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Abstract

One of the main challenges for arbitrary-shaped tex-

t detection is to design a good text instance representation

that allows networks to learn diverse text geometry vari-

ances. Most of existing methods model text instances in im-

age spatial domain via masks or contour point sequences

in the Cartesian or the polar coordinate system. Howev-

er, the mask representation might lead to expensive post-

processing, while the point sequence one may have limit-

ed capability to model texts with highly-curved shapes. To

tackle these problems, we model text instances in the Fouri-

er domain and propose one novel Fourier Contour Em-

bedding (FCE) method to represent arbitrary shaped tex-

t contours as compact signatures. We further construct

FCENet with a backbone, feature pyramid networks (FP-

N) and a simple post-processing with the Inverse Fourier

Transformation (IFT) and Non-Maximum Suppression (N-

MS). Different from previous methods, FCENet first pre-

dicts compact Fourier signatures of text instances, and then

reconstructs text contours via IFT and NMS during test.

Extensive experiments demonstrate that FCE is accurate

and robust to fit contours of scene texts even with highly-

curved shapes, and also validate the effectiveness and the

good generalization of FCENet for arbitrary-shaped tex-

t detection. Furthermore, experimental results show that

our FCENet is superior to the state-of-the-art (SOTA) meth-

ods on CTW1500 and Total-Text, especially on challenging

highly-curved text subset.

1. Introduction

Benefiting from the development of object detection [3,

9,10,16,23] and instance segmentation [4,11], text detection
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(a) Fourier contour fitting with progressive approximation.

(b) TextRay contour [25] (c) Fourier contour

Figure 1: Comparison with Fourier contour and TextRay

contour [25] representations. (a) shows Fourier contour can

fit extremely complicated object shapes and get better ap-

proximation as the Fourier degree k increases. (b) and (c)

compare the TextRay contours and our proposed Fourier

contours, where the ground-truth contours are in green and

the reconstructed ones are in red. TextRay fails to model

highly-curved texts (best viewed in color).

has achieved significant progress [1,7,8,14,22,24,25,27–29,

31, 35–37]. Text detection methods can be roughly divided

into segmentation-based approaches [14, 15, 19, 21, 22, 24,

27, 28, 30, 32], and regression-based approaches [12, 25, 33,

35, 36].

Recent research focus has shifted from horizontal or

multi-oriented text detection [7, 22, 31, 37] to more chal-

lenging arbitrary-shaped text detection [1, 8, 14, 24, 25,

27–29, 35, 36]. Compared to multi-oriented text detec-

tion, text instance representations play an indispensable

role in arbitrary-shaped text detection. A good represen-

tation should be simple and compact with good general-

ization ability to avoid overfitting. However, designing
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a compact text instance representation is not straightfor-

ward, because fitting diverse geometry variances of tex-

t instances is challenging. Existing arbitrary-shaped tex-

t detection approaches represent text instances in the spa-

tial domain of images. They models texts via per-pixel

masks [1, 8, 14, 24, 27–29, 32], contour point sequences in

the Cartesian system [12, 35, 36] or those in the polar sys-

tem [25]. Spatial domain based methods have clear draw-

backs. Mask representation may lead to intrinsically com-

putationally expensive post-processing, and frequently re-

quires large training data, and contour point sequences may

have limited capability to model highly-curved texts.

In this paper, we model text instance contours in the

Fourier domain instead of the spatial domain via the Fouri-

er transformation, which can fit any closed contour with

progressive approximation in a robust and simple manner.

Fig. 1a illustrates that Fourier transformation can accurate-

ly fit extremely complicated shapes (e.g., a portrait sketch)

with very compact signatures (e.g., K = 125 only), and

shows that as the Fourier degree k increases, the recon-

structed shape approximates the ground truth better. Com-

pared to TextRay [25], a SOTA text contour point sequence

in the polar coordinate system, our proposed Fourier con-

tour representation can model high-curved texts better as

shown in Fig. 1b-c.

To this end, we propose Fourier Contour Embedding

(FCE) method to convert text instance contours from point

sequences into Fourier signature vectors. Firstly, we pro-

pose a resampling scheme to obtain a fixed number of dense

points on each text contour. To maintain the uniqueness

of the resulted Fourier signature vector, we set the right-

most intersection between the text contour and the horizon-

tal line through the text center point as the sampling start

point, fix the sampling direction as the clockwise direction,

and keep the sampling interval along the text contour un-

changed. Secondly, the sampled point sequences of con-

tours in the spatial domain are embedded into the Fourier

domain via the Fourier transformation (FT).

The advantages of FCE for text instance representation

are three-fold:

• Flexible: Any closed contour, including extremely

complicated shapes, can accurately be fitted;

• Compactness: The Fourier signature vectors are com-

pact. In our experiments, our proposed FCE with the

degree K = 5 can achieve very accurate approxima-

tion of texts.

• Simplicity: The conversion between a sampled point

sequence and a Fourier signature vector of text con-

tours is formulated as FT and Inverse FT. So the FCE

method is easy to implement without introducing com-

plex post-processing.

Equipped with the FCE, we further construct FCENet for

arbitrary-shaped text detection. Particularly, it consists of a

backbone of ResNet50 with deformable convolutional net-

works (DCN) [38], feature pyramid networks (FPN) [9] and

the Fourier prediction header. The header has two individ-

ual branches. Namely, the classification branch, and the re-

gression branch. The former predicts text region masks and

text center region masks. The latter predicts text Fourier

signature vectors in the Fourier domain, which are fed into

the Inverse Fourier Transformation (IFT) to reconstruct text

contour point sequences. Ground truth text contour point

sequences are used as supervision signals. Thanks to the re-

sampling scheme of FCE, our loss in the regression branch

is compatible across different datasets, although datasets

such as CTW1500 [13] and Total-Text [2] have different

numbers of contour points for each text instance.

Experiments validate the effectiveness and good gener-

alization ability of FCENet for arbitrary shaped text detec-

tion. Moreover, our FCENet is superior to the state-of-the-

art (SOTA) methods on CTW1500 and Total-Text, especial-

ly on their highly-curved text subset.

We summarize the contributions of this work as follows:

• We propose Fourier Contour Embedding (FCE)

method, which can accurately approximate any closed

shapes, including arbitrary shaped text contours, as

compact Fourier signature vectors.

• We propose FCENet which first predicts Fourier sig-

nature vectors of text instances in the Fourier domain,

and then reconstructs text contour point sequences in

the image spatial domain via Inverse Fourier Transfor-

mation (IFT). It can be learned end-to-end, and be in-

ferred without any complex post processing.

• We extensively evaluate the proposed FCE and

FCENet. Experimental results validate the good rep-

resentation of FCE, especially on highly-curved texts,

the generalization ability of FCENet when training

on small datasets. Moreover, it has been shown that

FCENet achieves the state-of-the-art performance on

CTW1500 and Total-Text.

2. Related Work

2.1. SegmentationBased Methods

These methods mainly draw inspiration from semantic

segmentation, which implicitly encodes text instances with

per-pixel masks [1, 14, 19, 22, 24, 27, 28, 30, 32, 34]. Most

of these methods follow a component-grouping paradigm,

which first detect components of scene text instances and

then aggregate these components to obtain final mask out-

puts.
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For pixel-based methods, pixel-level score maps are first-

ly obtained using instance/semantic segmentation frame-

work, and then text pixels are grouped to obtain the out-

put text masks [24, 28, 30, 32]. To further improve the per-

formance, some methods would perform prediction on a

transformed space, and then reconstruct the final maps. For

example, Tian et al. [24] assumed each text instance as a

cluster and predicted an embedding map via pixel cluster-

ing; TextField [32] generates candidate text parts via linking

neighbor pixels with a deep direction field.

For segment-based methods, segments containing part-

s of words or text lines (fragments) [14, 15, 19, 21, 22, 27],

or characters [1, 34] are firstly detected, and then segments

are grouped into the whole words/text-line. PSENet [27]

detects each text instance with corresponding kernels,

and adopts a progressive scale algorithm to gradually ex-

pand the predefined kernels and obtain the final detection.

SegLink++ [21] achieves dense and arbitrary-shaped scene

text detection using instance-aware component grouping

with minimum spanning tree. CRAFT [1] obtains character-

level detection and estimates the affinity between characters

to achieve the final detection.

Some methods train the predictor in a transformed space,

and reconstruct the output masks via the predicted features.

For example, Tian et al. [24] constructed a discriminative

representation via embedding pixels into a space where pix-

els of the same text tend to be in the same clusters and vise

versa; Xu et al. [32] proposed TextField to learn one direc-

tion field to separate adjacent text instances.

2.2. RegressionBased Methods

Regression-based methods are complementary to

segmentation-based methods, which explicitly encode

text instances with contours (point sequences) of text

regions. They aim at adopting the direct shape modeling

of text instances to handle complex geometric vari-

ances [7, 25, 33, 35–37], and are often simpler and easier to

train. However, the constrained representation capability of

point sequences for complex text instances may limit the

performance of the networks.

To tackle this problem, many modules are elaborately

designed to further improve the flexibility of point sequence

representation. LOMO [35] introduces an iterative refine-

ment module (IRM) and a shape expression module (SEM)

to progressively refine the text localization of a direct re-

gression. Zhang et al. [36] used CNNs to regress the ge-

ometry attributes (e.g., height, width, and orientation) of a

series of small rectangular components divided from text in-

stances, and introduced one Graph Convolutional Network

(GCN) to infer the linkages between different text compo-

nents. TextRay [25] formulates the text contours in the polar

system and proposes a single-shot anchor-free framework to

learn the geometric parameters. Liu et al. [12] introduced

Figure 2: Illustration of FCE. It contains two stages, where

Resampling obtains dense point sequences (in green) based on

ground truth points (in red); Fourier Transformation is used

to compute Fourier coefficients ck with the resampled point se-

quences. A contour can be reconstructed by the combination of

different fixed-frequency circular motions (indicated by pink cir-

cles) with the hand direction ck.

Bezier curves to parameterize curved texts and achieved the

SOTA performance in scene text spotting with BezierAlign.

Recent works indicate that effective contour modeling is

essential for irregular text instances detection [25, 35, 36]

and the downstream recognition [12]. Therefore, it would

be significant to design a flexible yet simple representation

for arbitrary shaped text detection.

2.3. Explicit vs. Implicit Text Shape Representation

From a perspective of text shape representation, current

model can be roughly divided into two categories. Namely,

approaches which implicitly model text shapes via per-pixel

masks [1, 8, 14, 27–29] or masks reconstructed by trans-

formed features [24, 32], and approaches which explicitly

model text shapes using point sequences of contours in the

Cartesian system [35, 36] or the polar system [25].

However, per-pixel masks may cause intrinsically high

computational complexity of networks (e.g., complex post-

processing) and require large training data, while point se-

quences sampled on contours may has limited represen-

tation capability and requires deliberately-designed refine-

ment or inference [15, 25, 35, 36].

To tackle this problem, Liu et al. [12] introduced Bezi-

er curves to parameterize curved texts, but the control point

setting of Bezier curves may limit its representation capa-

bility for some cases, as shown in Sec. 4.6. In this paper,

text instances are formulated in the Fourier domain, which

allows to fit any closed continuous contour with robust and

simple manners. In the following section, we would explore

the potential of FCE for arbitrary shaped text detection.

3. Approach

In this section, we first introduce the proposed Fourier

Contour Embedding (FCE) method, which can approximate

arbitrary-shaped text contours as compact Fourier signa-
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ture vectors. Then we propose FCENet to detect arbitrary-

shaped texts, equipped with FCE.

3.1. Fourier Contour Embedding

We use one complex-value function f : R 7→ C of a real

variable t ∈ [0, 1] to represent any text closed contour as

follows:

f(t) = x(t) + iy(t), (1)

where i represents the imaginary unit. (x(t), y(t)) denotes

the spatial coordinate at the specific time t. Since f is a

closed contour, f(t) = f(t + 1). f(t) can be reformulated

by Inverse Fourier Transformation (IFT) as:

f(t) = f(t, c) =

+∞∑

k=−∞

cke
2πikt, (2)

where k ∈ Z represents the frequency, and ck is the

complex-value Fourier coefficient used to characterize the

initial state of the frequency k. Each component cke
2πikt

in Eq. 2 indicates a circular motion with fixed-frequency

k with a given initial hand direction vector ck, Thus, the

contour can be regarded as the combination of different fre-

quent circular motions as the pink circles shown in Fig. 2.

From Eq. 2, we observe that the low frequency components

are in charge of the rough text contours, while the high are

in charge of the details of contours. We empirically find that

preserving K−lowest (K = 5 in our experiments) frequen-

cies only while discarding others can obtain satisfactory ap-

proximation of text contours, as shown in Fig. 5.

Since we cannot obtain the analytical form of text con-

tour function f in real applications, we can discretize the

continual function f into N points as {f( n
N
)} with n ∈

[1, . . . , N ]. In this case, the ck in Eq. 2 can be computed

via the Fourier Transformation as:

ck =
1

N

N∑

n=1

f(
n

N
)e−2πik n

N , (3)

where ck = uk + ivk with uk as the real part and vk as the

image part of a complex number. Specially, when k = 0,

c0 = u0 + iv0 = 1

N

∑
n f(

n
N
) is the center position of

the contour. For any text contour f , our proposed Fourier

Contour Embedding (FCE) method can represent it in the

Fourier domain as a compact 2(2K+1) dimensional vector

[u−K , v−K , · · · , u0, v0, · · · , uK , vK ], dubbed Fourier sig-

nature vector.

Our FCE method consists of two stages. Namely, the re-

sampling stage and the Fourier transformation stage. Con-

cretely, in the resampling stage, we sample equidistantly

a fixed number N (N = 400 in our experiments) points

on the text contour, obtaining the resampled point sequence

{f( 1

N
), · · · , f(1)}. Note that this resampling is necessary

since different datasets have different numbers of ground

truth points for text instances, and they are relatively small.

e.g., there are 14 in CTW1500 [13] while 4 ∼ 8 in Total-

Text [2]. The resampling strategy makes our FCE is com-

patible to all datasets with the same setting. In the Fouri-

er transformation stages, the resampled point sequence is

transformed into its corresponding Fourier signature vector.

Uniqueness of Fourier Signature Vector. From the

above procedure of FCE, it is easy to see that different re-

sampled point sequences can result in different Fourier sig-

nature vectors even for the same text contour. To make the

signature vector of one specific text unique, and more stable

network training, we make constrains on the starting point,

the sampling direction, and moving speed of f(t):

• Starting point: We set our starting point f(0) (or

f(1)) to be right most intersection point between the

horizontal line through the center point (u0, v0) and

the text contour.

• Sampling direction: We always resample the points

along the text contour in the clockwise direction.

• Uniform speed: We resample points uniformly on

the text contour, and the distance between every two

adjacent points keeps unchanged to ensure a uniform

speed.

3.2. FCENet

Equipped with the FCE, we further propose the anchor

free network FCENet for arbitrary-shaped text detection.

Network Architectures. Our proposed FCENet em-

ploys a top-down scheme. As shown in Fig. 3, it contains

ResNet50 [5] with DCN [38] as backbone, and FPN [9] as

neck to extract multi-scale features, and the Fourier predic-

tion header. We conduct prediction on the feature map P3,

P4 and P5 of FPN. The header has two branches, which

are responsible for classification and regression respective-

ly. Each branch consists of three 3× 3 convolutional layers

and one 1×1 convolutional layer, each of which is followed

by one ReLU nonlinear activation layer.

In the classification branch, we predict the per-pixel

masks of Text Regions (TR). We find that Text Center Re-

gion (TCR) prediction can further improve the performance.

We believe this is because it can effectively filter out low-

quality predictions around text boundaries.

In the regression branch, the Fourier signature vector of

one text is regressed for each pixel in the text. To deal

with text instances of different scales, the features of P3,

P4 and P5 are responsible for small, medium and large text

instances, respectively.

The detection results would be reconstructed from the

Fourier domain to the spatial domain by IFT and NMS, as

shown in Fig. 4.

Ground-Truth Generation. For the classification task,

we use the method of [14] to obtain text center region (TCR)
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Figure 3: The overall framework of the proposed FCENet. Given an image, its features extracted by the backbone and FPN,

are fed into the shared header to detect texts. In the header, the classification branch predicts both the heat maps of text

regions and those of text center regions, which are pixel-wise multiplied, resulting in the the classification score map. The

regression branch predicts the Fourier signature vectors, which are used to reconstruct text contours via the Inverse Fourier

transformation (IFT). Given the reconstructed text contours with corresponding classification scores, the final detected texts

are obtained with non-maximum suppression (NMS) [18].

(a) t = 0 (b) t = 1/3

(c) t = 2/3 (d) t = 1

Figure 4: Fourier contour reconstruction (blue) via IFT and

NMS for arbitrary-shaped texts (red denotes ground-truth)

at different time t.

masks via shrinking texts with the shrinking factor being 0.3

(see the green mask in Fig. 2 ). For the regression task, we

compute the Fourier signature vectors c of the ground truth

text contours via the proposed FCE method. Note that for

all pixels in the mask of one text instance, we predict the

text contour, and thus need one Fourier signature vector c

with the pixel being the (0, 0) point of the complex coordi-

nate system. Different pixels in the same text instance share

the same Fourier signature vector except c0.

Losses. The optimization objective of FCE-base net-

work is given by:

L = Lcls + λLreg, (4)

where Lcls and and Lreg are the loss for the classification

branch and that for the regression branch, respectively. λ is

a parameter to balance Lcls and Lreg . We fix λ = 1 in our

experiments. Lcls consists of two parts as:

Lcls = Ltr + Ltcr, (5)

where Ltr and Ltcr are the cross entropy loss for the text re-

gion (TR) and that of the text center region (TCR), respec-

tively. To solve the sample imbalance problem, OHEM [20]

is adopted for Ltr with the ratio between negative and pos-

itive samples being 3 : 1.

For Lreg , we do not minimize the distances between the

predicted Fourier signature vectors and their corresponding

ground truth. In contrast, we minimize their reconstructed

text contours in the image spatial domain which are more

related to the text detection quality. Formally,

Lreg =
1

N ′

∑

i∈T

N
′

∑

n=1

wil1(F
−1(

n

N ′
, ci), F

−1(
n

N ′
, ĉi)),

(6)

where l1 is the smooth−l1 loss [17] used for regression, and

F−1(·) is the IFT of Eq. 2. T is the text region pixel index

set. ci and ĉi are the text ground truth Fourier signature

vector and the predicted one for pixel i. wi = 1 if pixel i in

its corresponding text center region while 0.5 if not. N
′

is

the sampling number on the text contours. If N
′

is too small

(typically N
′

< 30), it would probably cause over-fitting.

Therefore, we fix N
′

= 50 in our experiments.

The regression loss is extremely important in our

FCENet. In ablation studies of Sec. 4.4, results show that

it brings absolute 6.9% and 9.3% h-mean improvement on

CTW 1500 and Total-text respectively.
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4. Experiments

In this section, we first verified the effectiveness of FCE

to model text instances, compared with two recent SO-

TA arbitrary shaped text representation methods, i.e., Tex-

tRay [25] and ABCNet [12]. We then evaluated FCENet

for text detection. Particularly, we conducted ablation stud-

ies for the effectiveness of each component, and the gen-

eralization ability by decreasing the training data; we also

made extensive comparison with the recent SOTA methods

on CTW1500 [13] and Total-Text [2] benchmarks. Since

these benchmark datasets also contain a large amount of

non-curved texts, we built a much more challenging subset

containing highly-curved or highly irregular text for further

evaluation.

4.1. Datasets

CTW1500 [13] contains both English and Chinese texts

with text-line level annotations, where 1000 images for

training, and 500 images for testing.

Total-Text [2] was collected form various scenes, in-

cluding text-like background clutter and low-contrast texts,

with word-level polygon annotations, where 1255 images

for training and 300 images for testing.

ICDAR2015 [6] is a multi-orientated and street-viewed

dataset which consists of 1000 training and 500 testing im-

ages. The annotations are word-level with four vertices.

4.2. Implementation Details

The backbone of FCENet contains ResNet50 with DC-

N [38] and a FPN [9], as shown in Fig. 3. Each of the regres-

sion and classification branch consists of three 3 × 3 con-

volutional layers and one 1 × 1 convolutional layer, whose

kernel numbers are set as [128, 64, 32, 32]. The text scale

ranges of P3, P4 and P5 are set to [0, 0.4], [0.3, 0.7], and

[0.6, 1] of the image size respectively, where the overlap-

ping range is to increase the recall rate.

We resize images to 800× 800 , and adopt data augmen-

tation strategies, including random crop, random rotations,

random horizontal flipping, color jitter and contrast jitter

during training. The models are trained using two 2080Ti

GPUs with batch size set to 8. Stochastic gradient descen-

t(SGD) is adopted as the optimizer with the weight decay of

0.001, and the momentum of 0.9. The initialized learning

rate is 0.001, which is reduced 0.8× every 200 epoches.

During testing, the images are resized as follows: For

CTW1500, we first resize the short edge of images to 640,

and then resize the long edge of the resulted images to 1280
if it is bigger than 1280. For Total-Text, we first resize the

short edge of images to 960, and then resize the long edge

of the resulted images to 1280 if it is bigger than 1280. For

ICDAR2015, we resize the long edge to 2020 while keeping

its original direction.

(a) K = 3 (b) K = 5 (c) K = 10

Figure 5: Fourier contour fitting for arbitrary-shaped texts

with increasing Fourier degree K, where green contours de-

notes ground-truth; red contours denotes FCE fitting results.

(a) TextRay [25] (b) Ours

Figure 6: Comparisons between different text representa-

tions in terms of contour fitting ability. Green contours de-

note ground-truth, while red ones denote the fitting results.

Previous methods in comparisons were implemented

with their open source codes, and some of them were tested

on MindSpore platform1.

4.3. Evaluation of FCE

Basic Evaluation. Theoretically, any closed continuous

contour can be fitted by Fourier contour with a better ap-

proximation via increasing Fourier degree K of FCE. Re-

sults of Fig. 5 indicates that only small K can obtain sat-

isfactory fitting for most of arbitrary-shaped texts, which

verifies the strong representation ability of FCE.

Comparison. To verify the effectiveness and robustness

of FCE for modeling text instances, we conduct compar-

isons with the recent SOTA arbitrated-shaped text detectors,

TextRay [25]. Results of Fig. 6 show that TextRay fails to fit

the ground-truth closely for highly-curved texts, while our

FCE obtains accurate approximation. Note that our FCE us-

1https://github.com/mindspore-ai/mindspore
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Table 1: Comparison with related methods on CTW1500, Total-Text and ICDAR2015, where ’Ext.’ denotes extra training

data and ’FCENet†’ denotes FCENet using the ResNet50 without DCN as the backbone.

Methods Paper Ext.
CTW1500 Total-Text ICDAR2015

R(%) P(%) F(%) R(%) P(%) F(%) R(%) P(%) F(%)

TextSnake [14] ECCV’18
√

85.3 67.9 75.6 74.5 82.7 78.4 80.4 84.9 82.6

SegLink++ [21] PR’19
√

79.8 82.8 81.3 80.9 82.1 81.5 80.3 83.7 82.0

SAEmbed [24] CVPR’19
√

77.8 82.7 80.1 - - - 85.0 88.3 86.6

CRAFT [1] CVPR’19
√

81.1 86.0 83.5 79.9 87.6 83.6 84.3 89.8 86.9

PAN [28] ICCV’19 × 77.7 84.6 81.0 79.4 88.0 83.5 77.8 82.9 80.3

PAN [28] ICCV’19
√

81.2 86.4 83.7 81.0 89.3 85.0 81.9 84.0 82.9

PSENet [27] CVPR’19 × 75.6 80.6 78.0 75.1 81.8 78.3 79.7 81.5 80.6

PSENet [27] CVPR’19
√

79.7 84.8 82.2 84.0 78.0 80.9 84.5 86.9 85.7

LOMO [35] CVPR’19
√

76.5 85.7 80.8 79.3 87.6 83.3 83.5 91.3 87.2

DB [8] AAAI’20
√

80.2 86.9 83.4 82.5 87.1 84.7 83.2 91.8 87.3

Boundary [26] AAAI’20
√

- - - 83.5 85.2 84.3 88.1 82.2 85.0

DRRG [36] CVPR’20
√

83.0 85.9 84.5 84.9 86.5 85.7 84.7 88.5 86.6

ContourNet [29] CVPR’20 × 84.1 83.7 83.9 83.9 86.9 85.4 86.1 87.6 86.9

TextRay [25] MM’20
√

80.4 82.8 81.6 77.9 83.5 80.6 - - -

ABCNet [12] CVPR’20
√

78.5 84.4 81.4 81.3 87.9 84.5 - - -

FCENet† Ours × 80.7 85.7 83.1 79.8 87.4 83.4 84,2 85.1 84.6

FCENet Ours × 83.4 87.6 85.5 82.5 89.3 85.8 82.6 90.1 86.2

Table 2: Ablation studies. “TCR” denotes text center region

loss, “RL” denotes regression loss in Eq. 6.

TCR RL
CTW1500 Total-Text

R(%) P(%) F(%) R(%) P(%) F(%)

- - 74.2 80.2 77.1 71.2 81.6 76.1

-
√

78.8 83.8 81.3 73.2 84.7 78.6√
- 74.1 83.6 78.6 72.0 81.6 76.5

√ √
83.4 87.6 85.5 82.5 89.3 85.8

es 22 dimensional parameters only while TextRay 44, which

is 2 times as big as ours.

4.4. Evaluation of FCENet

Ablation Studies. To evaluate the effectiveness of the

components of FCENet, we conducted ablation studies on

both CTW1500 and Total-Text dataset, as shown in Table 2.

The results indicate that the text center region (TCR) loss of

the classification branch and the proposed regression loss

(Eq. 6) of the regression branch can dramatically improve

the performance of FCENet.

Generalization Ability. Benefiting from the FCE repre-

sentation, FCENet requires the simple IFT and NMS post-

processing only to reconstruct the complex text contours.

Moreover, FCE can generate compact text representation-

s, which allows our FCENet has better generalization abil-

ity comparing to the SOTA methods. We made compar-

isons with DRRG [36], TextRay [25], ABCNet [12] and

our proposed FCENet on CTW1500 dataset using different

amounts of training data, as shown in Table 3.

Table 3: Generalization ability evaluation on CTW1500

with different amounts of training data.

Data Methods R(%) P(%) F(%)

50%

DRRG [36] 61.1 76.6 68.0

TextRay [25] 75.5 77.8 76.6

ABCNet [12] 71.1 80.6 75.6

FCENet† 76.2 84.9 80.3

25%

DRRG [36] 44.5 70.7 54.7

TextRay [25] 67.9 74.9 71.2

ABCNet [12] 70.0 75.5 72.7

FCENet† 75.7 81.9 78.7

The results show that the performance of the other meth-

ods would drop dramatically when training data is reduced

to 50% and 25% of the original. In contrast, our FCENet

maintains good accuracy, where all accuracy recall, preci-

sion and F-measure are over 73% (precision maintains even

over 80%). The results indicate the good generalization a-

bility of our FCENet, and show the wide application poten-

tial of our method, especially in the practical scenarios with

limited training samples.

4.5. Evaluation on Benchmark Datasets

We made extensive comparison with most recent SOTA

methods on different datasets, as shown in Table 1. The

results illustrate that our FCENet obtains the best perfor-

mance of precision (P) and F-measure (F), and achieves

competitive performance of recall (R) on CTW1500 and

Total-Text datasets of arbitrary-shaped texts. Note that
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(a) TextRay [25] (b) ABCNet [12] (c) Ours (d) GT

Figure 7: Qualitative comparisons with TextRay [25] and ABCNet [12] on selected challenging samples in CTW1500 .

Table 4: Quantitative comparison on the highly-curved text

subset of CTW1500. ’Ext.’ denotes extra training data.

Methods Ext. R(%) P(%) F(%)

TextRay [25]
√

71.2 77.0 74.0

ABCNet [12]
√

66.7 79.8 72.6

FCENet - 74.7 84.3 79.2

most of the previous methods, except ContourNet [29], re-

quire extra training data to obtain its best performance, but

our FCENet is trained without it. On ICDAR15 dataset

of multi-orientated and street-viewed texts, FCENet also

achieves competitive results without additional setup.

Moreover, FCENet has simple network architecture, and

efficient post-processing (i.e., IFT and NMS), which makes

it easy to implement and very practical. Note that even e-

quipping FCENet† with the ResNet50 without DCN as the

backbone , which is the same as that of ABCNet [12], it still

obtains competitive results in Table 1.

4.6. Evaluation on Highlycurved Subset

Since CTW1500 still contains a large amount of non-

curved texts, We selected highly-curved texts from it to

build a challenging subset. Comparisons were made a-

mong most recent methods with explicit text shape mod-

eling [12, 25], i.e., TextRay [25] and ABCNet [12].

To built the challenging subset, we discard the “simple”

non-curved texts but reserve highly-curved texts. We utilize

an algorithm to select the subset (total 106 samples), based

on the observation that when we remove one of ground

truth annotation points except the head and tail, the area

of highly-curved text will change greatly. We computed the

area of the annotation polygon before Abef and after Aaft

removing a point in ground truth annotations, and selected

samples if |Abef −Aaft|/Abef ≥ 0.07.

Qualitative and quantitative comparisons were shown in

Fig. 7 and Table 4, respectively. The results indicate that

FCE is complementary to TextRay [25] and ABCNet [12]

for explicitly modeling irregular text instances, and also

show the effectiveness of FCENet for highly-curved text de-

tection.

5. Conclusion

This paper focuses on the explicit shape modeling for

arbitrary-shaped text detection. We propose Fourier con-

tour embedding method, which allows to approximate any

closed shapes accurately. Then, we propose FCENet which

first predicts Fourier signature vectors of text instances in

the Fourier domain, and then reconstructs text contour point

sequences in the image spatial domain via the Inverse Fouri-

er Transformation. FCENet can be optimized in an end-

to-end manner, and be implemented without any complex

post processing. Extensive evaluation were performed for

the proposed FCE and FCENet. Experimental results val-

idate the representation capability of FCE, especially on

highly-curved texts, and good generalization of FCENet

when training with small samples. Moreover, it shows that

FCENet achieves the SOTA performance on CTW1500,

Total-Text and competitive results on ICDAR2015.
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