text/image retrieval. Results are sum-

marized in Table 1.

Our model on the all-language setting achieves a sig-

nificant improvement over all task-specific methods with-

out pre-training, showing the effectiveness of cross-lingual

cross-modal pre-training in learning universal representa-

tion across vision and different languages. Our model also

demonstrates a superior transferability. When finetuned on

English dataset only, we observe an absolute gain of 17.3%
on Meta-Ave across different languages over M3P via better

transition of the learned knowledge from English to other

languages. Compared to the best non-pretrained models

trained on data in each language, our cross-lingual model

under the English-only fine-tune setting is still 5% better.

We suspect the improvement comes from the in-domain

pre-training objective: we use image as the grounding me-

dia in ITM to learn cross-modal mapping from one language

to another. With strong transfer capability, our model could

potentially generalize the learned knowledge from a high-

resource language to downstream tasks in low-resource lan-

guages.

When we finetune UC2 model on all-language data, our

model still demonstrates a consistent advantage over M3P

on the majority of languages, with 3.4% improvement on

Meta-Ave. Our best model is also better than the strong

translate-test baseline UNITERCC on all languages except

English in MSCOCO. The slightly worse performance on

COCO English is potentially due to lack of pre-training

in English data, given that our pre-training time is evenly

splitted to multiple languages. However, this does not

overshadow the fact that we achieve overall better perfor-

mance across all languages. Thanks to the cross-lingual pre-

training and finetuning, our model can leverage the com-

plementary information captured in different languages to

improve the performance on each language.

4.1.2 Evaluation on Multilingual VQA

For multilingual VQA, our pre-trained model is finetuned

and evaluated on the target language for each dataset. Un-

like image-text retrieval where the same output layer is

shared across different languages, multilingual VQA has

different classes of answers for each language, which makes

joint training across different languages impossible. We

compare our model with state-of-the-art methods with-

out pre-training as well as V+L pre-training methods that

use the same pre-training corpus. When evaluating the

translate-test baseline UNITERCC on VG VQA Japanese

dataset, we first finetune it on VQA v2.0 [20] with english

answer candidates translated from VQA VG Japanese to en-

sure the same reference is used during evaluation as in UC2.

We then use machine translation model to translate the test

dataset of VG VQA Japanese to English, and evaluate the

finetuned translate-test model using classification accuracy

and BLEU. Results are summarized in Table 2.

On VQA v2.0, our model achieves significant improve-

ment over SOTA task-specific method, and also outper-

forms existing monolingual models pre-trained on Concep-

tual Conception [36, 44, 10] by an obvious margin. On VG

VQA Japanese, we finetune our model with a different data

split from the original baseline method PCATT proposed in

VG VQA Japanese, where we have much less training data

than their split (ours: 61K images vs. PCATT: 91K images).

Even under this disadvantage in an unfair comparison, our

pre-trained model still achieves more than 10% improve-

ment on both accuracy and BLEU over baselines. Although

achieving better performance compared to the task-specific

method, the translate test baseline (UNITERCC) performs

much worse than UC2 on the translated VQA VG Japanese

dataset. Despite strong performance on the VQA English

dataset, the noisiness from the machine translated language

would lead to unavoidable degradation especially for tasks

like VQA that requires fine-grained level understanding

and interpretation on multi-modal context. Hence, building

unified cross-linugual cross-modal pre-training model like

UC2 is a better solution to directly work on tasks in target

languages than a translate-test method.

4.1.3 Ablation Study

Effect of Training Objectives To validate the effective-

ness of the proposed pre-training objective MRTM and

VTLM, we conduct ablation study to verify their contribu-

tions to the model performance. We gradually remove the

two proposed training objectives and evaluate these ablated

models on our two downstream tasks. When finetuning the

pre-trained model on the image-text retrieval task, we fol-

low the best experimental setting to train the model on all

language data. On VQA task, the model is directly fine-

tuned on the target language data.

From Table 3, we observe that MRTM has led to signifi-

cant performance boost on multilingual VQA tasks over the

two languages while gaining some incremental improve-
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Flickr30K MSCOCO VQA v2.0 VG VQA JA

Pretraiing Objective EN DE FR CS EN ZH JA Meta-Ave Test-Dev Acc Acc BLEU

UC2 (full model) 88.2 84.5 83.9 81.2 88.1 89.8 87.5 86.2 71.48 34.2 26.8

-VTLM 87.5 83.6 82.4 79.6 87.7 89.2 87.2 85.3 71.45 34.1 26.7

-MRTM 87.6 83.7 82.0 80.0 87.9 89.4 87.4 85.4 70.93 33.5 26.4

-VTLM-MRTM 86.8 82.9 81.3 79.3 87.5 88.9 86.7 84.8 69.94 33.4 26.4

Table 3. Ablation study on pre-training objectives.

Flickr30K MSCOCO

Topology EN DE FR CS EN ZH JA Meta-Ave

UC2 (Image pivoting) 87.5 83.6 82.4 79.6 87.7 89.2 87.2 85.3

UC2 (English pivoting) 86.2 81.9 80.7 77.4 88.1 88.5 87.3 84.2

Table 4. Comparison between the pre-training topology of pivoting on image against pivoting on English.

ment on image-text retrieval tasks. VQA requires more fine-

grained understanding about connections between language

and visual context, therefore benefits more from the cross-

modal local alignment captured by MRTM. When introduce

VTLM to the pre-training of UC2, we observe similar im-

provement on image-text retrieval task, but the improve-

ment on VQA VG Japanese is relatively incremental. We

suspect the limited help is mainly due to the language gap

between English and Japanese captions. Hence it is hard to

capture the good alignment between English and Japanese

via VTLM.

Effect of Pivoting on Image To validate the effective-

ness of image pivoting, we conduct a controlled experiment

where the model variant only pivots on English (similar to

M3P). In this setting, we train UC2 with all the pre-training

objectives on English Conceptual Caption data as in our full

model, except for VTLM which involves image as one of

the pivoting points. To capture the alignment between En-

glish and other languages, we train UC2 on pairs of cap-

tions in two different languages with one language fixed as

English. The training objective is translated language mod-

eling adopted from XLM [32]. From Table 4, we can see

that UC2 pre-trained by pivoting on image achieves over-

all better performance in multilingual image-text retrieval

task. The advantage is particularly sound when the target

language has limited training data. This indicates that the

cross-lingual cross-modal representation learned by pivot-

ing on images imbues stronger cross-modal mapping trans-

fer across different languages.

Visualization To visualize the cross-lingual cross-modal

alignment learned by UC2, we provide examples of text-

to-image attention from salient words in multilingual cap-

tions to the shared image context. As shown in figure 3,

words from different languages that share the same seman-

tic meaning can attend to similar corresponding regions in

the image. This shows that while our model can effec-

tively capture cross-modal alignments between regions and

Figure 3. Visualization of Text-to-Image Attention on aligned

words across English, German and Czech (Flickr30K).

words, it also connects different languages by grounding

them to similar image regions.

5. Conclusion

We present the first MT-augmented pre-training model

UC2 that pivots primarily on images and complementary

on English to learn cross-lingual cross-modal representa-

tion from large scale of multilingual image-to-text pairs. We

propose two new pre-training tasks that facilitate our model

to capture better alignment between vision and different

languages. Our model achieves the new state-of-art per-

formance on two mainstream multilingual V+L tasks and

demonstrate strong cross-lingual transfer capability. For fu-

ture work, we will continue exploring this topic and expand-

ing the framework to include more families of languages.

As more benchmarks [48, 40, 3] on multilingual video-text

pairs become available, we are interested in enhancing the

grounding between vision and language by leveraging the

temporal information from videos.
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